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ABSTRACT

Background: The population-based assessment of patient-centered outcomes (PCOs) has been limited by the

efficient and accurate collection of these data. Natural language processing (NLP) pipelines can determine

whether a clinical note within an electronic medical record contains evidence on these data. We present and

demonstrate the accuracy of an NLP pipeline that targets to assess the presence, absence, or risk discussion

of two important PCOs following prostate cancer treatment: urinary incontinence (UI) and bowel dysfunction

(BD).

Methods: We propose a weakly supervised NLP approach which annotates electronic medical record clinical

notes without requiring manual chart review. A weighted function of neural word embedding was used to cre-

ate a sentence-level vector representation of relevant expressions extracted from the clinical notes. Sentence

vectors were used as input for a multinomial logistic model, with output being either presence, absence or risk

discussion of UI/BD. The classifier was trained based on automated sentence annotation depending only on

domain-specific dictionaries (weak supervision).

Results: The model achieved an average F1 score of 0.86 for the sentence-level, three-tier classification task

(presence/absence/risk) in both UI and BD. The model also outperformed a pre-existing rule-based model for

note-level annotation of UI with significant margin.

Conclusions: We demonstrate a machine learning method to categorize clinical notes based on important PCOs

that trains a classifier on sentence vector representations labeled with a domain-specific dictionary, which elimi-

nates the need for manual engineering of linguistic rules or manual chart review for extracting the PCOs. The

weakly supervised NLP pipeline showed promising sensitivity and specificity for identifying important PCOs in

unstructured clinical text notes compared to rule-based algorithms.
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INTRODUCTION

Prostate cancer is the most common noncutaneous malignancy in

men, accounting for 19% of new cancer diagnoses in the United

States in 2017.1 Multiple treatment modalities exist, including sur-

gery and radiotherapy.2 These treatments are known to be associ-

ated with treatment-related side effects that can alter a patient’s

quality of life, such as sexual, urinary, and bowel dysfunction (BD).3

These outcomes are not detectable by a labaratory or diagnostic

test, but rather through patient communication and they are often

referred to as patient-centered outcomes (PCOs).4 Therefore, the

data are typically captured as free text in clinical narrative docu-

ments or through patient surveys, if at all,5,6 both which are labor-

intensive and subject to biases. However, with relative 5-year sur-

vival in low-risk localized prostate cancer now above 99%,7 these

treatment-related side effects have emerged as an important discrim-

inator in prostate cancer care management and treatment decisions

and more evidence-based research on these outcomes can assist both

patients and clinicians to make informed decisions about treatment

pathways, promoting value-based care.8,9 Furthermore, the assess-

ment and documentation of these outcomes are proposed quality

metrics for prostate cancer care and under consideration for value-

based payment modifiers under healthcare reform.9,10 Therefore,

efforts to efficiently and accurately assess these outcomes align with

the principles of value-based care and forms part of a growing na-

tional research agenda around patient-centered care.

Computerized natural language processing (NLP) techniques can

potentially be a solution for parsing millions of free text clinical nar-

ratives stored in hospital repositories, extracting PCOs, and convert-

ing them into a structured representation, including both supervised

machine-learned and rule-based strategies. Such strategies have al-

ready been applied to a range of clinical notes, including progress

notes and radiology and pathology reports to extract relevant clini-

cal information in structured format.11 Supervised machine learning

for automatic extraction of information from clinical narratives are

common.12–15 In the prostate cancer domain, NLP offers an oppor-

tunity to extract treatment-related side effects on a large-scale from

historical notes, which may help train models to automatically pre-

dict these outcomes for future patients. Developing such an NLP

pipeline would enable secondary analyses on these data and help to

provide valuable population-based evidence on these important out-

comes. Previous NLP studies in prostate cancer applied rule-based

strategies to classify whether a clinical note contained evidence of

urinary incontinence (UI), mapping tokens in the note against a dic-

tionary of related terms with a negation detection system, yielding

reasonable precision and recall compared to manual chart re-

view.16,17 However, building supervised systems requires large

amounts of annotated data, which is tedious and time-consuming to

produce and a core limitation of such systems is their generalizabil-

ity to other locations and settings.

Recent advances in NLP techniques can be leveraged for the au-

tomatic interpretation of free-text narratives by exploiting distribu-

tional semantics to provide adequate generalizability by addressing

linguistic variability.18,19 Yet such techniques need a small subset of

annotated data for training supervised classifiers when manual

annotations are a major limitation. A weakly supervised approach is

a promising technique for various NLP tasks aimed to minimize hu-

man effort by creating training data heuristically from the corpus

content or exploiting the pre-existing domain knowledge. Following

this idea, we propose a weakly supervised machine learning method

for extracting treatment-related side effects following prostate can-

cer therapy from multiple types of clinical notes.

We extend previous studies both clinically and methodologically,

with the objective to extract both treatment-related: UI and BD

from a range of clinical notes without considering manually engi-

neered classification rules or large-scale manual annotations. For

machine learning, the method exploits two sources of pre-existing

medical knowledge: (1) domain-specific dictionaries that have been

previously developed for implementing a rule-based information ex-

traction systems;17 and (2) publicly available CLEVER terminology

(https://github.com/stamang/CLEVER/blob/master/res/dicts/base/

clever_base_terminology.txt) that represents a vocabulary of terms

that often present within clinical narratives. A weighted neural word

embedding is used to generate sentence-level vectors where term

weights are computed using term frequency and inverse document

frequency (TF-idf) scoring mechanism, with sentence labels derived

from a mapping against domain-specific dictionaries combined with

CLEVER (weak supervision). These sentence vectors are used to

train a machine learning model to determine whether UI and BD

were affirmed or negated, and whether the clinician discussed risk

with the patient. Finally, we combine the sentence-level annotations

using majority voting to assign a unique label for the entire clinical

note. For performance assessment, we compare the sentence-level

classification performance against a popular generative models for

text sentiment analysis: Naive Bayes model’s (NB) and note-level

performance against a domain-specific rule-based system.17

METHODS

Raw data source
With the approval of Institutional Review Board (IRB), the Stanford

prostate cancer research database was used for analysis.20 This con-

tains electronic medical record (EMR) data from a tertiary care aca-

demic medical center on a cohort of 6595 prostate cancer patients

with diagnosis from 2008 onwards, encompassing 528 362 unique

clinical notes including progress notes, discharge summaries, tele-

phone call notes, and oncology notes.

Dictionaries
The two targeted treatment-related side effects following prostate

cancer therapy are defined as:

• UI: Urinary incontinence, or the loss of the ability to control uri-

nation, is common in men who have had surgery or radiation for

prostate cancer. There are different types of UI and differing

degrees of severity and length of duration;
• BD: bowel problems following treatment for prostate cancer are

common and include diarrhea, fecal incontinence, and rectal
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bleeding, also with differing degrees of severity and length of

duration.

A reference group of 3 clinical domain experts (2 urologists and

1 urology research nurse) gave us lists of terms relating to the pres-

ence of UI and BD by individually looking at 100 clinical notes that

were retrieved from the Stanford prostate cancer research database.

The lists were combined and an experienced urology nurse curated

the final terms for UI (eg incontinence, leakage, post void dribbling)

and BD (eg bowel incontinence, diarrhea, rectal bother). The final

list (see Supplementary Table S1) not only contains terms from the

100 clinical notes but also includes additional terms important for

capturing UI and BD that are based on the suggestions of the domain

experts. Note that general urinary symptoms (eg nocturia, dysuria,

hematuria) are not considered as affirmed UI, thus such terms are

not included in the dictionary. The same UI dictionary was

previously used to implement a rule-based information extraction

system.17

Annotations
In order to create a gold standard test set, 110 clinical notes were

randomly selected from the entire corpus of notes. Two nurses and

one medical student independently annotated 110 clinical notes

with 120 sentences. The set of clinical notes used to create the dictio-

naries was isolated from the validation notes. Annotations were

assigned in two levels—(1) sentence-level—raters went through the

entire note, selected the sentences that discussed UI/BD, and

assigned a label to each sentence; (2) note-level—raters looked at all

the sentences that have been extracted on the sentence-level annota-

tion phase, and assigned a label to the entire note. We present the

sample distribution for both sentence- and note-level annotations in

Supplementary Table S2.

The following labels were assigned, if applicable, for both UI

and BD: (1) Affirmed: symptom present; (2) Negated: symptom ne-

gated; (3) Discussed Risk: clinician documented a discussion regard-

ing risk of the symptom. Some example sentences retrieved from the

clinical notes present in our dataset and the labels assigned by the

human expert are presented in Table 1.

Inter-rater reliability at the sentence-level was estimated using

Cohen’s Kappa (Table 2). Moderately low agreements between the

human raters reflects the subjectivity challenges associated with

manual chart review. The main discrepancies occurred when the

sentences contained contradictory information or unclear state-

ments. Note that no predefined annotation protocol was available

to the raters. The annotation was performed only depending on their

clinical experience. Majority voting among the three raters was used

to resolve the conflicting cases. These human annotations were only

used to validate the automated annotation described below.

Proposed pipeline
Our proposed pipeline consisted of three core components: (1)

dictionary-based raw text analysis; (2) neural embedding of senten-

ces; (3) discriminative modeling. The pipeline takes the free-text

clinical narratives as input and categorizes each sentence according

to whether the PCO was affirmed/negated or risk discussed. Figure 1

shows a diagram of the pipeline.

Neural embedding of words
In the Stanford prostate cancer database (see Sec. Dataset), there are

164 different types of clinical narratives. In the preprocessing step,

we applied standard NLP techniques to clean the text data and en-

hanced the semantic quality of the notes prior to neural embedding.

We used a domain-independent Python parser for stop-word re-

moval, stemming, and number to string conversion. Pointwise Mu-

tual Information is used to extract the word-pairs to preserve the

local dependencies using nltk library.21 The bigrams with fewer

than 500 occurrences were discarded to reduce the chance of insta-

bility caused by low word frequency count. The top 1000 bigram

collocations were concatenated into a single word, eg ‘low_dose’,

‘weak_stream’. In order to reduce variability in the terminology

used in the narratives, we used the pre-existing CLEVER dictionary

to map the terms with similar meaning that are often used in the

clinical context, to a standard term list. For instance, {‘mother’,

‘brother’, ‘wife’,.} were mapped to FAMILY; {‘no’, ‘absent’, ‘ade-

quate to rule her out’, .} mapped to NEGEX; {‘suspicion’, ‘proba-

ble’, ‘possible’,. . .} mapped to risk RISK; {‘increase’, ‘invasive’,

‘diffuse’,. . .} mapped to QUAL. The CLEVER terminology was con-

structed using a distributional semantics approach where a neural

word embedding model was trained on large volume of clinical nar-

ratives derived from Stanford.22 Then, after using the UMLS and the

SPECIALIST Lexicon to identify a set of biomedical “seed” terms,

statistical term expansion techniques were used to curate the similar

terms list by identifying new clinical terms that shared the same con-

texts. This expanded dictionary derived empirically from heteroge-

neous types of clinical narratives will be more useful and

comprehensive in the text standardization process compared to any

single manually curated vocabulary. Bigram formulation using PMI

and CLEVER root term mapping contributed to reducing sparsity in

the vocabulary.

Total 528 162 preprocessed notes (excluding the test set) were

used as input for a word2vec model23 in order to produce the neural

embeddings in an unsupervised manner. word2vec adopts distribu-

tional semantics to learn dense vector representations of all words in

the preprocessed corpus by analyzing the context of terms. The

word embeddings learned on a large text corpus are typically good

at representing semantic similarity between similar words, since

such words often occur in similar context in the text. For the word2-

vec training, we used the Gensim library24 and the continuous bag

of words model which represents each word in a vocabulary as a

vector of floating-point numbers (or “word embeddings”) by learn-

ing how to predict a “key word” given the neighboring words. No

vectors were built for terms occurring fewer than 5 times in the cor-

pus and the final vocabulary size was 111 272 words. We collected

50 randomly annotated sentences (for UI) to use for validation and

selected the window size and vector dimension by performing grid

search to optimize the best f1-score (see Figure 2).

Training set creation from dictionary
In context of the current study, manual annotation of narrative sen-

tences is not only laborious, but also extremely subjective as demon-

strated by the inter-rater agreement scores (see Table 2). One of the

major advantage of the proposed method is that no explicit ground

truth sentence-level annotation is needed to train the supervised

learning model. We employed the domain-specific dictionaries con-

taining a set of affirmative expressions for UI and BD to build an ar-

tificial training set (see Dictionaries for details of dictionary

creation). The UI dictionary contains 64 unique terms, indicative of

UI, and BD dictionary contain 48 terms. Further the affirmative

expressions are combined with NEGEX and RISK term from the

CLEVER dictionary to create examples of nonaffirmed and risk
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description expressions. Finally, these artificial expressions (for UI:

65� 3 ¼ 195 and for BD: 48� 3 ¼ 144) were exploited to create a

‘weakly supervised’ training set where each of them was labeled as

whether it affirmed, denied, or discussed risk associated with UI/BD.

Sentence vector creation
Training set

We created the sentence-level embedding by weighting word vectors

by the Tf-idf score. First, we computed the Tf-idf score for terms

present in the domain dictionary, whereby Tf-idf is (i) highest when

terms occur many times within a small number of training samples;

(ii) lower when the term occurs fewer times in a training sample, or

occurs in many samples; (iii) lowest when the term occurs in virtu-

ally all training samples (no discriminative power). The computed

Tf-idf scores for the terms present in the UI and BD training dataset

are shown in Figure 3. As seen from the diagram: incontin, diaper,

negex and risk, scored highest for UI; and diarrhea, stool, rectal,

negex, and risk scored highest for BD. The high score represents that

these terms are clinically relevant and thus expected to have high

discriminative power. Finally, the sentence vectors were created by

combining the word vectors and weighting by the Tf-idf score of

each term. Specifically, sentence vectors were computed with:

Vsen ¼
1

kNk
XN

i¼1
TScorewi

� Vwi
;

where N is the total number of terms present in the expression,

TScorewi
is the Tf-idf score of word wi in, and Vwi

refers to the word

vector of word wi.

Testing set

We use a pretrained NLTK sentence tokenizer to identify the sen-

tence boundaries for 528 362 clinical narratives, and then selected

relevant sentences based on presence of terms in the domain-specific

dictionaries (see Supplementary Table S1). We design a set of filter-

ing rules for each domain to drop out irrelevant sentences—for ex-

ample, ensuring eye pad or nasal pad were not misinterpreted for

the pad associated with incontinence; or that wound leakage was

not misinterpreted as urinary leakage.

Among 528 362 texts, our pipeline extracted a total of 9550

unique notes with 11 639 relevant sentences for UI and 2074 rele-

vant notes for BD with unique sentence. For BD, we limited reports

within 5 years of prostate cancer diagnosis since BD is a common

symptom and we are focusing on BD as a side effect of prostate can-

cer treatment. In order to validate our sentence extraction pipeline

outcome, we randomly selected 100 narratives from both cohorts

and achieved 97% accuracy with manual validation. Finally, we

generate sentence-level vector embeddings as described above.

Discriminative model: supervised learning
Vector embeddings of the training expressions (described in the pre-

vious section) can be utilized to train parametric classifiers (eg logis-

tic regression) as well as nonparametric classifiers [random forest,

support vector machines, K-nearest neighbors (KNN)]. We chose to

use multinomial logistic regression (also referred as maximum en-

tropy modeling) with 5-fold cross validation on the training dataset.

Classifier performance on the test set was reported. We refer to this

classifier hereafter as the neural embedding model.

Statistical analysis of results
A total of 117 expert annotated notes and corresponding sentences

were used to validate the proposed model’s outcome (see Sec.

Annotations) and to compare the performance with pre-existing

techniques. We adopted dual level performance analysis for both

sentence- and note-level annotation.

Sentence-level annotation

We compare the performance of our sentence-level annotation

model with one of most popular generative models for text

Table 1. Sample sentences and its corresponding annotation for UI and BD

Urinary incontinence (UI) Bowel dysfunction (BD)

Sentence Label Sentence Label

Voiding history: two or more pads per day Affirmed Problems with diarrhea and rectal discomfort. Affirmed

He does have some leakage late in the afternoon,

which is particularly, worse, after drinking coffee

or alcohol.

We talked about eating tactics to help with loose stools

including eating smaller, frequent meals instead of

large meals.

He has excellent urinary control and has been pad free. Negated He did have loose stool for 1 day on Thursday that has

resolved.

Negated

Says that his urinary control is better, and that he no

longer requires a pad in the evening.

He has not had any hematuria or rectal bleeding since

treatment.

We did inform him that while surgery carries with it an

approximately, 5–10%, risk of urinary incontinence

Discussed risk Acute and long-term potential side effects from radia-

tion therapy were discussed with the patient and his

wife, including but not limited to: skin change, rectal

bleeding, bowel and bladder toxicity.

Discussed risk

With surgery, the problem tends to be urinary leakage

or incontinence; and with radiation therapy, it tends

to be urinary urgency.

Effects were discussed including low blood counts,

fever, diarrhea, and fatigue.

Table 2. Agreement between raters in annotating 120 selected

sentences for urinary incontinence and bowel dysfunction

Cohen-kappa score

Annotators Urinary incontinence Bowel dysfunction

Rater 1, Rater 2 0.66 0.70

Rater 1, Rater 3 0.72 0.72

Rater 2, Rater 3 0.62 0.64
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sentiment analysis: Naive Bayes for multinomial Bernoulli models.13

The model estimates the conditional probability of a particular term

given a class as the relative frequency of term in documents belong-

ing to the particular class. Thus it takes into account also multiple

occurrences.

Note-level annotation

We aggregated our sentence-level annotation to the note level. Indi-

vidual notes could contain multiple sentences with UI/BD related in-

formation (11 639 UI-related sentences were retrieved from 9550

notes), hence a single note may have conflicting sentence-level

labels. We applied majority voting across all sentence annotations to

assign a label for the note. However, we assigned priority to

Affirmed and Negated labels over Risk labels, since clinical practi-

tioners can discuss PCO risk in multiple sentences, but this does not

confirm the current medical state of the patient.

This allowed us to compare our pipeline with the recently pub-

lished rule-based method17 for extracting UI from patient notes in

prostate cancer. The rule-based method only considered affirmation

and negation, so notes classified as Discussed Risk were grouped

with the negated notes based on the absence of any positive terms.

RESULTS

Sentence-level annotation
Table 3 summarizes the baseline NB performance on both UI and

BD test and artificial training dataset. The model achieved an aver-

age f1 score of 0.57 for UI and 0.61 for BD. For the test dataset, the

average precision was >0.7 but the recall remained as low as <0.55

which suggests that the comparator classifier will miss 50% infor-

mation about the targeted PCOs. Table 4 summarizes the perfor-

mance of our pipeline with the same training and testing datasets.

Our model achieved an average f1 score of 0.86 for both UI and BD,

with 0.88 precision and 0.85 recall. We present the performance of

both methods on the artificial train dataset to show that though the

NB model was able to learn the semantics of the simple expression

Figure 1. Pipeline for sentence-level annotation for urinary incontinence presence, absence and risk discussion. Gray highlighted texts represent I/O of the mod-

ules. Headings of the corresponding sections are mentioned along with the section numbers in red.

Figure 2. Validation study to optimized two hyperparameters (window size and vector dimension) for word2vec: Over all f1-score for 50 UI annotated sentences.

Window size 5 and vector dimension 100 resulted best f1-score (in bold).
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from the dictionary, it failed to interpret the complex real sentences.

Whereas the proposed method being trained on the artificial training

dataset, was able to classify sentences extracted from the clinical

notes with morphological and syntactic word variations and

show significant improvement on the test set over the NB method

(P-value <.01).

Classification accuracy versus the Naive Bayes comparator

model is shown as a confusion matrix in Figure 4. The comparator

classifier tends to incorrectly predict affirmation and risk discussion

in both disease states. Our neural embedding model performs signif-

icantly better in classifying negated outcomes, with an ability to

classify correctly 80% UI cases and 91% BD.

We also compared our Tf-idf weighted sentence vector genera-

tion method with doc2vec paragraph embedding method (epoch 10,

dimension 100, learning rate 0.02, decay 0.0002) using the same

multinomial logistic regression model. However, our weighted

embedding method outperformed the doc2vec since doc2vec scored

0.55 overall f1-score for UI and 0.62 overall f1-score for BD while

out method scored 0.86 f1-score for both UI and BD. The modest

performance of doc2vec could be due to the application of equal

weight to each word rather than capturing their discriminative

power in the weights.

Note-level annotation
For the UI case-study, we consider the 117 manually annotated

notes to compare performance with rule-based method where the

rules was formulated with the help of Stanford Urology experts.17

Figure 5 shows the performance of our pipeline in terms of f1 score,

precision, and recall compared to the rule-based model. Our model

had f1 score of 0.9 versus 0.49 for the rule-based model, and higher

precision and recall for both Affirmed incontinence and Negated.

Figure 3. TF-IDF scores for each of the terms in the dictionaries for urinary incontinence (left) and bowel dysfunction (right).

Table 3. Comparator classifier’s performance on the training and test datasets for UI and BD

Urinary incontinence Bowel dysfunction

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

On training set On test set On training set On test set

Affirmed 1.00 1.00 1.00 1.00 0.44 0.61 1.00 1.00 1.00 0.20 0.50 0.29

Negated 1.00 1.00 1.00 0.25 0.80 0.38 1.00 1.00 1.00 0.90 0.61 0.73

Risk 1.00 1.00 1.00 0.67 0.55 0.60 1.00 1.00 1.00 0.35 0.47 0.40

avg/total 1.00 1.00 1.00 0.77 0.53 0.57 1.00 1.00 1.00 0.71 0.57 0.61

Table 4. Neural embedding model performance on training and test datasets for UI and BD

Urinary incontinence Bowel dysfunction

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

On training set On test set On training set On test set

Affirmed 0.93 0.89 0.91 1.00 0.81 0.90 0.88 0.94 0.91 0.40 0.67 0.50

Negated 0.92 0.88 0.90 0.50 0.80 0.62 0.97 0.94 0.95 0.85 0.73 0.79

Risk 0.92 0.88 0.90 0.91 0.91 0.91 0.97 0.95 0.96 0.95 0.91 0.93

avg/total 0.90 0.90 0.90 0.89 0.84 0.86 0.94 0.94 0.94 0.88 0.85 0.86
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The limited performance of the rule-based method is mainly due to

the concrete nature of the hard extraction rules that restricts the sys-

tem to extract right information from the notes which were written

using different styling/formats/expressions, even though all the notes

belongs to the same institution from which the experts were in-

volved in developing the rules. In contrast, the proposed model’s

performance is superior for both Affirmed and Negated

incontinence, which shows the fact that the classifier trained on the

Figure 4. Confusion matrix for urinary incontinence (a) and bowel dysfunction (b): Baseline on right and Proposed model on the left. 44% incontinence statements

have been misclassified by the baseline whereas only 19% misclassified by the proposed model. 53% bowel dysfunction statements have been misclassified by

the baseline whereas only 9% misclassified by the proposed model.

Figure 5. Comparative performance analysis with state-of-the-art rule-based system: urinary incontinence.
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proposed embedding using an artificial training dataset is able to

learn properly the linguistic variations of multiple types of clinical notes.

DISCUSSION

Contribution
In this study, we describe a weakly supervised NLP pipeline for

assessing two important outcomes following treatment for prostate

cancer, UI, and BD, from clinical notes in EMR data for a cohort of

prostate cancer patients. To date, the evaluation of these outcomes

has relied on labor and resource intensive methodologies, resulting

in insufficient evidence regarding relative benefits and risks of the

different treatment options, particularly in diverse practice settings

and patient populations. As a result, efforts to establish guidelines

for prostate cancer treatment based on these PCOs have been incon-

clusive.22 The pipeline described here used pre-existing domain-spe-

cific dictionaries combined with publicly available CLEVER

terminology as training labels, removing the need for manual chart

review. This method achieved high accuracy and outperformed a

previously developed rule-based system for prostate cancer

treatment-associated UI.11 Advancing the assessment of these out-

comes to such scalable automated methodologies could significantly

build desperately needed evidence on PCOs, and advance PCOs re-

search in general.

Significance
While survival is the ultimate treatment outcome, prostate cancer

patients have over 99% 5-year survival rates for low-risk localized

disease and therefore treatment-related side effects are a focus of in-

formed decisions and treatment choice. However, while the risk of

such complications plays a critical role in a patient’s choice of treat-

ment,23 previous studies have suggested that urologists may underes-

timate or under-report the extent of these symptoms.24 In addition,

reported outcomes mainly come from high volume academic cen-

ters, which likely do not translate to other practice settings and pa-

tient populations. Recent efforts in prostate cancer care have

therefore focused on the assessment and documentation of these out-

comes to improve long-term quality of life following treatment25 as

well as promote patient engagement in medical care.26 However,

these outcomes are not captured in administrative or structured

data, which greatly limits the generation of evidence and secondary

analyze of them.27 NLP methods present a way to automatically ex-

tract these outcomes data from clinical notes in a systematic and

nonbias way,9,24 which can significantly increase the amount of evi-

dence available in these data and promote associated studies across

disparate populations.

Existing methods for large-scale clinical note analysis rely on su-

pervised learning25,26 or a fixed set of linguistic rules,26,27 which are

both labor-intensive. Our weakly supervised approach is novel be-

cause it does not rely on manual annotation of sentences or notes.

Instead, our approach exploits domain-specific vocabularies to craft

a training set. In addition, the neural embedding allows for rich con-

textual information to be fed into the classifier for improved accu-

racy. We acknowledge that human effort is needed for the

dictionary creation, but this effort is substantially less than the man-

ual chart review effort and reusable to identify annotation for more

cases. This approach outperformed a rule-based system for inconti-

nence,17 and showed good performance relative to a comparator

classifier in both UI and BD. The application of this methodology to

evaluate outcomes hidden in clinical free text may enabled the study

of important treatment-related side effects and disease symptoms

that cannot be captured as structure data and possibly enhance our

understanding of these outcomes in populations who are not ade-

quately represented in controlled trials and survey studies. In Fig-

ure 6, we quantified positive UI for 1665 radial prostatectomy

patients applying the neural embedding model on the clinical notes

that are documented before and after the surgery. The NLP

extracted quantifications of the large cohort correlate well with re-

cent clinical studies33,34 conducted on diverse patient populations

and practice setting.

Limitations
First, assessing outcomes from clinical notes requires adequate docu-

mentation within the EHR. While significant variation in documen-

tation rates likely exists across providers and systems, PCOs such as

UI and BD in prostate cancer care are integral in evaluating the qual-

ity of care and therefore are routinely documented in the patient

chart.35 Second, the domain-specific dictionaries used in the current

study were collected from a set of experts from the same clinical or-

ganization and therefore might not be generalizable to other health-

care settings. However, these outcomes and the terms used to report

their assessment are fairly standardized in the community. The

Figure 6. UI evaluation for radial prostatectomy patients before (BASELINE) and after surgery at different time points.
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validation of the dictionaries in a different organization could en-

hance the accuracy of the pipeline, and we expect that performance

could vary when multi-institutional free-text clinical notes are ana-

lyzed. Third, our model lacks sensitivity for word order which limits

the ability of learning long-term and rotated scope of negex terms.

However, our method is focused on sentence-level analysis thus it is

not heavily impacted by long-term scope. Clinical practitioners often

mention PCOs in multiple sentences of a clinical note, but the dis-

cussion of outcomes simultaneously with other unrelated topics in

the same sentence was limited.

In future work, we will apply this model in other healthcare set-

tings to test cross-institutional validity. This would require adapta-

tion of the preprocessing step and possibly an update to the domain-

specific dictionaries to capture terminology differences between

sites. Additionally, the pipeline can be applied to other disease

domains to test its generalizability. A new domain would require the

development of a new dictionary. However, it may be possible to

conduct clustering on a text corpus in order to generate the domain-

specific dictionaries automatically without the need for a clinical re-

view group.

CONCLUSIONS

Based on weighted neural embedding of sentences, we propose a

weakly supervised machine learning method to extract the reporting

of treatment-related side effects following among prostate cancer

patients from free-text clinical notes irrespective of the narrative

style. Our experimental results demonstrated that performance of

the proposed method is considerably superior to a domain-specific

rule-based approach11 on a single institutional dataset. We believe

that our method is suitable to train a fully supervised NLP model

where a domain dictionary has already been created and/or inter-

rater agreement is very low. Our method is scalable for extracting

PCOs from millions of clinical notes, which can help accelerate sec-

ondary use of EMRs. The NLP method can generate valuable evi-

dence that could be used at point of care to guide clinical decision

making and to study populations that are often not included in sur-

veys and prospective studies.
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