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Abstract

Cellular reprogramming, the conversion of one cell type to another, induces global changes in 

gene expression involving thousands of genes, and understanding how cells globally alter their 

gene expression profile during reprogramming is an open problem. Here we reanalyze time-course 

data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells 

(iPSCs) and show that gene expression dynamics during reprogramming follow a simple one-

dimensional reaction coordinate. This reaction coordinate is independent of both the time it takes 

to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo 

simulations, we show that such a reaction coordinate emerges from epigenetic landscape models 

where cellular reprogramming is viewed as a “barrier-crossing” process between cell fates. 

Overall, our analysis and model suggest that gene expression dynamics during reprogramming 

follow a canonical trajectory consistent with the idea of an “optimal path” in gene expression 

space for reprogramming.

INTRODUCTION

Biology is in the midst of the revolution spearheaded by the pioneering work of Takahashi 

and Yamanaka1 on cellular reprogramming showing that it is possible to reprogram mouse 

embryonic fibroblasts (MEFs) to cells resembling embryonic stem cells (ESCs), commonly 

called induced pluripotent stem cells (iPSCs), by manipulating the expression of just four 

transcription factors (TFs). The idea of manipulating small sets of TFs to alter cell fates has 

proven extremely versatile and it is now possible to create iPSCs from a variety of cell 

types2, as well as to perform direct conversions between two differentiated cell types such as 

MEFs and neurons3. Most reprogramming experiments have a similar design4 (Fig. 1A). 

The starting cell type (e.g. MEF) is engineered with a construct containing the desired 

reprogramming genes. These genes are induced at the start of the experiment. After several 

days, the cell culturing conditions are switched to a medium favorable to the desired cell 
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type (e.g. stem cell media). At a later time, typically a few weeks, the exogenous genes are 

turned off. If all goes well, some percentage (often ≈ 0.01 – 1%, but sometimes much larger, 

approaching even 100%7) of cells successfully reprogram to the desired cell type.

Significant progress has been made towards understanding the mechanisms underlying 

cellular reprogramming5,6 (which from now on we will use to include both reprogramming 

to iPSC as well as direct conversion), yet many questions remain. Cellular reprogramming 

requires global changes in gene expression involving hundreds of transcription factors and 

thousands of genes, but how cells dynamically alter their gene expression profile during 

reprogramming is still not well understood. Reprogramming rates seem to depend on the 

exact protocol used and can be changed by several orders of magnitude through careful 

genetic manipulations7,8. Experiments have also measured whole genome time courses 

during reprogramming but the high-dimensional nature of the measured trajectories makes 

them difficult to interpret9. Other experiments have examined gene-level events during 

reprogramming. Buganim et al.10 analyzed reprogramming dynamics at the single-cell level 

and concluded that reprogramming initially is probabilistic but ends with a hierarchichal (i.e. 

ordered), deterministic stage. In contrast, Polo et al.9 analyzed reprogramming dynamics 

with both population level and single-cell level measurements and concluded that 

reprogramming follows an early deterministic phase with many gene changes, followed by 

an intermediate phase with fewer changes, and ending with a deterministic phase with many 

gene changes. Recently, Chung et al.11 measured single cell reprogramming dynamics and 

proposed that the intermediate phase of reprogramming is a “loosely ordered probabilistic 

phase” in which the timing between events is probabilistic, but the order of events is 

relatively deterministic. This highlights the need for a better understanding of gene 

expression dynamics during reprogramming.

Reprogramming involves global changes in gene expression and hence is intrinsically high 

dimensional. For this reason, it is common to use dimensional reduction techniques such as 

Principal Component Analysis (PCA) to project the dynamics onto a low-dimensional sub-

space. However, dimensional reductions techniques such as PCA have several key 

limitations. The principal component vectors have no clear biological interpretation, making 

it difficult to extract biological meaning from the resulting low-dimensional dynamics. PCA 

also depends on the type and quality of the data included in the dataset, making it 

cumbersome to compare dynamical data across experiments and systems.

To overcome these challenges, we introduce a new technique for visualizing high-

dimensional reprogramming dynamics, inspired by “epigenetic landscape” models for 

cellular identity. In Waddington’s original landscape idea12, each cell type corresponds to 

the minimum of one of the basins of attraction in an abstract cell identity landscape. This 

idea has been refined by a variety of researchers, and has yielded a number of insights into 

the genetic basis of cellular identity13–26. Two of us recently proposed a landscape model27 

that takes global gene expression profiles (microarrays or RNA-Seq) and uses techniques 

inspired by spin physics and the Hopfield model to explicitly construct a cell identity 

landscape. Without any additional parameters, this model provided an explanation for the 

existence of partially-reprogrammed cell types and can identify TFs that have been used to 

successfully reprogram to multiple cell types. In this paper, we extend this previous work to 
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analyze reprogramming dynamics. Using a new linear-algebra based analysis method 

inspired by our landscape model, we show that the experimentally observed gene expression 

dynamics during reprogramming follow a simple, one-dimensional reaction coordinate. We 

also show that this reaction coordinate emerges in numerical simulations of our landscape 

model, suggesting that reprogramming can be understood as a “barrier crossing” process 

between landscape minima.

I. RESULTS

A. Mathematical Model and Data Analysis Method

In the epigenetic landscape, cell types correspond to minima of stable basins of attraction, 

and reprogramming between basins proceeds through stochastic fluctuations resulting from 

gene expression noise (Fig. 1B). Here, we briefly summarize the relevant features of the 

landscape model (see Lang et al.27 for additional details). Before defining the epigenetic 

landscape, one needs to define the state space. We define the epigenetic state space from the 

genome-wide expression profiles of natural cell types (i.e. stable cell states either found in 

vivo or in established growth media) using a curated dataset of microarrays for p = 63 mouse 

cell types and approximately N ~ 1400 TFs (see Materials and Methods). These data are 

summarized in a cell type matrix, ξi
μ, whose entries contain the expression level of TF i in 

cell type μ (e.g. MEF, ESC). This construction can easily be extended to include genes 

beyond TFs.

The global gene expression level of TFs in an arbitrary gene expression state (i.e. a 

perturbed natural cell type or a completely general gene expression) can be summarized 

using an N-dimensional expression state vector S , whose entries Si encode the expression 

level of TFs i = 1 … N. Expression levels are treated as continuous variables when analyzing 

experimental data, and as binary variables which can be either on or off (Si = ±1) when 

performing numerical simulations (see Materials and Methods).

Now that the epigenetic state space has been defined, it is possible to define the epigenetic 

landscape. In order to describe the epigenetic landscape in geometric terms, we will first 

introduce a measure of similarity between an arbitrary expression vector S  and the 

expression vector, ξμ, for cell type μ. One common similarity measure in gene expression 

space is the overlap or dot product,

mμ = S ⋅ ξμ = 1
N ∑

i = 1

N
Siξi

μ
(1)

which measures the correlations between an arbitrary state S , and cell type μ, given by ξμ. 

The overlap between cell type μ and state S  is 1, −1, or 0 for the cases when S  and ξμ are 

perfectly correlated, anti-correlated, or uncorrelated, respectively. Since the number of cell 

types, p = 63, is much smaller than the number of TFs, N ~ 1400, a given set of overlaps 

{m1, ⋯ , mp} is consistent with many possible N-dimensional gene expression states Si. A 
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special case of particular interest is the overlap (or correlation) between two cell types, μ and 

ν, given by

Aμν = ξμ ⋅ ξν = 1
N ∑

i = 1

N
ξi

μξi
ν . (2)

In practice, the dot product is a poor measure of similarity because cell types are highly 

correlated with each other. For example, blood cell types share a common core set of gene 

expression and thus B cells and T cells have a 87% overlap in their gene expression profiles. 

As a consequence of this, if a gene expression state approaches a certain cell type in the 

landscape, the overlap may appear to show that it is roughly equally similar to that cell type 

and to other cell types. In other words, the overlap is too blunt an instrument to follow the 

evolution of gene expression states in the landscape.

For this reason, it is useful to introduce an alternative measure of similarity, the projections 

aμ, in which natural cell types have zero similarity with each other. For example, even 

though the overlap between the gene expressions for B cells and T cells is 87%, the 

projection of each one of those gene expressions onto the other is exactly zero. The 

projection of an arbitrary expression profile Si onto cell type μ is given by:

aμ = ∑
ν = 1

p
(A−1)μνmν (3)

where A−1 is the inverse of the cell type correlation matrix A. According to this definition, 

the projection would reduce to the overlap if A was the identity matrix, which would 

correspond to the cell types having exactly zero overlap with each other (i.e. if they were 

orthogonal). However, as indicated before, overlaps between cell types are actually quite 

large, and as a consequence, mμ and aμ are quite different. We can think of the N-

dimensional expression state vector S  as the sum of two contributions, S = S⊥ + S , such 

that the dot product of S⊥ with each one of the p cell type states ξμ is exactly zero, and 

Si = ai (“the projected state”) is a linear combination of the cell type states, given by

Si = ai = ∑
ν = 1

p
aμξi

μ . (4)

This construction has the geometric interpretation depicted in Fig. 1C: ai is obtained by 

projecting (i.e. casting a shadow) of Si onto the hyperplane defined by the p cell types in the 

matrix ξ (represented as the gray plane) As indicated before, the benefit of this construction 

is that it automatically accounts for the correlations between cell types: the projection of a B 

cell with itself is one, while a B cell’s projection on T cells is zero, and vice versa.

Projections are essential when constructing landscape models for cellular identity. In Lang 

et. al27, it was shown that it is possible to define a Lyapunov function (commonly called an 
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energy), Hbasin in expression space. This energy function defines an energy landscape, in 

which the natural cell types are the global minima. Mathematically, the energy is defined 

by27:

Hbasin = − N
2 ∑

μ
mμaμ

(5)

= − N
2 S ⋅ S (6)

= − 1
2 ∑

i, j
SiJijSj (7)

where Eq. (5) represents the landscape in terms of the projections aμ and overlaps mμ with 

the natural cell types, Eq. (6) represents it in terms of the projected state S , and Eq. (7) 

represents the landscape in terms of an effective interaction matrix, Jij, between TFs, defined 

as

Jij = 1
N ∑

μ = 1

p
∑

ν = 1

p
ξi

μ(A−1)μνξj
ν

(8)

We emphasize that this Lyapunov function represents an abstract “cellular identity energy 

surface” characterizing the stability of cell states and cannot be directly related to 

metabolism or ATP consumption. Additionally, the coefficients Jij do not represent real 

physical interactions between TFs. Instead, these are effective, symmetric interactions that 

are chosen so that they generate individual basins of attraction for each natural cell type. We 

have checked that the landscape construction is robust to the introduction of reasonable 

amounts of asymmetry in the interactions27. This can be seen by noting that in a given cell 

type (say μ = 1), Si = ξi
1 and a1 = m1 = 1, while the projection on all other cell types is zero, 

aν = 0 (ν = 2 … p). Inserting these results into Eq. (5) or into Eq. (6) shows that each cell 

type is a global minimum with energy Hmin = − N
2 . (We notice here that if we had chosen 

an alternative energy landscape model, based entirely on the overlaps, namely the Hopfield 

model: HHopfield = − N
2 ∑μmμmμ, then the cell types would not be the global minima of the 

landscape.)

The landscape represented by Hbasin does not incorporate differences in natural cell type 

stability, especially with regard to stability differences due to external factors such as cell-

type specific favorable growth media. These differences are represented by an additional 

term in the landscape,
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H = Hbasin + Hculture,

Hculture = − ∑
μ = 1

p
bμaμ,

(9)

where bμ > 0 indicates the presence of a culture medium that favors cell type μ. For example, 

during reprogramming, when cells are initially grown in MEF culture, only bMEF ≠ 0, while 

later in reprogramming, after the media has been changed to ESC culture, only bESC ≠ 0. 

Finally, to incorporate the fact that some transcription factors are overexpressed in the 

experiments the variables Si corresponding to overexpressed TFs are locked in the “on” (Si = 

+1) state.

Our energy function uniquely defines the landscape. However, there are multiple ways to 

implement dynamics on this landscape. We want to represent the fact that the dynamics is 

governed by the landscape itself and by stochastic fluctuations due to gene expression noise. 

A standard way to describe this kind of dynamics is to represent the evolution of the state of 

the system by random, asynchronous Monte-Carlo updates (Glauber dynamics),28. At each 

simulation time t, one (non-locked) TF i is randomly chosen, and the probabilities for its 

new value Si(t + 1) are

P [Si(t + 1)] = eβℎi(t)Si(t + 1)

eβℎi(t) + e−βℎi(t)
, (10)

with the local field on TF i given by ℎi = − ∂H
∂Si

= ∑jJijSj. We have introduced the effective 

noise parameter β = 1/T (i.e. inverse temperature) that controls the level of stochasticity. 

When β → ∞ the update becomes deterministic: the new expression value Si(t + 1) for the 

chosen transcription factor i takes, with probability 1, the value Si(t +1) = +1 if hi > 0 and 

the value Si(t +1) = −1 if hi < 0, thus always minimizing the energy. When β → 0, the 

landscape plays no role, and all expression states are equally likely. As long as there are 

fewer cell types than there are genes there exists a β above which all of the cell types are 

attractors of the dynamics. Additionally, as indicated above, in some of the simulations a 

subset of the transcription factors is locked at a certain value. Concretely, in many of the 

simulations we discuss, the OSKM TFs are fixed to have the value +1 (“on”).

Currently available static genomic data do not yet provide a clear way to relate biological 

time to the time variable in the Glauber dynamics. Although in this work we only show 

results from this particular choice of dynamics, in Ref.27 it was shown that changing to an 

alternative dynamics does not significantly modify the results.

B. MEF Reprogramming Dynamics

We begin by reanalyzing the experimentally available time course data on reprogramming in 

mice. Fig. 1D shows the first two principal components (PC) for 10 different reprogramming 

trajectories from MEF to iPSC from multiple labs. In the analysis, we have included 

partially reprogrammed cells (PRC), which are novel cell states only found during 
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incomplete reprogramming experiments. The plot shows dynamics projected onto the first 

two PCs, but in reality this system is high-dimensional and it takes 21 PCs to explain 80% of 

the variation in the data (see SI Fig. 1 for details). The PCA plot illustrates several important 

findings. First, reprogramming trajectories seem to group into two distinct clusters, and 

within each cluster, the starting points (day 0) and ending points (final iPSC) are near each 

other. Therefore, even for different experimental protocols, reprogramming seems to follow 

only a few paths. Second, these paths are distinct from partially reprogrammed cells (PRC). 

While several reprogramming data points seem to be near PRCs, this is an artifact of 

keeping only two PCs in our visualization. In fact, the PRCs only have a Spearman 

correlation of 90% with the closest reprogramming data point and approximately 80% 

correlation with the two closest trajectories. Third, the final state of failed trajectories 

(trajectories that did not successfully reprogram to iPSCs) is closer to their starting point 

rather than to iPSCs, suggesting that failed trajectories do not leave the basin of attraction of 

the initial cell type. While PCA allows easy visualization of the data, the Principal 

Components have no clear biological meaning, making it difficult to interpret the lower 

dimensional PCA dynamics.

For a chemical reaction, the trajectory that a system takes on its potential energy landscape 

when going from reactants to products is usually called the reaction pathway, and the 

reaction coordinate is defined as an abstract one dimensional coordinate which measures 

progress along the reaction pathway. However, in common use the two terms “reaction 

pathway” and “reaction coordinate” are often conflated. In the case of a chemical reaction, 

the energy is a function of the positions of all the atoms involved. In the case of the 

epigenetic landscape, the energy is a function of the expression state. As in the case of a 

chemical reaction, the reprogramming process can be thought of in terms of a trajectory in 

the (high-dimensional) epigenetic landscape, going from the initial cell type to the final cell 

type. We will refer to this trajectory either as the “reaction pathway” or (in a slight abuse of 

terminology) as the “reaction coordinate”.

In Figures 1E-1G, we have replotted the same time-courses data as in the PCA plots using 

projections on the starting and ending cell type. As in the PCA plot, the various symbols 

represent the actual data, while the lines connecting data show the time order of 

experimental points. In these plots, the starting (ending) states for each trajectory are defined 

as the initial (final) time point for the corresponding experiment. When calculating 

projections, the start (end) states replace MEF (ESC) in our cell type matrix ξ. This allows 

us to plot each experiment against its own start and end points. This additional step is 

necessary because different experiments define MEFs and iPSs differently.

The result of this analysis is shown in Fig. 1E. In contrast to the PCA plot, which contained 

two clusters (Fig. 1D), the reprogramming trajectories in the projected basis all follow a 

similar path: a straight line joining the starting cell type with the ending cell type in 

projection space.

In addition, we can look at how reprogramming trajectories project on other cell types 

besides the starting and ending cell types. To do so, we introduce a new quantity,
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a⊥ = ∑
1 ≤ ν ≤ p

ν ≠ (start,end)

(aν)2,
(11)

that measures the magnitude of the projections perpendicular to the plane spanned by the 

starting and ending cell type. This is shown in Fig. 1F. Notice that faster trajectories have a 

smaller perpendicular projection on the remaining cell types than slower trajectories. 

Furthermore, the difference in speed between experiments arises largely from the fact that 

slower trajectories also appear to get stuck at particular points along the reaction coordinate 

for as long as two weeks. The most important aspect of these results, however, is that the 

typical magnitude ∣ atypν ∣ = a⊥ ∕ p − 2 of each one of the individual projections aν for ν ≠ 

(start, end) is extremely small: since a⊥ 0.5, we find that ∣ atypν ∣ ≲ 0.064 ≪ 1. In other words, 

to a very good approximation we can think of the trajectory as being restricted to the two-

dimensional plane spanned by astart and aend.

We can summarize the results shown in Figs. 1E and 1F as follows: (i) the data for different 

reprogramming trajectories from different experiments all collapse together and (ii) this 

unique trajectory is very simple, just a straight line from the initial state to the final state. 

The data collapse among different experimental trajectories is more remarkable when 

considering the extreme heterogeneity in reprogramming rates across the plotted 

experiments. The Polo et al. experiment9 represents a typical time course with 

reprogramming taking approximately two weeks, while Rais et al.8 is the fastest trajectory (8 

days) and ST (Samavarchi-Tehrani et al.)29 is the slowest trajectory in our dataset (30 days). 

The second observation is also extremely surprising since reprogramming between cell types 

requires whole-scale reorganization of gene expression and therefore it would be reasonable 

to expect the trajectory to involve nontrivial changes in a number of dimensions similar to 

the dimension of the genome, i.e. thousands (if only TFs are considered) or even higher. 

However, in the projection-based model, the reaction pathway essentially only involves the 

projections onto the initial and final cell types, and within that two-dimensional space it 

automatically appears as a straight line without the need for any further transformations.

To compare these experimental trajectories to our mathematical model, it is useful to 

visualize these data in yet another way. In Fig. 1G, we have replotted the same data taking 

the z-axis as the energy per TF, which can be calculated directly from gene expression 

profiles using our landscape construction (Hbasin/N). In making these plots we have ignored 

the contributions of the culture terms in Eq 9 to the energy in our model (see SI Figures and 

Material Methods). Notice that the faster trajectories follow a lower energy path while the 

slowest trajectory (ST) follows a high energy path and appears to spend time stuck in two 

different barriers between days 8 and 21. These observation suggest that the experimentally 

observed reprogramming dynamics are consistent with the idea of a “barrier crossing” 

process between the starting and ending cell types in a rough landscape (see Fig. 1B).

Further evidence for this barrier-crossing picture comes from numerical simulation using our 

landscape model (see Materials and Methods). The insets in Figs. 1E-1G show failed and 

successful (final state has aend > 0.8) reprogramming trajectories from Monte-Carlo 

Pusuluri et al. Page 8

Phys Biol. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulations. There is a striking similarity between the model trajectories and experiment. 

Like in the experiments, successful reprogramming trajectories in our model follow a simple 

one-dimensional reaction coordinate in the projection space and reprogramming requires 

crossing a significant energy barrier. Supplementary Figures 2-4 contain more examples of 

successful and unsuccessful simulation trajectories. Supplementary Figure 12 shows 

simulation results for the projection onto the initial cell type and onto other cell types, 

different from the initial and final ones. Those projections onto other cell types are much 

smaller than the projections onto the initial and final cell types, and can be neglected to a 

very good approximation, as discussed above in the case of the experiments.

Finally, we note that the reaction coordinate can also be visualized using more traditional 

measures of distances such as the overlap (dot product) of the gene expression profile with 

the starting and ending states (see SI Fig. 5A). However, when using overlaps, each 

experiment has its own starting and ending point, making it hard to compare across 

experiments. Furthermore, overlaps are unable to discern the “barrier crossing” picture that 

emerges automatically from using projections (see SI Fig. 5B).

C. B Cell Reprogramming Dynamics

The previous section considered reprogramming from MEF to iPSC. Here, we extend this 

analysis to consider two additional reprogramming experiments from B cells to IPSs30,31. In 

the first experiment, the standard Yamanaka reprogramming protocol (OSKM)1 was used to 

reprogram B cell to iPSC. Unlike in MEFs, in B cells the OSKM protocol resulted in 

extremely low reprogramming yields. To increase the reprogramming yield, the protocol was 

then modified so that OSKM expression was preceded by pulsed expression of CEBPα 
(abbreviated C+OSKM). This modified protocol significantly increased the reprogramming 

yield. Figure 2A shows that for both experiments, reprogramming trajectories once again 

follow a simple reaction coordinate in projection space. Figure 2B extends these plots to the 

energy vs. reaction coordinate plane. Notice, that in both experiments, the energy of the 

trajectories first increase and then decrease. The higher yield trajectory (C+OSKM) makes 

steady progress over the energy barrier, while the low yield trajectory (OSKM) appears to 

meander through inefficient directions. Thus the reprogramming dynamics of B cells are 

similar to the reprogramming dynamics of MEF: in all cases reprogramming follows a 

simple one-dimensional reaction coordinate and can be understood as a barrier crossing 

process between minima.

The insets in these figures show results from numerical simulations using the landscape 

model. The simulations reveal a simple reaction coordinate. However, unlike in experiment, 

the simulated trajectories for the two protocols exhibit nearly identical dynamics. This likely 

reflects the limitations of the coarse-graining approximation used to construct the landscape 

model. In the model, TFs are treated as binary variables and all TFs are treated on equal 

footing – no distinction is made between more promiscuous TFs like CEBPα and more 

specific downstream factors. Despite these limitations, the phenomenological model still 

captures the qualitative phenomena seen in the experiments.

The similarity of the reprogramming trajectories from MEFs and B cells suggests a universal 

reaction coordinate for reprogramming: a straight line connecting the starting and ending 
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cell type in projection space. In particular, the cells directly convert from the initial cell type 

to the final cell type without producing any other cell type as an intermediate state. This can 

be seen best in Figures 2C and 2D where we have plotted reprogramming dynamics from 

both MEFs and B Cells on the same plots. These experimental data are consistent with 

numerical simulations using our landscape model which show that reprogramming 

trajectories always follow a straight line in projection space for both choices of starting cell 

type.

We also performed direct conversion simulation MEF to cardiomyocyte46 the simulation 

results are shown in the supplementary Fig, 13-15. The direct conversion trajectories also 

support the idea of a universal reaction coordinate and the absence of any intermediate states 

corresponding to any well-defined cell type. We could not analyze experimental time course 

data for this direct conversion experiment due to lack of such data for this particular 

experiment.

D. Insight into Dynamics from Our Mathematical Model

Given the strong agreement between experiment and the landscape model, it is interesting to 

ask if the model can provide further insights into reprogramming dynamics beyond those 

that can be directly gleaned from analyzing experimental time courses. As discussed in the 

introduction, there is an ongoing debate in the reprogramming literature about the order and 

organization of gene-level events during reprogramming9–11. To address this, we performed 

detailed simulations that allowed us to probe gene-level events during reprogramming from 

MEF to iPSC (see Materials and Methods). Experimentally, reprogramming times (as 

measured by reporters for pluripotency markers) are well described as a Poisson process, 

implying the existence of a single rate limiting step7. Our simulation results support the idea 

of a single rate limiting step to the turning on of pluripotency markers (see Fig. 3A). In our 

simulations, the time to turn-on pluripotency markers is calculated by measuring the time it 

takes a trajectory to have a significant projection on an iPSC state (aend = 0.3). Additionally, 

our simulations show that the later phase of reprogramming (defined as the period of time 

when trajectories go from having a projection aend = 0.3 to aend = 0.8) follows a narrowly 

peaked distribution. Once reprogramming has started, it is very fast: the median time for the 

later phase is approximately 40 times shorter than the median time for the early phase. 

Therefore, the rate-limiting step is the early stage of reprogramming. Consistent with 

experiment7,8, we find that almost all trajectories eventually reprogram. The most clear 

evidence for this statement comes from two observations based on the results shown in Fig. 

3A: (i) by the end of the simulation, 97.90% of the trajectories have completed the early 

(slow) stage of reprogramming, and (ii) within the time range of the simulation, the early 

stage of reprogramming is very well described by a Poisson process, and there is no 

indication of that behavior changing at longer times. If the first stage of reprogramming is 

indeed a Poisson process, as it is strongly suggested by our results, then given a long enough 

time, all cells will reprogram. In agreement with Yamanaka32 and with Hanna et al.7, these 

results are inconsistent with an “elite” model of reprogramming in which only a special 

subset of cells are amenable to reprogramming.
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To ask about the order of gene level events, we probed the gene level dynamics of 10 genes 

known to be mutually exclusive for either MEFs or ESCs (Snai1, Snai2, Prrx1, Twist2, 

Twist1 and Zfp42, Nanog, Utf1, Lin28a, Sall4, respectively) for 224 successful 

reprogramming trajectories out of a total of 3000 attempts. Recall, that in our model, each 

gene is represented by a binary variable and can either be ‘on’ or ‘off’. Since the dynamics 

of our landscape model are stochastic, these genes turn on and off at different values of the 

reaction coordinate in each of these 224 trajectories. To understand if there is any structure 

in the gene level dynamics, we counted the percentage of trajectories for which a gene was 

on at a given reaction coordinate using a moving average over a narrow range of values of 

the reaction coordinate. The results are shown in Fig. 3B (see SI Figure 10 for an example of 

non-averaged data). The MEF (ESC) genes gradually turn off (on) over time as expected. 

Furthermore, the order in which genes turn on and off is relatively stable, at least when 

averaged over trajectories. In contrast, individual simulation trajectories show much more 

variability in the order in which genes turn on. However, if we consider individual pairs of 

TFs, we find that their ordering tends to be consistent with what one would expect from Fig. 

3B. For example, Nanog turns on before Sall4 in 58% of trajectories, and Snai1 turns off 

before Twist1 in 71% of trajectories, but for Twist1 and Twist2, there is no clear trend for 

one or the other to turn off first.

All the qualitative features of our simulations are consistent with the idea that 

reprogramming trajectories correspond to successful “barrier crossing” between two minima 

in a landscape. An important qualitative prediction of all barrier crossing is that 

reprogramming trajectories should be dominated by a small number of optimal paths, with 

some amount of fluctuations around those paths33,34. In particular, the facts that the early 

phase of reprogramming is well described by a Poisson process, the later phase is described 

by a narrow distribution of times, and that the median time for the early phase is much 

longer than the median time for the later phase are all features that would be expected of a 

simple barrier-crossing process. Furthermore, these simulations show that in a high-

dimensional barrier crossing, genes can turn on in a temporally ordered manner (at least 

when averages over many reprogramming attempts) even though the process is driven 

entirely by stochasticity.

II. DISCUSSION

A common metaphor used to describe cellular identity is Waddington’s landscape, or the 

idea of a rugged “epigenetic landscape” in which cell types correspond to minima of basins 

of attraction. In this picture, cellular reprogramming is envisioned as a process in which one 

cell type is externally driven out of its basin of attraction, across a barrier, and eventually 

ends up in the basin of attraction of the desired cell type. Previously, two of us used ideas 

from spin physics to introduce a model of cellular identity that can be built from genome 

expression data. In this paper, we reanalyzed experimental data on reprogramming dynamics 

in terms of this model and found good agreement between the experiments and simulations 

of the model.

The model provides several interesting insights into reprogramming dynamics. We find that 

reprogramming dynamics proceed along a simple one-dimensional reaction coordinate and 
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must cross a significant energy barrier. Somewhat surprisingly, this reaction coordinate is 

independent of reprogramming dynamics. In terms of projections, we can simply describe 

the reaction coordinate as a straight line from (astart = 1, aend = 0) to (astart = 0, aend = 1). 

What makes this simple picture especially interesting is that we demonstrated its validity for 

two different types of reprogramming experiments (MEF or B Cell to iPSC). Based on 

simulations with our model, we believe that any cellular interconversion (reprogramming or 

direct conversion), will proceed along a similar, universal, reaction coordinate when 

described in terms of astart, aend (see SI Figures 13-15). We expect this basic picture should 

also be valid in other organisms such as humans.

An important corollary coming from the shape of this universal reprogramming trajectory is 

the following: since at all points in the reprogramming trajectory the state of the cell has 

substantial projections onto the initial cell type, the final cell type, or both, and much smaller 

projections onto all other cell types (SI Fig. 12), we can conclude that the system does not 

go through any well-defined intermediate cell type at any point in the process. In particular, 

for the case of direct conversion (SI Figures 13-15), this leads to the prediction that it is not a 

two-step process of conversion from the initial cell type to iPSC followed by conversion 

from iPSC to the final cell type.

Our model also gives insight into the ongoing debate about the phases of reprogramming 

dynamics. A priori, reprogramming dynamics may be either probabilistic or deterministic 

with respect to both the timing and order of gene level events. Our simulations show the the 

initial phase of reprogramming follows a Poisson distribution – initiating reprogramming is 

a rare event. However, once initiated, reprogramming proceeds quickly and efficiently. This 

is reflected in our simulations by the observation that the dynamics of the reprogramming 

process at later stages are well described by a narrowly peaked distribution. Furthermore, we 

find that when averaged over many successful reprogramming trajectories, the order of gene 

level events are relatively reproducible. Our simulations strongly support Chung et al.11 

description of reprogramming as a “loosely ordered probabilistic process”.

Why have different dynamics experiments led to such drastically different conclusions? So 

far, each experiment has used different techniques, each of which have their own limitations. 

GFP reporters (for example7) provide precise timing data but are limited to small numbers of 

genes. Whole genome expression data (for example9) provides data on all genes, but both 

microarrays and RNA-Seq require populations of cells. Finally, single cell gene expression 

data (for example10) provides accurate details of gene expression, but only for a subset of 

genes (currently 48 with standard Fluidigm chips10). Therefore, depending on which 

technique is utilized, each experimentalist rightfully sees a different picture of 

reprogramming dynamics. However, viewing reprogramming as a loosely ordered 

probabilistic process unifies all of these different experimental pictures.

Besides examining the gene level reprogramming dynamics, our model provides a clearer 

picture of the global mechanism behind reprogramming. One of the most surprising aspects 

of reprogramming is that the over expression of just a few TFs (out of thousands) can lead to 

such drastic changes in the global gene expression profile. Our simulations suggest the 

underlying reason for this is the important role played by culturing conditions. In our model, 
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inducing the OSKM TFs in MEFs only changes the energy by 0.5% , which at the noise 

levels considered here, do not lead to any successful reprogramming event. However, by 

including the effect of cell culture in our simulations, we achieve 7.43% reprogramming 

rates. This suggests that culturing conditions likely play an important role in dictating 

reprogramming efficiencies. For example, it is claimed35 that it is possible to use the OSKM 

factors, normally used to reprogram to iPSC, to instead reprogram to neuronal progenitors 

just by changing culture conditions. This highlights an important issue of experimental 

design for direct conversions to a given cell type. Before one searches for TFs to manipulate, 

it is essential to understand the correct culturing conditions for the desired cell type. Without 

the correct medium, direct conversion may prove exceedingly difficult. In our simulations, 

we have found that the culture term for a given cell type decreases the size of the basin of 

attraction of all the other cell types. We even find some reprogramming events when we bias 

the system just by introducing the culture term, without forcing expression of the OSKM 

TFs (this likely reflects the limitations of the model). However, when we compare 

simulations of MEF to ESC reprogramming at a certain noise level and for a certain 

duration, the ones where expression of the OSKM TFs is forced and the ESC culture term is 

present have a success rate 5 times higher than the ones where the ESC culture term is 

present but OSKM expression is not forced.

Even though our current models suggest that the growth medium is extremely important for 

reprogramming and direct conversion dynamics, the biological mechanism that gives rise to 

this effect remains elusive. The underlying reason for this is that our epigenetic landscape 

model utilizes a coarse-grained description based on “effective interactions” between TFs 

and cannot distinguish between direct regulation of epigenetic states by the growth medium, 

and indirect regulation due to signaling pathways or other regulatory layers. This highlights 

the need for more detailed, mechanistic models of cell fate and reprogramming dynamics.

The experimental analysis and simulations presented here suggest that reprogramming can 

be viewed as a “barrier crossing” process in a rugged landscape (see Figure 4). In all barrier 

crossings, the dynamics are dominated by a few “optimal paths”, suggesting that 

reprogramming dynamics are likely to be low-dimensional and fairly reproducible at the 

gene level. A consequence of this picture is the existence of a simple reaction coordinate that 

describes the progress along the optimal path. If the landscape picture is correct, the 

existence of a reaction coordinate is likely to be a generic feature of all reprogramming and 

direct conversion protocols. Directed differentiation is a closely related experimental 

technique that instead of using TFs to convert between cell types focuses on recapitulating 

embryonic development through sequences of signaling molecules36. It will be interesting to 

see if projections are also a useful reaction coordinate for directed differentiation 

experiments.

The results presented here are also likely to be applicable to other systems. Recently, it has 

been suggested the evolutionary dynamics of viruses such as HIV can also be understood 

using a Hopfield-inspired landscape model37. In evolutionary landscapes, crossing fitness 

valleys in rugged landscapes can be understood in terms of barrier crossings. For this reason, 

it is likely that the techniques developed here in the context of cellular reprogramming can 

be adapted to visualize evolutionary data on fitness landscape dynamics. More generally, 

Pusuluri et al. Page 13

Phys Biol. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



landscapes have proven to be an important tool for furthering our understanding of a variety 

of other biological problems, including protein folding38–40. The intuitions developed in the 

context of these other problems are also likely to be applicable to cellular reprogramming 

and, in the future, it will be interesting to explore these connections further.

III. MATERIALS AND METHODS

A. Data Analysis

Here we present details of the data analysis. All the experimental data used in this paper are 

available in the online Supplementary Files.

• SI_Metadata-Cell_Type_basis.txt. List of publicly available microarrays used to 

define cell types.

• SI_Metadata-Data_Analysis.txt. Data samples analyzed in this paper.

• SI_Cell_Type_Basis-Data_Analysis.txt. Zscore data that defines cell types for 

the data analysis.

• SI_Cell_Type_Basis-Simulations.txt. Binarized data that defines cell types for 

the simulations.

• SI_Data_Analysis.txt. Zscore data for the data samples.

• SI_trajectory_1.txt. Example simulation trajectory of reprogramming MEF to 

ESC.

• SI_trajectory_2.txt. Example simulation trajectory of reprogramming MEF to 

ESC.

The following abbreviations are used in the Supplementary Files. All GSE and GSM are 

data identifiers from NCBI GEO except that GSE labels E-MEXP are data identifiers from 

ArrayExpress. Sample_Name refers to the sample label in SI_Data_Analysis.txt. Plot_Label 

refers to the abbreviations used in Figures 1 and 2. Paper_Reference is an abbreviated 

citation of the source data which came from the following papers8,9,29–31,41–44.

Microarrays were taken from public datasets and come from a variety of different 

microarray platforms. In order to compare the different platforms, the following analysis 

was done. The raw microarray data was converted to an expression level as follows. 

Microarray probe-to-gene map was created with Bioconductor 3.0. All raw microarray files 

were initially processed by robust mean averaging (RMA) and genes with multiple 

microarray probes were averaged. Since we were interested in cellular identity, only 

transcription factors, transcription co-factors, or chromatin remodeling genes were kept (for 

short hand, referred to as transcription factors, TF, throughout the text)45.

While the above analysis was done for both experimental data and simulations, from this 

point on the analysis differed between the two cases. For the experimental data analysis, we 

only used TFs that were common to all of the different microarray platforms, leaving N = 

994 TFs. In order to make robust comparisons across platforms the RMA output was 

converted to a rank order. Next, we wanted to convert this rank order to the z-score of a log-
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normal distribution. We converted the rank to a percentile (for N genes, by dividing by N

+1), and then this percentile into a normal z-score. For later mathematical convenience, we 

used a biased estimator (i.e. we normalized by N and not N-1) since then the Euclidean 

norm of each microarray gene expression was N. Therefore, for the data analysis each 

sample is described by a Gaussian distribution with a Euclidean norm of N = 994.

The N transcription factors (TF) are labeled by Latin indices i and the p cell types are 

labeled by Greek indices μ. When analyzing experiments, we keep the N = 994 TFs common 

to all of the experimental datasets. Each sample is a Gaussian distribution with mean equal 

to 0 and Euclidean norm equal to N. This implies a standard deviation of N
N − 1 ≈ 1. When 

performing simulations, we use the complete set of N = 1436 TFs and each TF is either on 

(+1) or off (−1).

For the simulations, we followed similar steps to produce continuous TF expression levels 

for the cell type basis vector. However, in order to reduce the computational cost, we 

binarized the gene expression so that each TF is either on (+1) or off (−1). We then dropped 

all TFs that were always on or always off in every cell type, leaving N = 1436 TFs for the 

simulations.

B. Supplementary Code

We have also included code to aid in understanding the manuscript and as a potential starting 

point for future work.

• SI_load_paper_data.py. This script loads in the data used in this paper.

• SI_model.py. This script creates the model based on the provided data.

• SI_make_plots.py. This script takes the data and model and creates plots of the 

time courses as viewed from the reaction coordinates.

• SI_dynamics_code.py. This script implements the dynamics used in the 

simulations. See below for more details.

C. Simulations

We performed Monte Carlo (MC) simulations of a system containing N = 1436 TFs using 

the update rule given by Eq. (10), with noise parameter β = 1.62 (i.e. T ≈ 0.617). When a 

culture term was introduced, it was to bias the system towards the ESC cell type, with bμ = 

0.03 for μ = ESC and bμ′ = 0 for all other cell types. The dynamics are qualitatively similar 

for a wide-range of values for bμ and the quantitative differences will be explored in future 

work.

Most of the results reported in this paper correspond to simulations where the total number 

of steps was t = 105. For the case of simulations of MEF to ESC reprogramming, the OSKM 

transcription factors were locked “on” for the whole simulation, and the culture term was 

present from step t = 5000 until the end. In this case, 3000 trajectories were simulated, out of 

which 224 successfully reprogrammed, i.e. the reprogramming rate was 7.43%. For the 

simulations of B-cell to ESC reprogramming, the protocol was similar, and in this case 205 
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trajectories reprogrammed successfully out of a total of 3000, corresponding to a 

reprogramming rate of 6.83%.

In order to obtain additional details about the probability distributions of times associated 

with the reprogramming, which we show in Figure 3A and SI Figure 11, we performed an 

additional set of simulations of MEF to ESC reprogramming, with the only change being 

that the total number of steps was 30 times larger, i.e. t = 3 × 106 instead of t = 105. In this 

set of much longer simulations, 2937 trajectories out of 3000 successfully reprogrammed 

from MEF to ESC, which corresponds to a reprogramming rate of 97.90%.

In the supplementary files, we have also included a Python script SI_dynamics_code.py that 

implements the dynamics. We would like to point out that this script is provided for 

illustrative purposes only, it would probably require a long time to reproduce all the 

computer simulations presented in this paper by using the script as provided. The 

reprogramming simulations discussed in the paper were actually performed using a 

FORTRAN code that we developed, and which runs much faster than the Python script.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1: Cellular Reprogramming Reaction Coordinate.
A. Transient expression of reprogramming genes plus switching culturing conditions 

probabilistically leads to the desired cell type. B. Reprogramming is commonly described as 

the crossing of a barrier in a high-dimensional landscape. C. Our proposed cellular identity 

landscape is based on the projection, a, of an arbitrary gene expression, S, onto the subspace 

(gray plane) spanned by the natural cell types, ξμ. D. Principal component analysis (PCA) of 

reprogramming from mouse embryonic fibroblasts (MEF) to induced pluripotent stem cells 

(iPSC) with start marking day 0 and end marking iPSC. Rais8, Polo9, and ST (Samavarchi-

Tehrani)29 are three successful trajectories in which the explicit time in days is labeled on 
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plots E, F, and G. Other represents additional successful trajectories, PRC are partially 

reprogrammed cells, and failed trajectories do not reprogram. E. Projection onto astart (MEF) 

and aend (iPSC) only. All successful trajectories follow a simple reaction coordinate in 

projection space, a straight line from (astart = 1, aend = 0) to (astart = 0, aend = 1). Insets in E, 

F, and G are simulation data with failed trajectories in red and successful trajectories in gray. 

See SI Fig. 2for larger version of simulations. F. Measure of projection on all other cell 

types, a⊥ vs. the reaction coordinate. See SI Fig. 3 for larger version of simulations. G. 

Energy landscape of basins of attraction, Hbasin, per transcription factor (TF) vs. reaction 

coordinate. See SI Fig. 4 for larger version of simulations.
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FIG. 2: Universal Reaction Coordinate.
A. Cellular reprogramming from astart (B Cells) to aend (iPSC) by Di Stefano et al.30. OSKM 

is the standard Yamanaka protocol, while C+OSKM is a pulse of C/EBPα followed by 

OSKM which led to higher reprogramming yield. All insets are simulation data of same data 

shown in main figure. See SI Fig. 6 for larger version of simulations. B. Energy landscape of 

basins of attraction, Hbasin, per transcription factor (TF) vs. reaction coordinate. See SI Fig. 

7 for larger version of simulations. C. Data collapse of trajectories to astart vs. aend for both 

MEF to iPSC (gray) and B Cell to iPSC (black). See SI Fig. 8 for larger version of 

simulations. D. Data collapse of trajectories when viewed as energy vs. reaction coordinate. 

See SI Fig. 9 for larger version of simulations
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FIG. 3: Nature of Reprogramming Dynamics in the Landscape Model.
A. Cumulative distributions of timing show that the early (aend = 0 to aend = 0.3) and later 

(aend = 0.3 to aend = 0.8) stages of reprogramming are respectively a Poisson and a narrowly 

peaked distribution. See SI Figure 11 for early (aend = 0 to aend = 0.3), middle (aend = 0.3 to 

aend = 0.7) and late (aend = 0.7 to aend = 0.8) phases of reprogramming as Poisson, narrowly 

peaked and narrowly peaked distributions respectively. In order to study the complete timing 

distribution, the data shown here and in SI Figure 11 were obtained in a simulation of 

duration t = 3 × 106 MC steps, which is 30 times longer than the simulations reported on in 

all other figures. B. Percentage of trajectories in which a gene is on vs. reaction coordinate. 

Data shown is a moving average of MEF (ESC) genes turning off (on) over time. See SI 

Figure 10 for example of non-averaged data.
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FIG. 4: Culture Schematic.
The correct culture conditions plays an essential role in reprogramming by stabilizing the 

final cell type.
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