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SUMMARY

The brain strengthens memories through consolidation, defined as resistance to interference 

(stabilization) or performance improvements between the end of a practice session and the 

beginning of the next (offline gains) [1]. Typically, consolidation has been measured hours or days 

after the completion of training [2], but the same concept may apply to periods of rest that occur 

interspersed in a series of practice bouts within the same session. Here, we took an unprecedented 

close look at the within-seconds time-course of early human procedural learning over alternating 

short periods of practice and rest that constitute a typical online training session. We found that 

performance did not markedly change over short periods of practice. On the other hand, 

performance improvements in between practice periods, when subjects were at rest, were 

significant and accounted for early procedural learning. These offline improvements were more 

prominent in early training trials when the learning curve was steep, and no performance 

decrements during preceding practice periods were present. At the neural level, simultaneous 

magnetoencephalographic recordings showed an anatomically defined signature of this 

phenomenon. Beta-band brain oscillatory activity in a predominantly contralateral frontoparietal 

network predicted rest period performance improvements. Consistent with its role in sensorimotor 

engagement [3], modulation of beta activity may reflect replay of task processes during rest 

periods. We report a rapid form of offline consolidation that substantially contributes to early skill 

learning and may extend the concept of consolidation to a time-scale in the order of seconds, 

rather than the hours or days traditionally accepted.
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eTOC Blurb

Bönstrup et al. take an unprecedented close look at the time course of online motor skill learning. 

They find that relevant performance improvements occur during short periods of rest. 

Frontoparietal beta oscillatory activity predicts those micro-offline gains. This rapid form of 

consolidation substantially contributes to early skill learning.
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RESULTS

Early online learning was evidenced during short rest periods

Initial training on a new motor skill consists of short periods of active practice alternating 

with short periods of rest, a pattern that results in significant early learning [4]. Here, we 

studied the relative contribution of practice and rest to early learning. 27 healthy humans 

practiced a well-characterized motor skill task comprised of a series of sequential key 

presses [5, 6] which is widely used in the study of procedural memory formation [7, 8]. 

They trained over 36 trials consisting of 10 seconds practice (reduced duration, [5, 9]) and 

10 seconds rest periods for a total of 12 min (Day 1 in Figure 1A). In each practice period, 

participants were asked to repetitively tap a 5-item sequence indicated on the screen as fast 

and accurately as possible using their left, non-dominant hand. Participants returned the 

following day for a test session. Performance was measured as the tapping speed 

(keypresses/s) for correctly performed sequences [10]. We defined early learning as the 

window of practice trials required to reach 95% of the total Day 1 learning. Modelling the 

group average learning curve showed that this performance level was achieved by trial 11 

(Figure 1B).

During early learning, performance improved rapidly within the first few minutes of practice 

(Figure 1B) before reaching performance ceiling [6, 10]. Observation of the learning curve 

at a high temporal within-trial resolution unveiled clear performance increments between 

practice periods (Figure 2A). We then proceeded to dissect learning into performance 

improvements occurring during the practice and rest periods. Micro-online learning was 

defined as the difference in tapping speed (keypresses/s) between the beginning and end of 

each practice period. Micro-offline learning was defined as the difference in tapping speed 

between the end of each practice period and the beginning of the next one (Figure 2A, STAR 

Methods). During practice periods, performance either slightly increased, decreased or 

stagnated. Whereas during rest periods, we detected micro-offline gains that closely tracked 

total learning at a trial-by-trial basis. Micro-offline gains were maximal in early trials when 

performance during practice periods neither improved nor worsened (Figure 2B).

Total early learning was calculated as the sum of single-trial performance changes and 

amounted to 2.37 ± 0.24 keypresses/s (mean ± s.e.m., two-tailed one-sample t test, T = 9.76, 

P < 0.001). To assess the micro-online and micro-offline contribution to early learning, we 
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summed performance differences in each participant over all 11 practice or 10 rest periods. 

Comparing each contribution to total early learning, we found that all early learning was 

accounted for by performance increases during rest periods rather than during practice 

periods (Figure 2C). Indeed, on average, micro-online changes were nil (−0.32 ± 0.75 

keypresses/s, T = −0.41, P = 0.68) whereas micro-offline gains were substantial (2.69 ± 0.63 

keypresses/s; T = 4.19, P < 0.001, Figure 2B,C).

We probed the robustness of these findings by defining micro-scale learning in alternative 

ways: (a), tapping speed of correct sequences in the first and last two seconds of each 

practice period, (b), tapping speed of correct sequences of the first and last second of each 

practice period, (c), the difference in the intersect at the beginning and the end of a least-

squares fit line to the performance of each practice period. All measurements rendered 

comparable results: early learning was evidenced during rest periods rather than during 

practice periods (see also Figure S1C-F). Performance measurements allowing within-

practice period temporal resolution of errors could conceivably provide additional 

information.

Learning over all Day 1 trials (2.73 ± 0.22 keypresses/s, mean ± s.e.m., two-tailed one-

sample t test, T = 12.15, P < 0.001) was larger than overnight improvement from the end of 

training on Day 1 to test on Day 2 (0.73 ± 0.10 keypresses/s, T = 6.92, P < 0.001) consistent 

with previous reports [6]. Overnight offline learning did not correlate with micro-offline 

gains during early learning (linear model, P = 0.83) suggesting different mechanisms at play. 

Accuracy was comparably high during early (trials 1–11: 0.89 ± 0.02 mean ± s.e.m.) and 

late (trials 12–36: 0.90 ± 0.01) learning trials (Figure S1B).

Micro-offline learning occurs in a state of low beta power

How could learning manifest itself within 10 s rest periods? To gain insight into the systems-

level possible mechanisms supporting this rapid form of offline learning, we recorded 

magnetoencephalographic activity during the task and in a resting-state baseline (Figure 

1A). We spectrally decomposed trial-by-trial brain activity projected on the entire cortical 

sheet spanning rhythms that support cognitive and motor function [11]. At each location 

(548 edges on a cortical grid) and frequency (1–90 Hz, Fig 3A), a linear mixed-effects 

(LME) model was estimated using oscillatory activity to predict micro-online and micro-

offline learning. Micro-offline learning was inversely predicted by beta-band (16–22 Hz) 

brain oscillatory activity during rest periods in a predominantly contralateral frontoparietal 

network (Figure 3,4, Table S1).

This inverse relationship was confirmed by modelling micro-offline learning within 

participant (mean ± s.e.m. model coefficient −1.23 ± 2.41, n = 27 model coefficients, T = 

−2.7, P = 0.01, two-tailed one-sample t test) and within trial (−0.90 ± 0.89, n = 10 model 

coefficients, T = −3.2, P = 0.01). The correlation between micro-offline learning and beta 

power during rest periods was not driven by performance improvements during early 

learning. First, including trial-by-trial performance in the predictive model as an additional 

factor (LME model with micro-offline learning as the dependent variable, beta power during 

rest periods and performance as fixed effects, and participants as random effect, n = 10 trials 

× 27 participants) did not improve the model fit (likelihood ratio test, P = 0.55). Second, the 
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linear partial correlation coefficient between micro-offline learning and beta power during 

rest periods were virtually identical with and without partialing out performance (linear 

partial correlation coefficient ρ = −0.25; n = 10 trials × 27 participants, P = 3.8×10−5 and 

linear correlation coefficient ρ = −0.26; n = 10 trials × 27 participants, P = 2.4×10−5 

respectively). Neither exclusion of the first second of the rest period (i.e., the beta rhythm 

amplitude rebound [12], which may include beta amplitude increase as a physiologic stop 

signal) from analysis (Figure S3A) nor inclusion of performance as an additional predictive 

factor (Text S1) modified this result. In order to test if beta rhythm amplitude predicted 

micro-offline gains during specific segments of the 10s-long rest period, we estimated the 

same model for 5 consecutive 2s-long segments of the rest period. The inverse prediction 

was stable across the entire rest period (Figure 4B). Throughout early learning, the beta 

rhythm power during rest periods was lower than during resting-state baseline (−0.1 ± 0.02 

mean ± s.e.m, two-tailed one-sample t test, T = −4.6, P = 0.001, n = 10 trials).

The beta rhythm emerges as transient high-power ‘events’ instead of as a sustained signal 

[13]. Functionally relevant differences in time-averaged power can reflect changes in event 

characteristics like number, amplitude or duration. We investigated the predictive value of 

beta event characteristics on micro-offline learning. Beta event characteristics (number, 

maximum amplitude, duration) all inversely predicted micro-offline learning similarly to 

trial average beta power (LME, n = 10 trials x 27 participants, P < 0.05, Figure S4). Neither 

theta, alpha or gamma rhythms during rest or any rhythm during practice periods predicted 

micro-offline learning (Figure S3C,E). No brain oscillatory activity during practice or rest 

periods predicted micro-online learning (Figure S3B,D), learning over all Day 1 trials or 

overnight improvement from the end of training on Day 1 to test on Day 2.

DISCUSSION

The main finding of this study was that performance improvements during online procedural 

motor learning develop during rest instead of during practice periods. Early trials showed 

strongest micro-offline and total learning in the absence of preceding within-practice 

performance decrements. Downregulation of predominantly contralateral beta oscillatory 

activity during rest periods was identified as an intrinsic neural signature that predicted 

micro-offline gains.

Consolidation, measured as offline performance gains, has been tested at different time 

intervals following the end of a practice session [14, 15]. Here we studied early performance 

improvements over periods of rest that occur within a series of practice bouts within the 

same session when naïve subjects practice for the first time a new motor skill. Our results 

documented a substantial contribution of micro-offline performance improvements to early 

learning during these seconds-duration rest periods in the absence of within-practice 

performance decrements (Figure 2B). The sum of these improvements in performance 

during rest periods was four times larger than overnight offline learning (difference in 

performance between the end of training in Day 1 and test on Day 2), accounted for virtually 

all early procedural learning (Figure 2C) and represented approximately 95% of overall Day 

1 learning for this task (Figure 1B). Thus, micro-offline gains made a sizable contribution to 
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early motor skill learning and to what is often referred to as initial online learning when 

acquiring a new motor skill [4].

The findings that micro-offline gains in this period were substantial and largest at trials with 

no discernible evidence of within practice performance decrements (Figure 2B) are 

consistent with the interpretation that early learning micro-offline gains may represent a 

rapid form of consolidation. In these early trials, micro-offline gains could conceivably 

result from unmasking of inhibitory effects like low-level fatigue or reactive inhibition [16]. 

However, previous work on rapid improvements after a few minutes of rest in the rotor 

pursuit task [17], have been interpreted as reflecting “the need for rest on the part of the 

organism in order to consolidate the memory trace” [18] rather than recovery from inhibitory 

effects [19]. After performance maximum was reached (i.e. following trial 11), within-

practice performance decrements robustly expressed, likely signaling either fatigue or 

reactive inhibition (Figure S1G) [9, 20]. Optimal rest/practice period duration for this rapid 

consolidation remain to be determined.

Classically studied offline improvements in skill over extended periods of time that manifest 

after the end of a training session contrast with micro-offline improvements that occur early 

within a training session. Accordingly, we found no correlation between micro-online or 

micro-offline learning and overnight behavioral gains. Overnight improvements in motor 

skill have been linked to a topological shift of task-related neural activity from cortical to 

subcortical regions [10, 21] supported by a dynamic interaction between declarative 

(hippocampus) and procedural (striatum) memory systems [10, 22, 23]. On the other hand, 

the brief time window of this rapid form of consolidation points to short-term plasticity [24] 

rather than long-term potentiation or structural reorganization relevant for longer forms of 

consolidation [2].

Our finding that frontoparietal beta (16–22 Hz) oscillatory activity during rest periods 

predicted micro-offline learning is consistent with the involvement of the dorsal 

frontoparietal network in encoding offline representations of movement kinematics [16]. 

Recently, the beta rhythm was found to play a role in structuring short-term activity-

dependent plasticity [25] qualifying it as a possible neural signature for this fast form of 

consolidation. A reduction of the beta rhythm amplitude is present during brain states that 

mediate movement preparation, execution and imagery as well as somatosensation [3]. Thus, 

a low amplitude beta rhythm reflects a state of sensorimotor engagement. It is possible that 

beta-related activity during rest periods may contribute to micro-offline learning through 

reactivation of previous practice-related activity [26, 27] or memory replay [28]. Memory 

replay has been documented in humans [20], during awake-states [29, 30], at hippocampal 

[31] as well as neocortical sites [32, 33] and develop at a far faster rate than the pattern of 

activity during memory formation [34] either in forward or reverse order [30]. This idea is 

consistent with observations suggesting that the reactivations involved in reconsolidation 

ultimately strengthen memories after an initial period of vulnerability [4, 5, 8]. GABAergic 

signaling, a key determinant of plasticity related to early learning [35, 36] and beta 

oscillations [37, 38], could possibly contribute to micro-offline gains as well. Identification 

of this oscillatory signature of micro-offline learning will allow future experiments to 

address the question of causality.
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In summary, we report a rapid form of offline consolidation that contribute substantially to 

early skill learning. These results support the idea that the brain opportunistically 

consolidates previous memories whenever it is not actively learning [39], and they extend 

the concept of memory consolidation to a time-scale on the order of seconds, rather than the 

hours or days traditionally accepted.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Marlene Bönstrup (marlene.boenstrup@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—33 naive right-handed healthy participants with a normal neurological 

examination gave their written informed consent to participate in the project, which was 

approved by the Combined Neuroscience Institutional Review Board of the National 

Institutes of Health (NIH). The sample size was estimated based on our prior data using the 

same task [5, 40]. Five participants didn’t follow instructions correctly. Technical problems 

occurred in one recording. Full data sets were analyzed from 27 participants (17 female, 

mean ± SEM age 26.3 ± 0.83). Active musicians were excluded from participation [5]. Of 

those, 25 participants (16 female, mean ± SEM age 26.6 ± 0.87) completed the Day 2 

session.

METHOD DETAILS

Task—Participants learned a procedural motor skill task on Day 1 [5, 41, 42]. They used 

the non-dominant, left hand to perform a sequence of five keypresses (4–1-3–2-4) as quickly 

and accurately as possible in response to instructions displayed on a monitor. Keypresses 

were applied on a four-key response pad (Cedrus LS-LINE) with the pinky finger 

corresponding to button # 1, the ring finger to # 2, middle finger to # 3 and index finger to # 

4 (Figure 1A). The monitor displayed the sequence continuously and provided feedback in 

the form of a star appearing immediately after each keypress regardless of correctness. 

Keypress timing (ms) was recorded for behavioral data analysis. 36 trials were performed 

during Day 1 training and 9 trials were performed during Day 2 testing. Each trial consisted 

of a 10-s practice period followed by a 10-s rest period [20, 40]. Participants were instructed 

to focus on the visually presented five-item sequence (during practice periods) or on five 

“X” symbols displayed on the monitor (during rest periods). Thus, a single trial included a 

practice period followed by a rest period. Each participant was tested at a similar time of day 

on Days 1 and 2 (± 2 hours). Stimuli were programmed, presented and responses recorded 

with E-Prime 2.

Behavioral Data Analysis—Tapping speed was quantified as the average of the time 

intervals between adjacent keypresses within correct sequences [10] divided by 1000 

(keypresses/s). Performance within each trial was calculated as the mean tapping speed of all 

correctly performed sequences (including correct sequences the participant has not 

Bönstrup et al. Page 6

Curr Biol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



completed by the end of the trial [42, 43]. Accuracy was quantified as 1 minus the number of 

erroneous relative to correct keypresses in each trial [6, 43].

Early learning: The end of early learning was reached when 95% of the total Day 1 

learning was achieved. We chose 95% of maximal performance because it corresponds to the 

significance level, alpha, of 5%. It was calculated using a modelling approach in which the 

group average performance curve of mean tapping speed per trial, B(t), was fitted using an 

exponential function L(t):

B(t) L(t) = k1 +
k2

1 + e
−k3t

where k1 and k2 control the learning plateau, k3 controls the learning steepness, and t ∈ [1, 

+∞) represents trial. Parameters k1–3 were estimated by gradient descent, with the objective 

function defined as the root mean square error between B and L functions:

min
k ∈ ℝ3

∑
t

(B(t) − L(t))2

From this function, we estimated the end of early learning as the trial τ after 95% of the total 

learning had occurred. In practice, this value can be estimated as:

τ = round L−1(0.95 ⋅ (L(∞) − L(1)) + L(1))

identifying the end of early learning at the group level by trial 11 (vertical line Figure 1B).

Microscale learning: We developed a novel approach to study trial by trial early learning, 

dissecting performance improvements occurring during practice (micro-online) and during 

rest (micro-offline) periods. Micro-online learning was defined as the difference in tapping 

speed between the first and the last correct sequence of a practice period. Micro-offline 

learning was the difference in tapping speed of the last correct sequence of a practice period 

and the first correct sequence of the next practice period (Figure 2A). The tapping speed of 

incomplete sequences was averaged with the previous complete sequence (excluding 

incomplete sequences from analysis elicited a comparable result, Figure S1F). In the case of 

only one correctly performed sequence, the speed of that sequence served as the first and last 

tapping speed of each trial. To derive the micro-online and micro-offline contribution to 

early learning we calculated the sum over all early learning trials at the participant level. The 

performance curve of Day 1 and the modelled group average performance showed that 95% 

of learning occurred within the first 11 trials (Fig 1B). Thus, 11 values (practice periods) 

were summed for micro-online, and 10 values (rest periods) were summed for micro-offline 

learning. Early learning was derived as the sum of all micro-online and micro-offline values 

(Figure 2B). Total learning during Day 1 over all 36 trials (online learning) was calculated as 

the difference between the mean tapping speed of the last and the first trial. Overnight 

improvement from the end of training on Day 1 to test on Day 2 was calculated as the 
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difference between the average tapping speed of the last 9 trials of Day 1 (trials 28–36) and 

the 9 test trials of Day 2, as previously done [5, 41].

Magnetic Resonance Imaging—Structural MRI scanning was performed on a 3T MRI 

scanner (GE Excite HDxt and Siemens Skyra) with a standard head coil. T1-weighted high-

resolution (1×1×1 mm, MPRAGE sequence) anatomical images were acquired for each 

participant to allow for spatial coregistration with the MEG sensors and individual head 

model computation.

Magnetoencephalography—MEG was recorded simultaneously with early learning 

during Day 1, starting 5 min before the task (resting-state baseline) and for the duration of 

the 12 min training. MEG data were recorded using a CTF 275 MEG system composed of a 

whole head array of 271 (four broken sensors) radial 1st order gradiometer/SQUID channels 

housed in a magnetically shielded room (Vacuumschmelze, Germany) at a sampling 

frequency of 600 Hz. Synthetic 3rd gradient balancing was used to remove background 

noise online. To measure head position, three electromagnetic head coils were attached to 

the participant’s head at the nasion, left and right pre-auricular point. The head coil positions 

relative to the MEG dewar were recorded at the beginning and the end of the MEG recording 

[44]. The task script sent synchronizing triggers via a parallel port to the MEG data 

acquisition computer, which were written to the MEG data file for subsequent analysis. The 

fiducial positions (nasion, left and right pre-auricular) of the headcoils were coregistered 

with the individual MRI after the MEG recording using the Brainsight Neuronavigation 

System (BrainSight, Rogue Research).

MEG Data Analysis—MEG data was analyzed using the FieldTrip package [45] and the 

MEG&EEG toolbox of Hamburg [46] on Matlab 2017b.

Preprocessing: The continuous MEG data were band-pass filtered from 1 to 150 Hz and 

band-stop filtered at 60 ± 1 Hz to remove line noise using the default filter settings in the 

FieldTrip preprocessing functions. The artifact removal process was twofold: Fist, eyeblink, 

eye movement and heart beat artifacts were removed by rejection of independent 

components, obtained via logisitic infomax independent component analysis [47]. Second, 

the entire recording was visually inspected and segments containing other artifacts like 

movements were visually identified and marked for rejection.

Source space time frequency reconstruction: Individual forward models consisting of 548 

cortical locations and the corresponding lead field matrices were derived as follows: Based 

on a template anatomical brain image provided by the FieldTrip package, a regularly spaced 

(14 mm) three-dimensional grid of locations within the brain volume and constrained to the 

cortex, as defined by the AAL atlas [48], was created. This template grid was warped onto 

each individual MRI to give a three-dimensional grid of the same 548 cortical locations in 

the individual head space (source model). The choice of the spacing was a trade-off between 

minimizing computational load while spatially sampling the entire cortical sheet and 

corresponds to the reported spatial resolution of MEG [11]. Individual volume conduction 

models, describing how currents that are generated in the brain are propagated through the 

tissue to externally measurable magnetic fields, were constructed based on single-shell 
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headmodels [49] derived from brain volume segmentation of individual MRI. Sensor 

positions in the MEG helmet were aligned to the individual head space by warping the MEG 

head coil positions (mean of pre and post recording) to the fiducials of the MRI and applying 

the same transformation matrix to all 271 MEG sensors. Based on the individual source and 

volume conduction models and the sensor positions, the lead field matrix describing the 

propagation of source activity from each cortical location on the grid to each MEG sensor 

was calculated.

Inverse solution: We reconstructed source activity using low-resolution brain 

electromagnetic tomography (ELORETA) which solves the inverse solution by spatial 

smoothness constraints [50]. For each of the 548 cortical locations two orthogonal 

(assuming the radial dimension is silent), real-valued spatial filters were computed that filter 

activity from each MEG sensor to the location of interest. The two filters were then linearly 

combined to a single filter in the direction of maximal variance after multiplication with the 

covariance matrix of the artifact free data. Using this filter, MEG time series were projected 

into source space to give a source space time series at each cortical location.

Spectro-temporal representations of the projected data were obtained by transforming the 

source space time series using Morlet wavelets at frequencies 1–90 Hz with a cycle number 

of 5. This procedure was done separately for the 5 min resting-state baseline and the 12 min 

task-related MEG recordings. To reduce inter-participant variability, each task-related time 

series was normalized with the corresponding average resting-state baseline power by 

subtraction and division following typical event-related desynchronization analysis [51]. 

Spectral power during practice and rest periods where averaged over the 10s duration.

Beta event identification and characterization (Figure S4) was performed in analogy to the 

methodology described in [52]. Periods of high beta activity were identified in the 

normalized beta band (16–22 Hz) time series during rest periods by thresholding the 

timeseries at the 90th percentile of individual average beta power. This threshold was 

empirically derived as the peak correlation coefficient (Pearson’s) between average rest 

period beta power and the percent area above threshold in the non-averaged beta time series, 

across various thresholds (percentiles). Each suprathreshold period with a local maxima was 

defined as a beta event and the maximal amplitude, duration (full-width-at-half-maximum) 

and number of events per rest period were quantified for each participant, rest period and 

voxel within the cluster of predictive beta oscillatory activity for micro-offline learning 

(Figure 3A) and then averaged within the frontal and parietal cortex (Table S1).

Visualization—Performance curve: The within-trials time-resolved representation of 

tapping speed for illustration of the performance curve in Figure 1B was derived as follows: 

For each participant, the tapping speed at each of the 10,000 milliseconds constituting one 

practice period was defined as the average inter-tap interval of the sequence the participant 

was executing at that moment. The duration of the execution of each sequence was defined 

as the time between the first keypress of that sequence (or the beginning of the practice 

period) and the first keypress of the next (or the end of the practice period). The participants’ 

timeseries were averaged at each millisecond to give the performance curve in Figure 1B. 

Topographic plots: For the topographic display of brain regions with predictive oscillatory 

Bönstrup et al. Page 9

Curr Biol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity (Figure 4A), the cortical grid consisting of 548 locations was interpolated onto a 

finer grained cortical surface of 8196 locations (provided by the FieldTrip toolbox) and 

spatially smoothed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data—Early learning including micro-online, micro-offline and total early 

learning, as well as online learning on Day 1 and overnight improvement from the end of 

training on Day 1 to test on Day 2 were tested for significance using two-tailed one-sample t 

test. P values were corrected across all behavioral data statistical tests using the Benjamini & 

Hochberg procedure for controlling the false discovery rate (FDR) [53].

Predictive model for microscale learning—To study the relationship between early 

learning and brain oscillatory activity patterns we used a linear mixed-effects modelling 

approach. At each cortical location and oscillatory frequency, microscale learning values 

were modeled as the response variable by the average spectral power as the predictor 

variable. Thereby, micro-online and micro-offline, as well as spectral power during practice 

and rest periods were modeled separately. Spectral power was modeled as a fixed effect and 

individual participants ID as a random effect and the fitting method used was maximum 

likelihood. The number of observations were 11 (micro-online) or 10 (micro-offline) trials 

(early learning) for each of the 27 participants (n = 297 or 270). We additionally modelled 

micro-offline a) within each participant, with spectral power of 10 resting periods as the 

predictor variable, and b) within each trial, with spectral power of 27 participants as the 

predictor variable. In both approaches, a linear model was used and the 27 (a) and 10 (b) 

model coefficients were tested for significance using two-tailed one-sample t tests. To 

correct for multiple comparisons across the large number of locations (548), we applied the 

Benjamini & Hochberg procedure [53].
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Temporal microscale of motor skill learning reveals strong gains during rest periods

Online motor skill learning may rely largely on gains during short periods of rest

Frontoparietal beta oscillatory activity predicts these micro-offline gains

This rapid form of consolidation substantially contributes to early skill learning
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Figure 1. Motor skill task and performance curve.
A, Task: Participants learned the motor skill task [5, 6] over 36 trials (inset shows a single 

trial) consisting of alternating practice and rest periods of 10s duration for a total of 12 min. 

In each practice period, participants were asked to repetitively tap the sequence indicated on 

the screen as fast and accurately as possible using their left, non-dominant hand. The next 

day, performance was tested over 9 trials. Brain oscillatory activity was recorded with 

magnetoencephalography (MEG) for 5 min before (resting-state baseline) and during the 

task on Day 1. B, Skill was measured as the average inter-tap interval within correct 

sequences (tapping speed measured in keypresses/s) [10]. The average number of currect 

sequences per trial is given as green dots. The performance curve of Day 1 (mean + s.e.m.) 

and the modelled group average performance (overlaid) showed that 95% of learning 

occurred within the first 11 trials (vertical line, early learning) before reaching maximal 

performance. See also Figure S1 for supplemental behavioral data and Figure S2 for 

individual data.
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Figure 2. Early online learning was evidenced during short rest periods.
A, Microscale early learning reveals performance increments over rest periods. Micro-online 

changes were calculated as the difference in tapping speed (keypresses/s) of the first and last 

correct sequence within a practice period (blue in inset) and micro-offline changes as the 

difference between the last correct sequence within a practice period compared to the first of 

the next practice period (red in inset). B, Trial-wise early learning. Each line depicts 

performance changes (micro-offline in red, micro-online in blue, total in black) per trial 

(mean + s.e.m.). Total learning is closely accounted for by micro-offline gains (black and red 

lines) whereas micro-online performance changes fluctuate around 0. Note the presence of 

large micro-offline gains and total early learning in the initial trials in the absence of micro-

online performance decrements. Subsequently, within-practice performance decrements 

manifested gradually as learning slowed down. C, Data points in the violin plot depict the 

sum of changes in performance over early learning trials in each participant. Note that total 

early learning is accounted for by performance improvements during rest periods, but not 

during practice periods (two-tailed one-sample t test for each learning partition, ***P < 

0.001, FDR-corrected for multiple comparisons). See also Figure S1.
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Figure 3. Micro-offline learning occurs in a state of low beta power.
A, Brain oscillatory activity during rest periods predictive of micro-offline learning. The 

horizontal plane depicts the relative power during rest periods compared to resting-state 

baseline across spectra (x-axis, 1–90 Hz) and cortex (y-axis, 548 locations clustered at 

frontal (Fro), parietal (Par), temporal (Temp), occipital (Occ) and cerebellar (Post) lobes). 

Warm yellow colors depict significant power increases during rest periods compared to 

resting-state baseline, cold blue colors significant power decreases (two-tailed one-sample t 

tests, n = 27). The z-axis depicts the strength of the inverse relationship between oscillatory 

power and micro-offline learning (linear-mixed effects (LME) model coefficient, n = 10 

trials × 27 participants) at the significant frequencies and locations (magenta). All P<0.05im, 

FDR-corrected for multiple comparisons. Note that only beta oscillatory activity at 16–22 

Hz in frontoparietal areas was predictive of micro-offline learning. B, Inverse relationship 

between frontoparietal beta oscillatory activity during rest periods and micro-offline learning 

(n = 10 trials x 27 participants). See also Figure S3 for predictive oscillatory activity for 

micro-scale learning. See also Table S1.
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Figure 4. Topography and timecourse of predictive beta oscillatory activity for micro-offline 
learning
A, Topography of the predominantly contralateral beta oscillatory activity during rest 

periods predictive of micro-offline learning indicated by the LME model coefficient (Table 

S1). B, Frontoparietal beta activity predicted micro-offline gains throughout the duration of 

early learning rest periods (averaged in each of 5 consecutive 2s segments, LME model 

coefficient ± s.e.m., n = 10 trials × 27 participants).
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