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Abstract

Purpose: Telomere length-associated SNPs have been associated with incidence and survival 

rates for malignant brain tumors such as glioma. Here, we study the influence of genetically 

determined lymphocyte telomere length (LTL) by comparing telomerase associated SNPs between 

the most common non-malignant brain tumor, i.e. meningioma, and healthy controls.

Methods/patients: One thousand fifty-three (1053) surgically treated meningioma patients and 

4437 controls of Western European ancestry were included. Germline DNA was genotyped for 8 

SNPs previously significantly associated with LTL. Genotypically-estimated LTL was then 

calculated by summing each SNP’s genotypically-specified telomere length increase in base pairs 

(bp) for each person. Odds ratios for genotypically-estimated LTL in meningioma cases and 

controls were evaluated using logistic regression with the first two ancestral principal components 

and sex as covariates.
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Results: Three out of the eight evaluated LTL SNPs were significantly associated with increased 

meningioma risk (rs10936599: OR: 1.14, 95%-CI: 1.01–1.28, rs2736100: OR: 1.13, 95%-CI: 

1.03–1.25, rs9420907: OR: 1.22, 95%-CI: 1.07–1.39). Only rs9420907 remained significant after 

correction for multiple testing. Average genotypically-estimated LTL was significantly longer for 

those with meningioma compared to controls [mean cases: 560.2 bp (standard error (SE): 4.05bp), 

mean controls: 541.5 bp (SE: 2.02bp), logistic regression p-value = 2.13×10−5].

Conclusion: Increased genotypically-estimated LTL was significantly associated with increased 

meningioma risk. A role for telomere length in the pathophysiology of meningioma is novel, and 

could lead to new insights on the etiology of meningioma.
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Introduction

The telomerase complex is a group of protein subunits which build repeat sequence “caps” 

at the end of chromosomes.[1, 2] These caps consist of “TTAGGG” sequences to maintain 

telomere length, sustain renewability of cells, and prevent apoptosis.[3, 4] Telomere length 

varies among individuals.[5] Longer leukocyte telomere length (LTL) has been associated 

with longer lifespan and may also play a role in ageing,[5, 6] while shorter LTL has been 

associated with various age-related diseases including type 2 diabetes and cardiovascular 

disease.[7–11] LTL is partially genotypically determined by polymorphisms in the genes 

that code for protein members of the telomerase enzyme complex.[5] Longer genotypically-

estimated LTL has been associated with increased risk of various cancers including B-cell 

lymphoma and leukemia, and also non-hematopoietic tumors such as glioma and 

neuroblastoma.[12–19] LTL, measured in blood, is correlated with telomere length in other 

body tissues.[20]

The underlying genetic basis for the genesis and recurrence of meningioma is still relatively 

poorly understood, although variations in the 10p12.31 and 11p15.5 regions have been 

associated with increased meningioma risk.[21, 22] Germline mutations in the TERT gene 

(located on 5p15.33) and its promotor have been associated with several malignancies and 

intracranial tumors.[3, 4, 23–26] Somatic TERT promotor mutations in glioma have been 

associated with greater telomerase activity,[27] up-regulation of TERT,[24] and even 

decreased survival.[28] Somatic TERT promotor mutations have also been associated with 

malignant progression of meningiomas.[29, 30] Furthermore, increased TERT activity in 

meningioma has been associated with higher WHO grade and poorer outcome.[23] Given 

the suggestion that TERT genes may play a role in meningioma risk and progression, we 

utilized a targeted panel of telomerase genes to formally assess the association between 

impactful telomerase gene variants in a large sample of meningioma cases and controls.
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Methods

Ethics statement:

This multi-center study was approved by the Yale University, Duke University, 

M.D.Anderson Cancer Center, the University of California, San Francisco, and the Brigham 

and Woman’s Hospital institutional review boards. Written informed consent was obtained 

from all study participants.

Lymphocyte telomere length:

Eight SNPs previously significantly associated with LTL[13] were assessed. These SNPs 

were located on genes ACYP2 (rs11125529), TERC (rs10936599), NAF1 (rs7675998), 

TERT (rs2736100), OBFC1 (rs9420907), CTC1 (rs3027234), ZNF08 (rs8105767), and 

RTEL1 (rs755017), and were compared between meningioma cases and controls 

individually, and also combined together within a weighted genetic risk score. Individual 

SNP tests were performed using SNPTEST v2.5.4 under an additive frequentist model with 

gender and the first two ancestral principal component included as covariates.[13, 31, 32]

The genotypically-estimated LTL was estimated by summing the number of base pairs per 

affected allele for each sample and could, therefore, range from 0 to 1215 bp. The number of 

base pairs per alternate allele are described in table 1. The difference in genotypically-

estimated LTL was compared between the meningioma cases and controls using a two-

sample t-test (Welch’s), box and whisker plots, and logistic regression with sex, the first two 

ancestral principal components, and the genotyping panel (Goldengate or Axiom, see below) 

as covariates. Odds ratios (ORs) were calculated per 50 bp increase of genotypically-

estimated LTL. A separate model that also included age was constructed without controls 

form the Kaiser Permanente Research Program on Genes, Environment and Health 

(RPGEH) study as age was not available for these samples.

Subjects:

Subjects were non-Hispanic white ancestry to eliminate interference from population 

substructure. Two datasets were constructed and then merged together. The first dataset is a 

convenience sample of 244 persons who underwent surgery for an intracranial meningioma 

at Brigham and Women’s Hospital and 1141 controls from the San Francisco Adult Glioma 

Study which were sequenced for a panel of 953 telomere gene-related SNPs and were 

genotyped using Illumina GoldenGate® genotyping chemistry.[33] The second dataset 

consisted of 809 cases and 798 controls from the population-based Meningioma Consortium 

Case/Control Study[34] along with 2498 additional controls from the RPGEH study were 

genotyped using Affymetrix Axiom CEU World array as described elsewhere.[21, 35]

Imputation and merging datasets.

Both the Goldengate genotyped and Axiom genotyped subjects were imputed, separately, to 

ascertain all genotypes. The Goldengate array had rs11125529, rs10936599, rs2736100, 

rs9420907, rs3027234, and rs755017 on the array, and rs7675998 and rs8105767 were 

imputed. The Axiom array had all SNPs imputed (rs11125529, rs10936599, rs2736100, 

rs7675998, rs9420907, rs3027234, rs8105767, and rs755017). Imputation was performed 

Muskens et al. Page 3

J Neurooncol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using Minimac3 2.0.1 with the reference panel from the Haplotype Reference Consortium.

[36] Imputation accuracy was determined by Pearson correlation (squared) between 

genotyped loci, and the same loci after being masked and imputed. A forest plot depicting 

the odds ratios (ORs) with 95%-CI of these 8 SNPs for meningioma case-control status was 

constructed in R. The data will be made available through dbGAP at a later point.

Results

The genotypes of the 8 SNPs in meningioma cases vs controls:

Three out of the eight evaluated SNPs were nominally significantly associated with 

increased meningioma risk (rs10936599: OR: 1.14, 95%-CI: 1.01–1.28, rs2736100: OR: 

1.13, 95%-CI: 1.03–1.25, rs9420907: OR: 1.22, 95%-CI: 1.07–1.39, Table 1, Figure 1). Only 

rs9420907 remained significant with p=0.003 after application of Bonferroni correction 

based on 8 comparisons.

Genotypically-estimated LTL:

The mean genotypically-estimated LTL was 560.2 bp (standard error (SE): 4.05bp) for cases 

compared to 541.5 bp (SE: 2.02bp) for controls (p-value T-test: 3.62×10−5, OR per 50 bp 

increase in genotypically-estimated LTL: 1.06, 95%-CI: 1.03–1.09, logistic regression p-

value = 2.13×10−5, Figure 2). Using quintiles of genotypically-estimated LTL based on 

controls, the odds ratio for meningioma increased with higher quintiles, with the highest 

quintile having significantly higher risk compared to the median quintile (OR: 1.28, 95%-CI: 

1.04–1.58, p = 0.02, Figure 3). An additional model that also incorporated age constructed 

showed a very similar effect measure (OR per 50 bp increase in genotypically-estimated 

LTL: 1.06, 95%-CI: 1.03–1.10, logistic regression p-value = 7.31×10−5 with exclusion of 

RPGEH controls).

When stratified by sex, the association was strongly significant in females and borderline 

significant in males (females: OR per 50 bp increase in genotypically-estimated LTL: 1.07, 

95%-CI: 1.03–1.10, p-value = 9.58×10−5, males: OR per 50 bp increase in genotypically-

estimated LTL: 1.04, 95%-CI: 1.00–1.09, p-value = 0.06). As rs2736100 had the lowest r2 of 

0.53 (all other SNPs had an r2 greater than 0.8), the analysis was rerun using the remaining 7 

SNPs. The association remained significant (OR per 50 bp increase in genotypically-

estimated LTL: 1.05, 95%-CI: 1.02–1.08, p-value: 0.001). An analysis for the same 7 SNPs 

by sex showed that the association was significant in females but not in males (females: OR 

per 50 bp increase in genotypically-estimated LTL: 1.06, 95%-CI: 1.02–1.10, p-value = 

0.002, males: OR per 50 bp increase in genotypically-estimated LTL: 1.03, 95%-CI: 0.98–

1.09, p-value = 0.22).

Discussion

This is the first study to evaluate the relationship between genotypically-estimated LTL and 

meningioma risk, finding a positive association. Longer telomeres allow for more cell 

divisions before replicative senescence is reached and may therefore result in occurrence of 

mutations that allow cells to grow indefinitely and undergo malignant transformation.[19] 

Longer genotypically-estimated LTL based on the same SNPs used in this analysis has 
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previously also been associated with increased risk of development of both glioma and 

chronic lymphocytic leukemia.[12, 37] However, longer LTL measured before ovarian 

cancer diagnosis has also been associated with a decreased risk of development of ovarian 

cancer.[38] Nevertheless, our finding that increased genotypically-estimated LTL is 

associated with meningioma case-control status is consistent with most other malignancies.

Reproducible genetic findings on meningioma were not reported until recent GWAS studies 

found associations on 10p12 and 11p15.[21, 22, 39] The alleles assessed for the current 

study do not have any linkage with those two known GWAS hits, nor do the known 

meningioma GWAS hits have any known impact on telomere length or function. The most 

significant gene here, OBFC1, is on chromosome 10q24, distant from the MLLT10 GWAS 

hit on 10p12. [21, 22] OBFC1 is part of the CST complex which helps to maintain telomere 

length.[40] This complex is also involved in DNA replication (DNA polymerase priming), 

and therefore a specific role in meningioma apart from telomere length maintenance is 

possible. The SNPs assessed here impart small effects which are not individually significant 

in any current GWAS analysis but collectively represent a phenotype contributing to genetic 

risk of meningioma. This analysis is a testament to the power of using combined genetic 

summary variables (such as polygenic risk scores and Mendelian randomization) to discover 

genetic based traits that impact risk of meningioma and other diseases.

This is the first study to evaluate telomere length for association with meningioma. The 

sample size is relatively large and the data primarily population-based, allowing for 

generalization of our results. The strength of using genetic variants to estimate LTL lies in 

the fact that genetics are determined at birth and are not influenced by external factors 

known to influence telomere length (e.g. age and smoking).[20, 41] Genotypically-estimated 

LTL does, therefore, not have to be controlled for confounding or reverse causation.

This study is also limited by several factors. Genotypically-estimated LTL is only a partial 

substitute for meningeal telomere length, explains a small proportion (approximately 1.23%) 

of variance in LTL, and is measured in leukocytes rather than meninges or their precursor 

cells.[13] Pleiotropy can never be truly excluded as the calculated genotypically-estimated 

LTL variable may reflect a different underlying disease process and act as a biomarker. It 

was not possible to do subgroup analyses for tumor location due to limitations of the data. 

The cases and controls in this study were all from Western European descent, which limits 

the implications of this study for other ethnicities. Therefore, further studies in other 

ethnicities are warranted, in particular for African Americans who suffer a 20% higher rate 

of meningioma compared to those of Western European descent.[42]
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Figure 1: Forest plot depicting the association between the genotypically-estimated LTL 
associated SNPs and case-control status.
Odds ratios with confidence intervals for the association between the SNPs and meningioma 

case-control status were calculated under an additive frequentist model and were corrected 

for gender and the first two principal components. Abbreviations: SNP: Single nucleotide 

polymorphism; OR: odds ratio, CI: confidence interval.
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Figure 2: Boxplots for genotypically-estimated leukocyte telomere length and meningioma case-
control status by sequencing panel.
The boxplots depicting the distribution of genotypically-estimated leukocyte telomere length 

(LTL) in meningioma patients and controls. Separate boxplots are depicted for the who 

different sample sources and overall. The p-values were 0.0009, 0.003, 2.13×10−5 for the 

telomere SNP panel, the meningioma consortium, and overall in a logistic regression model 

with gender and the first two ancestral principal components as covariates. The model for 

the overall analysis was also corrected for sequencing panel used.

Muskens et al. Page 13

J Neurooncol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Effect of increasing quintile of genotypically-estimated LTL on meningioma risk.
The odds ratios are relative to the median (third) quintile. Quintiles were defined based on 

genotypically-estimated LTL in controls. The vertical bars correspond to 95% confidence 

intervals. Odds ratios are corrected for the first two ancestral principal components, study, 

and sex.
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Table 1:

Number of base pair effect per allele included in the analysis based on data by the ENGAGE Consortium.[13]

SNP Chromosome Gene Effect allele Base Pairs* EAF cases (%) EAF controls (%) Allelic OR 95%-CI P-value**

rs11125529 2 ACYP2 A 66.9 12.7 13.3 0.95 0.82–1.10 0.49

rs10936599 3 TERC C 117.3 24.4 22.2 1.14 1.01–1.28 0.02

rs7675998 4 NAF1 G 89.7 21.7 21.7 1.00 0.89–1.13 0.94

rs2736100 5 TERT C 94.2 52.3 49.0 1.13 1.03–1.25 0.01

rs9420907 10 OBFC1 C 82.8 16.7 14.1 1.22 1.07–1.39 0.003***

rs3027234 17 CTC1 C 25.2 21.7 22.3 0.97 0.86–1.08 0.55

rs8105767 19 ZNF208 G 57.6 30.4 28.7 1.08 0.97–1.20 0.15

rs755017 20 RTEL1 G 74.1 13.5 12.1 1.15 1.00–1.33 0.05

*
Number of base pairs the affected allele increases the genotypically-estimated leukocyte telomere length (LTL)[13, 32]

**
p-value for risk for meningioma under an additive frequentist model

***
Significant after correction for multiple testing (eight degrees of freedom).

Abbreviations: EAF: estimated allele frequency; bp: base pairs, OR: odds ratio, LTL: Leukocyte telomere length.
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