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Abstract

The identification and quantification of proteins lags behind DNA sequencing methods in scale, 

sensitivity and dynamic range. Here we show that sparse amino acid sequence information can be 

obtained for individual protein molecules for thousands to millions of molecules in parallel. We 

demonstrate selective fluorescent labeling of cysteine and lysine residues in peptide samples, 

immobilization of labeled peptides on a glass surface, and imaging by total internal reflection 

microscopy to monitor reductions in each molecule’s fluorescence following consecutive rounds 

of Edman degradation. The obtained sparse fluorescent sequence of each molecule was then 

assigned to its parent protein in a reference database. We demonstrate the method on synthetic and 

naturally-derived peptide molecules in zeptomole-scale quantities. We also fluorescently label 

phosphoserines and demonstrate single-molecule, positional readout of the phosphorylated sites. 

We measured >93% efficiencies for dye labeling, survival, and cleavage; further improvements 

should empower studies of increasingly complex proteomic mixtures, with the high sensitivity and 

digital quantification offered by single molecule sequencing.
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Proteins often exist in extremely complex mixtures, with a typical human cell containing 

>10,000 unique proteins and perhaps ten times as many post-translationally modified 

proteoforms. Each protein potentially varies in abundance from 1 to 109 copies in a manner 

often poorly predicted by mRNA transcript levels1. The inability to comprehensively 

sequence such complex protein samples, and especially to quantify and identify low-

abundance proteins and post-translational modifications, is a major road-block in protein 

biomarker discovery2. Currently, mass spectrometry is the method of choice for large-scale 

protein identification, but it is limited in its ability to analyze low-abundance samples and 

map rare amino acid variants3–5. These limitations could be addressed by successful 

development of highly parallel single-molecule protein sequencing6–12, a concept analogous 

to nucleic acid technologies that sequence millions to billions of oligonucleotides in 

complex mixtures in parallel. The approach would offer more than a million-fold 

improvement in sensitivity over conventional technologies and allow millions of distinct 

peptide molecules to be sequenced in parallel, identified and digitally quantified (Fig. 1A). 

Here we describe an implementation of protein fluorosequencing by directly visualizing 

individual fluorescently labeled peptide or protein molecules as they are subjected to the 

classic protein sequencing chemistry, Edman degradation13.

In the protein fluorosequencing concept, one or more amino acid types are selectively 

labeled with a specific identifier fluorophore14. After immobilizing millions of labeled 

peptides on a glass cover slip, each molecule’s fluorescence is monitored using TIRF 

microscopy following consecutive rounds of amino-terminal (N-terminal) amino acid 

removal by Edman chemistry13 (Fig. 1B). The sequence positions of the labeled amino acids 

are thus identified for each peptide molecule, providing a partial sequence. These sequences 

of fluorescent amino acids are compared to a reference proteome for assignment to their 

proteins of origin. Although only labeled amino acids are visualized, the results can 

nonetheless be very information-rich because the labeled amino acids’ sequence positions 

are precisely determined, the terminal amino acids’ identities can be constrained by choice 

of proteolytic enzyme and surface attachment chemistry, and the intervening amino acids’ 

identities are partly constrained (because they were not the labeled, cleaved, or attached 

amino acid types). Fig. 1C illustrates the information-richness by plotting the proportions of 

human proteins in an assortment of subcellular compartments that can be uniquely identified 

using only a 2-color code (here, modeling labeling of cysteines and lysines on peptides 

generated by proteolysis after glutamate or aspartate). Even a 2-color code is sufficiently 

information-rich to uniquely identify most proteins in mixtures of moderate complexity 

ranging up to ~1,000 human proteins (Fig. 1C and refs. 6, 7). Monte Carlo simulations have 

predicted that use of additional labels (e.g. as established for aspartate/glutamate and 

tryptophan14) should be sufficient to identify a majority of proteins in the human proteome, 

even when considering the expected effects of experimental errors due to e.g. photo/

chemical dye inactivation, incomplete fluorescent labeling, and sporadic failures of Edman 

reaction cycles6.

Here, we experimentally implement the fluorosequencing concept by labeling and 

discriminating peptides and simple peptide mixtures, which required developing 

instrumentation and methods, extensive testing of fluorophores, microfluidic design, 

chemistry of peptide immobilization and Edman degradation, image processing algorithms 
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for monitoring individual peptide’s fluorescent intensity and classifying and modeling the 

sources of errors. We analyze samples of increasing complexity, from singly labeled peptide 

samples to peptides labeled at up to 3 positions, both individually and in simple peptide 

mixtures, and distinguish specific phosphoserine post-translational modifications.

Results

Instrumentation for single molecule fluorescent peptide imaging and Edman sequencing

Edman sequencing employs harsher reagents than conventional aqueous microscopy 

experiments—including strong organic acids, bases, solvents, and heat—so we first 

identified fluorescent dyes that survive the chemistry (Supplementary Fig. 1), adapted a 

microscope stage perfusion chamber with chemically-resistant tubing, connectors, and 

perfluoroelastomer gaskets (Supplementary Fig. 2B), and automated chemical manipulations 

within the chamber using computer-controlled pumps and valves to exchange reagents under 

nitrogen (Supplementary Fig. 2C). Tests of bulk fluorescent peptides on beads confirmed the 

dyes did not strongly affect Edman degradation (Supplementary Fig. 3). We next confirmed 

that fluorescent peptides could be covalently tethered via aminosilane to a glass cover slip 

and survive extended imaging (Supplementary Fig. 4), exposure to Edman solvents, and 

heat, without significant loss of fluorescence (Supplementary Fig. 5). Fig. 1B shows ~3 

million peptides in an approx. 1.3mm × 5mm area of cover slip; covalently tethered gold 

nanowires additionally provide unique constellations of fiducial markers in each field of 

view. Thus, even reasonably sparse peptide densities allow millions of individual peptide 

molecules to be imaged in the apparatus, and the immobilized peptides and dyes survive the 

necessary reagents.

Identifying positions of single labels within peptide molecules

To demonstrate that consecutive cycles of Edman chemistry can be performed on peptides 

with high efficiency in the apparatus, we considered a series of experiments with control 

peptides of increasing sample and label complexity. In order to interpret these experiments, 

we developed custom image processing algorithms (Supplementary Figs. 6, 7). These (1) 

identify individual fluorescent molecules within each micrograph, (2) align fluorescent 

peaks from the same field of view, imaged across consecutive Edman cycles, using fiducial 

markers to correct for microscope stage variation, then (3) identify peptides whose 

fluorescent signals were stable and successfully removed by the final Edman cycle, 

computationally flagging contaminating fluorescent objects and non-sequenced peptides.

We first compared a uniform population of copies of the peptide GK†AGAG († indicates the 

fluorophore Atto647N covalently coupled via NHS ester to the lysine side chain) to a second 

uniform population of that peptide blocked from sequencing by N-terminal acetylation, 

serving as a negative control (Fig. 2A). We performed several cycles of Edman chemistry 

with all reagents and incubation steps, but omitting the key reagent, phenylisothiocyanate 

(PITC). Dyes disappearing during these “mock” Edman cycles allowed us to estimate 

background dye loss rates at roughly 7% per cycle, from a combination of photobleaching 

(Supplementary Fig. 4), chemical destruction, and loss of non-covalently bound molecules. 

Subsequent Edman cycles incorporating PITC confirmed that peptides most frequently lost 
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dyes at the expected second cycle, in contrast to blocked negative control peptides, 

demonstrating successful identification of dye position for 98,945 individual molecules (out 

of 238,503 molecules analyzed over 3 replicate experiments, imaging 100 image fields 

each), in a manner requiring a free peptide amino-terminus.

We further confirmed the apparatus and chemistry by analyzing a control mixture of many 

copies of two peptides distinguishable both by fluorophore color and sequence position, with 

one set labeled by the red-emitting dye tetramethylrhodamine (TMR) at position 1, and the 

other set labeled by far red Atto647N at position 2. We determined the positions of dye loss 

for approx. 4,000 individual peptide molecules across 9 cycles of chemistry (3 mock Edman 

and 6 complete Edman cycles). The predominant patterns observed were PITC-dependent 

and matched the expected positions for each dye (Fig. 2B). Similar to Fig. 2A, we observed 

a low background rate of dye loss per cycle, consistent with non-specific, PITC-independent 

dye destruction. Because each fluorescent channel independently reports on a different dye, 

the sequence positions of multiple amino acid types on a single peptide can be determined 

by labeling each type with a different fluorophore, as in Supplementary Fig. 8. Overall, the 

efficiencies of Edman degradation, dye attachment, detection, and stability, as well as 

peptide surface attachment chemistry, all appear sufficiently robust to support 

fluorosequencing.

Determining the precise amino acid positions of dyes within multiply-labeled peptide 
molecules

Determining the positions of multiple dyes within one peptide requires accurately 

determining which Edman cycles elicit step-wise intensity decreases in that molecule’s 

fluorescence; each step corresponds to removing one or more dye molecules. We 

demonstrated this key requirement by determining the positions of two labeled cysteine 

amino acids within many identical copies of peptide GC♦AGC♦AGAG (♦indicates 

Atto647N coupled by iodoacetamide to cysteine). For each copy of GC♦AGC♦AGAG, we 

expected losses of the fluorescent cysteines after the 2nd and 5th Edman cycles (Fig. 3A).

Indeed, monitoring an individual peptide molecule (Fig. 3B) and measuring its fluorescence 

after every Edman cycle revealed clear step-wise decreases in its intensity after the 2nd and 

5th cycles (Fig. 3C, orange diamonds). We collated such intensity patterns for all 1,695 

individual double labeled peptide molecules (Fig. 3D) and observed that the largest 

proportion of the peptide tracks (675 molecules) had distinct intensity drops after the 2nd and 

5th Edman cycles (Fig. 3C, box plots). Thus, by noting which Edman cycle elicited a step-

wise intensity decrease for a peptide molecule, we could correctly localize the two cysteine-

coupled dyes within each individual molecule, sufficient to infer the sequence xCxxCxxx 

(C=cysteine, x=any amino acid except C).

To better interpret data for other dye positions and counts, we empirically determined single 

peptide molecule fluorescence intensity distributions, then used these empirical distributions 

as the basis for a maximum likelihood statistical model for assigning the most probable dye 

positions to an observed peptide intensity track (Supplementary Figs. 9, Methods). We found 

it useful to summarize these sequence assignments across a population of molecules by 

representing them as a heatmap of counts of peptides with given dye positions. Such 
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heatmaps allowed us to quickly determine the most prevalent sequences and to assess 

systematic errors. Fig. 4A (right panel) plots the histogram corresponding to the 

GC♦AGC♦AGAG experiment described above. Notably, 675 molecules (also presented in 

Fig. 3D) were correctly determined to have dyes at the expected 2 and 5 positions, 

corresponding to the peak of the doubly labeled sequences (illustrated schematically in the 

left panel).

In parallel, to isolate and quantify specific sources of sequencing error, we tested N-

terminally acetylated versions of the peptide. The resulting histogram (Fig. 4B, left panel), 

arising from background dye/molecule loss rates, established an empirical baseline for 

correcting observed sequence frequencies for losses by chance, and allowed us to calculate 

the signal relative to expected noise (Fig. 4B, right panel).

Characterizing and modeling errors

Although we observed the correct sequence in about 40% of the examples of Figs. 3 and 4, 

these were accompanied by certain previously expected systematic errors6. These errors 

arose from defective dyes or failed dye attachment (collectively referred to as “dud dyes”), 

molecule-by-molecule failures of Edman chemistry resulting in missed cleavage events, 

position-independent background rates of dye or molecule loss in each cycle (directly 

quantified by N-acetylated peptide controls), and assignment errors in computing dye 

positions from observed fluorescent sequences. Each type of error introduces a distinct bias 

into the sequencing histogram (Fig. 4A, inset), thus allowing us to estimate error rates by 

comparing our observed signal to that obtained from Monte Carlo simulations of sequencing 

with errors. Simulations of the GC♦AGC♦AGAG sequencing experiment (Supplementary 

Fig. 10) agreed well with observed sequences with low residuals (35%), confirming high 

rates of Edman cleavage (94% efficiency per cycle), 95% of dyes surviving per cycle, and 

molecular surface retention of 95%, with the largest error arising from dud dyes (7%). 

Because we chromatographically purified doubly-labeled peptides and verified their labels 

by mass spectrometry before analysis (Supplementary Fig. 11), this effect was attributable to 

correctly coupled dyes that failed to fluoresce. A survey of multiple dyes and manufacturer 

batches revealed this to be a feature of several commercial dyes, identifying a clear need for 

future improvement. Lastly, to confirm these experimental conditions allowed for high rates 

of Edman cleavage independent of amino acid composition, we studied peptides containing 

proline, characterized historically by lower Edman cleavage rates15. We observed only a 

modest reduction in cleavage efficiency to 91%, as compared to 95% for alanine and 97% 

for repetitive glycine/alanine residues (Supplementary Fig. 12).

Deconvolution of peptide mixtures into groups of individual molecules

We next performed experiments on peptides in simple mixtures and from naturally occurring 

proteins, and demonstrated identification of a protein from a database. In addition, since all 

acetylated control experiments exhibited similar sequencing patterns (because they simply 

lost dyes at background rates due to chemical destruction and other factors), we collected all 

acetylated experiments with each given dye count to obtain general background distributions 

that we could subtract from any experimental histogram to better estimate sequenced label 

positions (see Methods).
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Fig. 5A and Supplementary Fig. 13A show zeptomole-scale experiments on two mixtures of 

peptide pairs, clearly distinguishing several hundred peptide molecules labeled on cysteines 

at the (2,5), (4,7), and (3,4) positions. To show identification of peptides derived from a 

natural human protein, we also synthesized peptides corresponding to GluC protease-

digested insulin fragments fluorescently labeled on cysteine residues. The major peak in 

each histogram corresponded to the correct dye-labeled amino acid positions, thus correctly 

detecting the specific labeling patterns of two singly labeled insulin B chain fragments, one 

singly labeled - A chain fragment, and one triply labeled A chain fragment (Fig. 5B and 

Supplementary Fig. 14). Notably, fluorescent sequences of these four peptides, when 

considered together, are sufficient to uniquely identify insulin in the human proteome. We 

obtained equivalent results for biologically derived insulin, as shown in Fig 5C, using a 

peptide mixture obtained following GluC protease digestion of recombinant insulin B chain.

Protein identification

To illustrate how a single experimentally determined partial sequence might be used to 

identify a parent protein from a reference proteome, we studied peptide RK†TTRK†M 

(†indicates Atto647N coupled to lysine residues) from the bacterium Cellulomonas fimi, 
modeling a scenario in which peptides are generated by cyanogen bromide proteolysis, 

which cleaves proteins after methionines, followed by fluorescent labeling of lysine residues 

(Fig. 5D. and Supplementary Fig. 13B). The observed partial sequence XKXXXK[X]≥0 

(K=lysine, X=any amino acid except lysine or methionine), when constrained by knowledge 

of the proteolysis cleavage specificity (i.e., adjacent to a methionine or protein terminus), 

occurs only once in a database of all 3,762 proteins from the bacterium Cellulomonas fimi 
(strain ATCC 484), uniquely identifying the protein “Extracellular solute-binding protein 

family 1” (Uniprot database identifier F4H473_CELFA). Thus, even for simple labeling 

schemes, there exist peptides for which partial sequencing suffices to uniquely identify their 

parent protein from a reference proteome. In practice, the identification of proteins in a 

reference database will be limited by sequencing errors. A computational model that 

incorporates our experimentally determined error rates (Supplementary Fig. 15) suggests 

that the technique is currently sufficiently empowered to discriminate proteins in samples of 

tens to hundreds. Incorporating additional labels or information-rich constraints from 

proteolysis or attachment specificity should serve to increase the power of this approach.

Single molecule sequencing of serine phosphorylation sites

We demonstrated identification of the specific amino acid positions of phosphoserine 

residues at single-molecule sensitivity. We considered the peptide YSPTSPSK, found in 

high-copy tandem repeats within the C-terminal domain of RNA polymerase II and whose 

phosphorylation patterns on Ser2 and Ser5 are implicated in transcriptional regulation16. Fig 

6A indicates the scheme used to selectively label serine or threonine phosphorylation sites, 

consisting of beta-elimination followed by conjugate addition via thiols17 in order to 

substitute thiol-linked fluorophores in place of phosphates. Analysis of the peptides YpS

°PTSPSK and YSPTpS°PSK (° indicates Atto647N coupled at phosphoserine residues) 

clearly discriminated serine phosphorylation sites within 3 amino acids of each other at 

single molecule sensitivity (Fig. 6B).
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Discussion

Single-molecule protein sequencing combines aspects from DNA sequencing, mass 

spectrometry proteomics, and classic Edman sequencing, and as such, it is useful to compare 

it to these technologies to get a better sense of its likely scalability, limits of dynamic range, 

applications, and other properties. Broadly speaking, the approach shares upstream protein 

isolation and proteolysis with shotgun mass spectrometry, as well as computationally 

matching peptide sequence-dependent patterns (fluorescent sequences vs. spectra) to a 

reference proteome database, and combining evidence from peptide identifications into 

protein identifications. Thus, it should be able to take advantage of established protocols for 

these aspects. However, as the sensitivity of the approach is inherently single molecule, as 

opposed to the attomoles to femtomoles (106-109 molecules) typically analyzed by a 

conventional Orbitrap mass spectrometer3, 4, there are reasonable prospects for reducing 

sample volumes and protein abundance requirements. Provided that the challenge of 

fluorescently labeling low abundance proteins can be met, this could open up the potential 

for, e.g. single cell proteomics experiments18.

In other respects, the approach resembles DNA and RNA sequencing pipelines, whose basis 

is the acquisition of large numbers of (often short) reads in parallel. Parallels include the fact 

that the data are intrinsically amenable to digital quantification simply by counting reads and 

that longer reads tend to be more information-rich. In principle, the method will work for 

both peptides (short reads) and full proteins (long reads). Currently, the partial sequence 

information gained by knowing protease specificity and the observed dye destruction rates 

make application to peptides more practical. Parallel efforts are underway to develop long-

read single-molecule protein sequencing based on nanopores7–10, 19–21

The error spectrum of the method strongly resembles that of nucleic acid sequencing, as it is 

characterized by indels (insertions/deletions) and substitutions, rather than the attribution 

errors that predominate in mass spectrometry due to isobaric amino acids or peptides. It also 

shares many of the same concerns as N-terminal Edman sequencing for optimization of 

PITC attachment and cleavage of PTH amino acids (Fig. 1C), requiring similar 

optimizations to temperature and reagent incubation time for efficient cleavage15. However, 

unlike Edman sequencers, it does not rely on detecting PTH amino acids and thus is not 

affected by many challenges to the traditional method, including inefficient extraction and 

detection of PTH molecules and amino acid modification effecting PTH retention 

times13, 22. Also, while Edman suffers from lag and reductions to repetitive yield caused by 

loss of population synchrony, our approach differs in that a missed cleavage on one molecule 

has no effect on a different molecule, and cleavage efficiencies (91–97%) are simply 

modeled into database lookup probabilities.

Although we do not evaluate quantification of peptides here, the intrinsically digital nature 

of the data offers both advantages and disadvantages over mass spectrometry. Unlike in mass 

spectrometry, in which assay dynamic ranges are largely set by mass detector dynamic 

ranges of 103-104 (as for Orbitrap detectors3, 4) or counts of mass spectra collected 

(typically no more than 105), dynamic ranges for single-molecule protein identification 

should scale in a manner similar to imaging-based nucleic acid sequencing methods, set 
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fundamentally by the surface area of the flow cell, density of attached molecules, and 

imaging times. Current generation Illumina sequencers routinely collect hundreds of 

millions of reads per run, and one previously developed single molecule DNA sequencing 

instrument using a similar TIRF microscope setup to those in this study has reported scaling 

to > 1 billion molecules sequenced23. In principle, single-molecule protein sequencing 

should scale similarly, offering multiple order of magnitude increases in dynamic range over 

current generation proteomics platforms. However, a potential confounding issue distinct 

from DNA and RNA sequencing is the substantially larger dynamic range exhibited by some 

natural proteomes, e.g. plasma protein concentrations can vary over 12 orders of 

magnitude24. In such cases, approaches will be needed to simplify the samples, such as 

affinity-based subtraction of highly abundant proteins or biochemical fractionation prior to 

sequencing. Finally, directions for future development include methods for multiplexing 

samples, low-abundance protein/peptide preparation, and expanding the palettes and 

stabilities of dyes and labelable amino acids or their modifications.

Methods

All methods are described in full in the Online Methods section.

Online Methods

Fluorophore selection

We observed that many commonly available fluorophores underwent significant spectral 

shifts (>100 nm) or irreversible fluorescence loss following exposure to the Edman reagents, 

primarily the trifluoroacetic acid (TFA) and phenylisothiocyanate (PITC) / pyridine mixture. 

We screened 26 fluorophores (Supplementary Table 1) in order to identify those most 

resistant to the Edman solvents by covalently attaching the dyes to Tentagel beads (Chem-

Impex International Inc; Cat # 04773) and measuring their fluorescence following 24 

incubation with TFA or pyridine/PITC in 9:1 at 40 °C (Supplementary Fig. 1). Non-

specifically bound fluorophores were removed by repeated washing with 

dimethylformamide (DMF), dichloromethane (DCM), and methanol. Atto647N, Alexa555, 

and rhodamine variants including tetramethylrhodamine (TMR) showed minimal (< 5%) 

change in fluorescence and had quantum yields high enough for effective sequencing. We 

used Atto647N (quantum yield = 0.65) and rhodamine variants, including the improved 

TMR analog JF594 (quantum yield = 0.88), for all subsequent experiments.

Widefield microscopy for bead-based assays

Beads labeled with fluorescent dyes or peptides were suspended in 20 μL of phosphate-

buffered saline (PBS, pH 7.2) and added to a glass cover slip. The samples were imaged 

using a Apo 60×/NA 0.95 objective mounted on an Eclipse TE2000-E inverted microscope 

(Nikon) equipped with a Cascade II 512 camera (Photometrics), Lambda LS Xenon light 

source and Lambda 10–3 filter wheel control (Sutter Instrument), and a motorized stage 

(Prior Scientific), all operated via Nikon NIS Elements Imaging Software. Images were 

acquired at 1 frame per second through a 89000ET filter set (Chroma Technology) with 

channels “DAPI” (Ex 350/50, Em 455/50), “FITC” (Ex 490/20, Em 525/36 ) “TRITC” (Ex 
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555/25, Em 605/52) “Cy5” (Ex 645/30 Em 705/72), and bead fluorescence quantified from 

the images.

Peptide synthesis, purification, and labeling

All peptides were synthesized using a standard automated solid-phase peptide synthesizer 

(Liberty Blue microwave peptide synthesizer; CEM Corporation) and purified by analytical 

high-performance liquid chromatography (HPLC) (Shimadzu Inc.) with an Agilent Zorbax 

column (4.6×250 mm) operating at 10 mL/min flow rate and eluting with a gradient of 5–

95% acetonitrile (0.1% TFA) over 90 minutes. Solvents used were HPLC grade. Peptides 

were labeled with flourophores using standard coupling schemes14 by reaction with 

Atto647N-NHS, Atto647N-iodoacetamide, TMR-NHS, or JF549-NHS, as appropriate, to 

label lysines (via NHS) or cysteines (via iodoacetamide) (Supplementary Table 1). Purities, 

including presence and count of fluorescent labels, were confirmed by mass spectrometry 

(6530 Accurate Mass QTofLC/MS, Agilent Technologies). N-terminal amines of synthetic 

peptides were typically blocked with a tert-butyloxycarbonyl (boc) or a 

fluorenylmethyloxycarbonyl (fmoc) protecting group prior to immobilizing peptides, 

preventing peptide concatenation of the activated C-termini with free peptide amino termini.

Labeling phosphoserines

Phosphorylated serines were fluorescently labeled (Fig. 6) by mixing solubilized 

phosphopeptide with a saturated solution of barium hydroxide and sodium hydroxide for 3 

hours at room temperature for beta-elimination of the phosphate17. Atto647N-NHS was 

reacted with cystamine to produce Atto647N-S-S-Atto647N, which was subsequently 

incubated overnight with the peptide solution and Tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP) in DMF in order to fluorescently label the relevant serines. Peptides 

were purified by HPLC and labeling verified by mass spectrometry. Note that this chemistry 

is known to additionally label phosphothreonines17 and also has the potential to eliminate O-

glycans or to eliminate water from hydroxy amino acids25.

Fluidics

We adapted an FCS2 temperature-controlled perfusion chamber (Bioptechs), substituting the 

gaskets with custom gaskets die-cut from 0.05 mm thick Kalrez-0040 rubber (Dupont), 

based upon its compressibility and inertness to the Edman reagents (Supplementary Fig. 

2B). We used a USB-controlled piston syringe (Cavro) and 10-port valve (Valco) to dispense 

reagents through polytetrafluoroethylene tubing into the perfusion chamber, which was 

affixed on the microscope stage (Supplementary Fig. 2C).

Tentagel bead-based confirmation of Edman sequencing through fluorescent amino acids

As prior literature was unclear as to the applicability of Edman chemistry to fluorescent dye-

modified amino acid residues, we used the bead-based assay to test if Edman sequencing 

could be observed in bulk studies of fluorescent peptides. Synthetic peptides with known 

positions of TMR labeled lysine residues were covalently coupled to Tentagel beads via 

EDC/NHS chemistry (described below). We measured the reduction in peripheral bead 

fluorescence (attributable to covalent binding) after consecutive Edman cycles adapting 

Swaminathan et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



established protocols26, observing ~80% efficiency per amino acid residue without 

optimization, thus confirming the general capacity of the Edman degradation chemistry to 

sequence peptides with bulky and hydrophobic fluorophore-tagged residues (Supplementary 

Fig. 3). We did not attempt to further optimize Edman chemistry on bulk peptides or beads.

Reducing photobleaching

We took advantage of the perfusion chamber’s compatibility with diverse solvents to 

optimize the solution conditions for single molecule imaging, testing imaging quality (dye 

brightness and half-life) in a range of organic and aqueous solvents. We observed optimal 

performance from methanol with 1 mM trolox (Sigma; Cat # 238813–1G), purged 30 min 

with nitrogen gas. The methanol/trolox imaging solution increased the half-life of the TMR 

and Atto647N fluorophores to 105 and 110 seconds, respectively, corresponding to >100 

Edman cycles, assuming a 1 sec exposure per cycle (Supplementary Fig. 4).

Peptide surface immobilization

For single molecule Edman sequencing, a #1 (1.7mm) glass cover slip surface was first 

cleaned by UV/ozone (Jelight Company) and functionalized by amino-silanization with 

aminopropyltriethoxysilane (APTES) (Gelest, Cat # SIA0610.1) using the vendor-supplied 

protocol (http://www.gelest.com/wp-content/uploads/09Apply.pdf). Slide surfaces were 

further passivated (for experiments in Figs. 3 - 6 and Supplementary Figs. 10, 13 and 14) by 

overnight incubation with polyethylene glycol (PEG)-NHS solution, prepared by dissolving 

a mixture of 80 mg mPEG-SVA and 4 mg tboc-PEG-SVA (Laysan Bio Inc; Cat # MPEG-

SVA-2000 and Cat # tBOC-NH-PEG-SVA-5K, respectively) in sodium bicarbonate solution 

(pH 8.2). Functionalized slides were stored in a vacuum desiccator until use. The t-

butyloxycarbonyl protecting groups were removed by incubating a slide with 90% TFA (v/v 

in water) for 5 h before use, exposing free amine groups for peptide immobilization. 

Additionally, to aid in surface passivation, PEG sides were optionally treated with a 2% 

solution of Tween 20 (Biorad; Cat #170–6531) in TRIS for 30 min (as for experiments in 

Fig 5C). In control experiments, we confirmed that an amino-silanized glass surface was 

stable to multiple cycles of Edman degradation and after washes with wash buffer (1% 

sodium dodecyl sulfate (SDS) and 0.1% Triton in PBS), determined by assaying the 

retention of N-hydroxysuccinimide (NHS)-derivatized Atto647N covalently attached to free 

amines on the surface (Supplementary Fig. 5).

For a typical single-molecule peptide sequencing experiment, peptides were covalently 

coupled to the cover slip surface via amide bonds between the carboxylic acid of the C-

terminal amino acid residue and the glass surface amines. Fresh solutions of 4 mM of 1-

ethyl-3-(3-dimethylamino) propyl carbodiimide, hydrochloride (EDC, Sigma; Cat # 03449–

1G) and 10 mM of N-hydroxysuccinimide (NHS, Sigma; Cat # 130672–5G) or N-

hydroxysulfosuccinimide (NHS, Thermo; Cat # PG82071) was made in 0.1 M MES buffer 

in 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES, Pierce; Cat # 28390) just before use 

(notably, use of fresh EDC was critical). A solution of fluorescently labeled peptide 

(typically 200 μM) was diluted with EDC-NHS solution (a 1:1 mixture by volume) to a final 

concentration of 20 μM peptide, 1.6 mM EDC, and 4 mM NHS. This was mixed for 4 h at 

room temperature before preparing an initial dilution series in 0.1 M MES. We titrated 
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peptides from a secondary dilution series to between 20 pM and 2 nM peptide in 0.1M M 

NaHCO3 to provide an attachment density on the slide of approximately 10 molecules per 

square nanometer (Fig. 1B). Peptides were typically incubated on the slide for 20 mins 

before washing with water and methanol to remove unbound peptide. Additionally, 1 μm 

long 12mercaptododecanoic acid NHS ester functionalized gold nanorods (Nanopartz; Cat # 

B14–1000-12CNHS-0.25-DMF) were covalently attached via the amines to serve as fiducial 

markers for focusing and image registration. After attaching peptides and nanorods, the slide 

was incubated in 90% TFA (v/v in water) for 5 h and then rinsed with methanol to remove 

boc groups and expose the peptides’ free amino termini. Alternatively, to remove fmoc 

protecting groups, peptides were incubated for 1 h in 20% piperidine solution (in 

dimethylformamide (DMF)), then washed with DMF and methanol to remove residual 

piperidine. An optional 1 hour incubation of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 

Sigma; Cat# 33682) was used to remove peptides non-specifically bound to the surface 

experiments in Figs. 5C, 6, and Supplementary Fig. 8. To assist with focus stability, the 

chamber and microscope were allowed to equilibrate at 40 °C during de-blocking and up to 

an additional 12 h.

Total internal reflection (TIRF) microscopy

Single molecule TIRF microscopy experiments were performed with two similar systems, 

each with a Nikon Ti-E inverted microscope equipped with CFI Apo 60X/1.49NA oil 

immersion objective lens, motorized stage with 100 nm resolution linear encoder (ProScan 

II; Prior Scientific), an iXon3 DU-897E 512×512 EMCCD detector (Andor) operated at 

−70 °C, and a MLC400B (Keysight) laser combiner with 561 nm (N1245AL34) and 647 nm 

(N1245AL44 and N1245BL56, systems A and B respectively) lasers as diagrammed in 

Supplementary Fig. 2C. Fluorescence from Atto647N was excited using 6.0 mW (50%, 

system A) or 2.8 mW (12.5%, system B) of 647 nm laser power via 647LP dichroic and 

collected through 665LP and 705/72BP emission filters. Fluorescence for 

tetramethylrhodamine (TMR) was excited using 2.7 mW (35%) of 561 nm laser power via 
561LP dichroic and collected through 575LP and 600/50BP emission filters. Gold nanorod 

reflection was excited by using <0.01 mW (3%) of 561 nm laser light using a 95/5 

reflectance cube. To increase the number of pixels in an individual diffraction limited spot 

and to maximize the flat-field portion of the image collected, an additional 1.5X tube lens 

was inserted into the beam path. Laser powers were measured prior to the objective. All data 

presented in figures, except those in Fig. 5B and Supplementary Figs. 8, 12, and 14, were 

collected using system A. All peptide sequencing results were independently confirmed on 

both systems.

Automated Edman degradation

For single-molecule Edman sequencing experiments, the sample temperature was 

maintained at 40 °C by heating both the perfusion chamber and microscope objective. 

Edman reagents were bubbled with dry nitrogen gas for 10 min, and then kept under 

nitrogen gas throughout the experiment. Solvent exchanges in the fluidic device were 

controlled using in-house Python scripts and coordinated with image acquisition via custom 

macros in the Nikon Elements software package. Reagents (highest purity available from 

Sigma) were introduced to the perfusion chamber as follows:
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Protocol step Reagents Incubation 
time (min) 
System A

Incubation 
time (min) 
System B

Step 1 Pump wash Water wash wash

Step 2 Methanol wash Methanol wash wash

Step 3 Free basing solution 1. Acetonitrile, pyridine, triethylamine, 
water (10:3:2:1 v/v)
2. Acetonitrile, triethylamine (2:1 v/v)

wash 5

Step 4 Mock or Edman solution 100% acetonitrile or acetonitrile, 
phenylisothiocyanate (9:1 v/v)

30 20

Step 5 Free basing solution 1. Acetonitrile, pyridine, triethylamine, 
water (10:3:2:1 v/v)
2. Acetonitrile, triethylamine (2:1 v/v)

wash NA

Step 6 Ethylacetate/ACN wash Ethylacetate (A) or acetonitrile (B) wash wash

Step 7 Cleavage solution 100% trifluoroacetic acid 30 15

Step 8 Ethylacetate wash Ethylacetate wash wash

Step 9 Pump wash Water wash wash

Step 10 Methanol wash Methanol wash wash

Step 11 Oxygen scavenging solution Trolox in methanol (1mM) 10 5.5

“Wash” denotes exchanging the solvents in the flow chamber (approx. 3 minutes). On 

system A, free base solution 1 was used for experiments in Figs. 1–4, 5A and 5D and 

Supplementary Figs. 10 and 13, and free base solution 2 for experiments in Figs. 5C and 6. 

On system B, free base solution 1 was used for Fig. 5B and Supplementary Fig. 12B and 14; 

free base solution 2 was used for Supplementary Figs. 8 and 12A. Typically, to distinguish 

signal loss due specifically to Edman chemistry, as many as four mock Edman cycles using 

all reagents except PITC were performed prior to Edman cycles. In total, steps 1–11 take 

approx. 1 to 1.5 hours.

Image processing and photometry

Images of each field of view taken after each consecutive Edman cycle were stored as PNG 

files, with sets of images from each Edman cycle (henceforth, “frames”) sequentially 

collated into fields of view by filename.

To identify individual peptide molecules in frames, we applied a median filter to locate 

candidate fluorescent point-sources in images (Supplementary Fig. 6). Candidate point-

sources were then fit with a two-dimensional Gaussian as an approximation to their Airy 

disc, as implemented in AGPY (authored by Adam Ginsburg; downloaded April 7th 2015 

from https://github.com/keflavich), and an R2 quality of fit was assessed, retaining point-

sources with R2 > 0.7. Further criteria were applied as described below to remove potential 

contaminants from analysis.

To track individual fluorescent point-sources through an experiment, each field of view’s 

frames were aligned pairwise across cycles using fast-Fourier transform cross-correlation27 

(implemented in Python by scikit-image, http://scikit-image.org) of the gold nanorod 
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reflection channel images, if present, or one of the fluorescence channels otherwise. We 

collated instances of each fluorescent point-source across aligned frames by matching their 

coordinates using the alignment offsets, within error tolerance. If a fluorescent point source 

was absent in one or more frames, its position was extrapolated to those frames using the 

alignment offsets. Point sources that mapped outside of a frame in any imaging cycle were 

discarded.

We quantified the fluorescence intensity of each point-source across frames using Mexican 

hat photometry. In each frame, we summed the innermost 7×7 pixels centered about the 

point-source to obtain its raw photometry, then subtracted the median of the enclosing 

19×19 pixel area (excluding the 7×7 center) to adjust for background. Any point-source 

whose Mexican hat was not contained entirely in all frames was discarded.

For each point-source’s progression through frames, we constructed a Boolean logic 

sequence consisting of two possible states: “ON” and “OFF” (Supplementary Fig. 7). A 

point-source was considered ON in the frames in which a two-dimensional Gaussian fit with 

R2 above 0.7 was found, OFF otherwise. For example, a point-source that was well-fitted 

with a two-dimensional Gaussian in frames 1–3, was not detected in frames 4–6, and was 

again fittable in frames 7–10 would be assigned a sequence [ON, ON, ON, OFF, OFF, OFF, 

ON, ON, ON, ON]. Only point sources that turned off monotonically were considered 

validly sequenced peptides: i.e. they started in the ON state, and if they turned OFF in any 

frame, they then remained OFF for the rest of the experiment. Fluorescent point-sources that 

turned ON after being OFF at any point were discarded from further consideration. For each 

point source, the sequence of its Boolean states and its Mexican hat photometries was 

collated. This collated sequence is termed the point source’s track.

Before further analysis, dye photometries were adjusted to account for frame-to-frame focus 

variations. Tracks with ON state across all frames (“remainders”) were collated for each 

field. The percent deviation in fluorescence intensity was determined at each cycle for each 

remainder track. The average remainder deviation for each cycle was then applied to all 

tracks within that field. Fields with fewer than 5 remainders were removed from further 

analysis.

Overview of maximum likelihood assignment of dye positions

For each peptide track, we sought to infer the number of dyes remaining on the peptide in 

each sequencing frame. For example, a track’s dye count might be written as [3, 3, 2, 2, 2, 1, 

0], representing a peptide that started with three dyes, decreased to two dyes after two 

Edman cycles, then decreased to one dye after another three cycles, and finally to zero dyes 

after one more cycle.

Dye counts are not directly observable, but rather must be inferred from the measured 

photometries and their step-wise intensity losses28, 29. Our general strategy to infer a 

sequence of dye counts di from a sequence of photometries φi across frames 1, 2, …, i was 

as follows:

1. A peptide had a dye count of 0 in a frame if and only if it was in the OFF state as 

defined above.
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2. We considered all possible monotonically decreasing dye count sequences as 

competing explanations for the observed sequence of photometries. We 

considered a maximum of 5 dyes, allowing multiple simultaneous dye losses per 

cycle.

3. The probability for the observed intensities to be generated from each dye count 

sequence was calculated as a quality of fit score S(d|φ) = ∏iS(di|φi), with i 
indexing the track’s frames. The per-frame scoring function S(di|φi) is the 

probability density function ρ(φi|di) of a point source with di dyes yielding 

photometry φi. This probability density function is lognormal, as described 

below. The dye count sequence d maximizing this score was taken as the best 

explanation for observed photometries φ.

4. To guard against poorly behaved fluorescent point sources, if the best fitting dye 

count sequence d had any frame for which S(di|φi) was below a threshold 

(defined below), we considered the track uninterpretable and discarded it from 

further consideration.

Single molecule dye fluorescence intensities are log-normally distributed

Tracks from each experiment represented a population of fluorescent point sources that 

could be characterized in bulk. Here and in subsequent analysis, the distribution of 

photometries was binned using the optimal histogram binning algorithm from Shimazaki et 
al.30.

We first characterized the intensities of peptides with only one dye remaining. Since each 

track contains a sequence of ON/OFF states, we can assume that the last ON state of each 

track before an OFF is, for the majority of cases, caused by loss of a single dye regardless of 
how many dyes the peptide began with. This assumption is valid on a population basis 

because the probability of two or more dyes turning off in a single cycle is small compared 

to that of one dye. We defined φfinal as the set of photometries of the last ON frames that are 

followed by an OFF frame across all tracks. To maximize ON/OFF transitions caused by a 

single dye loss and not whole molecule loss, tracks with OFF transitions in the first three 

frames (typically “mock” cycles) were excluded from this definition. We found the 

distribution of φfinal to be lognormal, matching observations by Mutch et al.31 

(Supplementary Fig. 9A). A lognormal distribution for one fluorophore can be written as 

probability density function ρ of intensity φ:

ρ(φ) = 1
φ × 2πσ2exp(−(lnφ − μ)2

2σ2 )

where the scale parameter μ and shape parameter σ completely characterize the distribution.

For simplicity, we henceforth considered the logarithmic space φ* = ln φ, with the 

corresponding transformed probability density function and parameters:
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ρ*(φ*) = 1
2πσ*2exp(−(φ* − μ*)2

2σ*2 )

Following Mutch et al., the lognormal distribution can be expanded to cases of multiple (c) 

dyes by increasing the scale parameter μ* to μ* + ln c − Qc, where Qc is a dye-dye 

interaction factor; the shape parameter σ* is held constant, as per 31. Thus, the probability 

density function for a point source with multiple dyes can be written as:

ρ*(φ* |c) = 1
2πσ*2exp(

−(φ* − μ* − lnc + Qc)2

2σ*2 )

In this context, step #4 of the general fitting strategy (thresholding) was based on the 

deviations of a track’s observed photometries from the lognormal model, φ* − μ*
σ* . If this 

deviation was above three in any frame, the track was discarded.

Inference of lognormal fluorescence parameters via simulation

Parameter μ* in ρ*(φ*|c) can be obtained directly by setting μ* = φ f inal* . Parameters σ* 

and Qc are more challenging to extract by applying a straightforward function to datapoints 

φi*. Instead, we used forward simulation to find a combination of parameters under which 

our fitted model best matched our data. Specifically, we started with fluorosequencing data 

from a doubly-labeled peptide GC♦AGC♦AGAG ( ♦ indicates Atto647N conjugated to 

cysteine) experiment and calculated its μ*. We then computationally generated each possible 

monotonically decreasing dye count that dropped to 0 within the experiment’s number of 

cycles. Iterating over 225 parameter combinations of σ* and Qc, we generated 105 tracks for 

each of the possible dye counts as follows: the intensity of each frame in a track was 

randomly drawn from the distribution ρ*(φ*|c), with c determined by the corresponding dye 

count di in that frame. We applied the general fitting strategy to both these simulated tracks 

and experimental tracks using σ* and Qc. To gauge whether a particular pair of parameters 

σ* and Qc recapitulated the distribution of photometries well, we collated the dye sequences 

fitted to the experimental data with their simulated counterparts, and compared the 

distribution of photometries in each frame. Supplementary Fig. 9B shows the distribution of 

photometries in each frame for dye sequence [2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0] (mocks 

included; frames with 0 dyes are OFF and are omitted) under an overestimated shape 

parameter σ* and an underestimated dye-dye interaction factor Q2. Supplementary Fig. 9C 

shows the corresponding distributions for σ* = 0.20 and Q2 = 0.30, which fit with an 

average R2 of 0.87 across all eight frames. Repeating this parameter sweep for multiple 

experiments showed these values for σ* and Qc to be generally valid for Atto647N, and we 

used them for all subsequent analyses.

Using these parameters, for any given track φ we could thus infer the underlying dye count 

sequence d by maximizing the fit score
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max
d

S(d |φ) = ∏
i

S di |φi = ∏
i

1
2πσ*2exp(

−(φi* − μ* − lndi + Qdi
)2

2σ*2 )

Estimation of sequencing errors via Monte Carlo simulations

Peptide fluorescent sequences are subject to experimental error. We took advantage of our 

previously developed computational model of the likeliest sources of experimental error 

(Edman failure, photobleaching, and dud dyes)6, for which we had developed an extensible 

Monte Carlo model of fluorosequencing. We added to our previous model an additional 

source of error – whole molecule loss – to reflect our observations that the reagent flushes 

through the perfusion chamber could remove labeled but non-specifically bound peptides 

from the slide surface, especially during the first few experimental cycles. Using this error 

model, we could simulate the molecular state of a peptide after each experimental cycle, 

providing a simulated dye count sequence for a given peptide as it undergoes sequencing. By 

chaining together this existing framework with our lognormal model of fluorescence, we 

could thus simulate the complete experimental observations (tracks) that we would expect 

for any given peptide sequence. Applying our dye count inference fitter to the simulated 

data, we could thus obtain a set of modeled fluorescent sequences for comparison to an 

actual experiment.

The primary sources of error are modeled as follows (c.f. 6 for more detailed discussion):

• Edman failure is modeled as a Bernoulli variable. The probability of an amino 

acid being removed after every Edman cycle is p, and is independent of all other 

events.

• Photobleaching is modeled as an exponential decay. The probability of a dye 

photobleaching after any experimental cycle is e−b.

• The probability of a dye being a non-fluorescing dud before the experiment 

begins is a Bernoulli variable, with dud probability u.

• Whole molecule loss is modeled as a bimodal Bernoulli variable, with 

probability dinitial of a whole molecule being removed after every cycle during 

the initial c cycles, and probability dsubsequent per cycle thereafter. Following 

experimental observations, dinitial ≥ dsubsequent.

We were able to recapitulate experiments with simulations (e.g. Supplementary Fig. 10), and 

found that the error parameters were broadly conserved across multiple experiments.

Adjustment of sequencing histograms for expected background rates of dye destruction 
and whole molecule loss

We compiled data across multiple acetylated peptide sequencing experiments to establish a 

background rate of non-specific dye destruction and whole molecule loss, and adjusted 

sequencing histograms (where indicated) to account for this background. Importantly, 

acetylated control experiments exhibited fluorescent sequencing patterns in a sequence-

independent manner, depending only on the per-molecule dye count, and hence we could 
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pool all acetylated experiments with a given dye count to obtain a general background 

distribution, which could be used to adjust histograms from a sequencing experiment for 

observations expected by chance.

First, we standardized each acetylated control experiment by converting the counts at each 

histogram position to relative frequencies, by dividing each count by the total number of 

observations in the experiment. We considered all step drop patterns that dropped to a dye 

count of 0 by the end of the experiment, including those that had a total of four or five drops; 

step drop patterns that remained above 0 in the last frame (i.e. remainders) were omitted. 

Multiple standardized acetylated experiments were then averaged together on a per-

histogram position basis to obtain the average background rate – i.e. the normalized count of 

each step drop pattern expected by chance due to non-sequencing-related experimental 

losses. Likewise, we obtained the variance in the background rate on a per-histogram 

position basis. We assumed the background rate at each histogram position to follow a 

normal distribution, defined by the average and variance obtained from multiple acetylated 

control experiments.

We then adjusted sequencing experiment histograms for expected background using the 

following iterative algorithm:

1. Standardize the sequencing histogram as for individual acetylated histograms 

above.

2. For each position in the standardized sequencing histogram with standardized 

frequency S, compute its z-score against the background distribution’s mean μ 

and standard deviation σ : z = S − μ
σ .

3. We define a smoothing operation for sequencing histogram position H = (i, j, k, 
…) as replacing its raw counts with the average of counts at all positions within a 

Hamming distance of 1. For example, smoothing at position 6 would entail 

averaging counts at positions 5 and 7, and smoothing at position (3, 4) would 

entail averaging counts at all eight positions satisfying (3±1, 4±1). Note that after 

a smoothing operation, a sequencing histogram must be re-standardized using the 

updated counts in order to compute its z-scores.

4. Score all peaks in the sequencing histogram for the largest decrease in Z-score 

that would result from background correction, using smoothing from adjacent 

histogram positions to compensate for outliers, calculated as follows:

max
H

Δ Z = max
H

ZH − ZH′ = max
H

SH − μH
σH

−
SH′ − μH

σH
= max

H

SH − SH′
σH

where: SH, μH, and σH are the histogram value, background mean, and 

background standard deviation at position H, and SH′ is the corresponding value 

for the histogram smoothed at position H.

5. Update the histogram by smoothing at the position yielding the best 

improvement in step 4.
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6. Repeat from step 1 until the highest z-score in step 2 is below a specified 

threshold (e.g., z = 1), or no further interpolation can be made that lowers a z-

score.

This procedure generates a smoothed estimate of the expected background counts for a given 

sequencing experiment; we simply subtracted these counts from raw foreground sequencing 

counts to obtain the adjusted foreground counts, setting any negative entries to 0. Note that 

the z-score threshold applied in step 6 effectively considers any peaks whose z-score is 

below it as background, and thus removes them from the final results.

Effect of experimental errors on protein identification

To assess the potential impact of our observed experimental error rates on protein 

identification, we re-simulated the cellular compartments considered under ideal conditions 

in Fig. 1C with error rates, calculated using the Monte Carlo simulation algorithm as 

described above and in ref. 6. We considered the case for rates measured for the 

experimental samples in Figs. 3, 4, and Supplementary Fig. 10 of 94% Edman efficiency, 

5% dye destruction, 5% surface degradation, and 7% “dud” dyes. For each set of proteins, 

we simulated 10,000 copies of each of protein in a Monte Carlo fashion for 30 Edman cycles 

and tabulated their resulting fluorescent sequences. We defined a protein as being uniquely 

identified if it yielded a fluorescent sequence at least 10 times (out of 10,000) for which no 

more than 10% of counts of that fluorescent sequence were emitted by other proteins. The 

resulting protein coverage curves are plotted in Supplementary Fig. 15.

Statistics and reproducibility

Replicate data is summarized for all figures in Supplementary File 1 and the Life Sciences 

Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of single-molecule fluorosequencing.
(A) Summary of the approach for protein and peptide analyses. (B) Peptides are covalently 

labeled with amino-acid specific fluorescent dyes and immobilized in a total internal 

reflection fluorescence (TIRF) single molecule microscope stage perfusion chamber. Using 

TIRF, each peptide is imaged, then its amino-terminal (N-terminal) amino acid is chemically 

removed via Edman degradation, leaving each peptide one amino acid shorter and 

regenerating its free N-terminus. Repeated cycles of chemistry (each removing one amino 

acid) and imaging reveal the positions of fluorescent dyes within each molecule. Millions of 

individual peptide molecules can be analyzed in parallel at reasonable attachment densities, 

shown for approx. 3 million peptides in a roughly 1.3 × 5 mm area of the cover slip. • 

indicates TMR conjugated to cysteine, ♦indicates Atto647N conjugated to cysteine; gold 
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nanowires serve as fiducial markers. (C) Even a relatively modest amino acid labeling 

scheme can be sufficiently information-rich to identify proteins, as illustrated by calculating 

the proportions of human proteins in specific subcellular compartments (defined by Gene 

Ontology Cellular Component annotations; numbers indicate protein counts) that are 

uniquely identifiable with a two-color code. Each curve plots coverage of uniquely 

identifiable proteins, as a function of Edman cycles performed, considering the scenario of 

labeling only cysteines and lysines on peptides formed by GluC proteolysis, which cleaves 

after glutamate or aspartate.
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Figure 2: Fluorescent amino acid positions can be determined at single molecule sensitivity.
(A) Sequencing of individual peptide molecules requires a free amino terminus, as shown by 

comparing fluorescent sequences of the 6-mer GK†AGAG and its non-sequenceable N-

terminally acetylated version. The histogram at left plots relative frequencies of peptide 

molecules exhibiting dye loss at each Edman cycle (mean +/− s.d. of 3 replicates; n=59434, 

80541, 98528 molecules measured across 100 image fields each). M1, M2, and M3 denote 

negative control (“mock”) Edman cycles in which PITC was omitted. Individual traces are 

illustrated at right with extracted TIRF images for 4 individual molecules (2 blocked and 2 

unblocked) across cycles. (B) The sequence positions of dye-labeled amino acids can be 

accurately determined within individual peptide molecules, shown by deconvoluting a 

mixture of two control peptides differing both in label position and color. The histogram 

displays counts of individual molecules of each color, K*AGAAG and GK†AGAG (n=5683 

and n=1598, across 20 fields), indicating the cycle numbers at which the dyes are removed, 

and with example single molecule TIRF images at right. † indicates Atto647 conjugated to 

lysine, and * indicates TMR conjugated to lysine. Fluorescence intensity measurements are 

provided for all single molecule image tracks in Supplementary File 1.
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Figure 3: Step-wise decreases in fluorescent intensity occur at the Edman cycles that correspond 
to the removal of the dye-labeled amino acids.
(A) A schematic of the peptide molecule, GC♦AGC♦AGAG, losing dye labeled amino acids 

at the 2nd and 5th Edman degradation cycles. ♦indicates Atto647N conjugated to cysteine. 

(B) The decrease in fluorescence intensity accompanying dye loss is illustrated in a 

representative set of TIRF images for a single peptide molecule. (C) Intensities for the 

representative molecule shown in panel B (orange diamond) and a box plot of intensities 

(Center line, median; limits, 75% and 25%; whiskers, +/− 1.5 IQR) for all 675 molecules 

collected across all 49 images correctly identified as having drops at amino acid positions 2 

and 5. By noting the Edman cycle corresponding to the step-wise intensity decrease, the 

partial sequence of the peptide (xCxxCxxx) can be inferred. (D) The heatmap of fluorescent 

intensity values for each of the 1,695 peptides with two dyes, observed after every Edman 

cycle, shows that the predominant pattern corresponds to dye losses after the 2nd and 5th 

cycles (n=675 peptide molecules).
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Figure 4: Fluorescent sequences can be interpreted computationally to identify dye positions and 
quantify errors.
A maximum likelihood statistical model allows for correct sequencing of multi-labeled 

peptides, evident in (A) histograms of the fit fluorescent sequences obtained for 

GC♦AGC♦AGAG (right panels, based on 49 image fields;♦indicates Atto647N conjugated 

to cysteine). We summarized dye loss positions for peptides with only one detectable dye as 

a 1D histogram (top right panel) and dye loss positions for doubly labeled peptides as a 2D 

histogram (bottom right histogram). As an aid for interpreting the 2D histogram, the 

example at top left shows a schematic of a peptide exhibiting dye losses at the 2nd and 5th 

cycles, which correspond to the 2nd row and 5th column of the 2D histogram. 675 peptide 

molecules exhibited this pattern. In this experiment, all other patterns correspond to specific 

sequencing errors, as illustrated graphically in the inset at left. (B) By sequencing an N-

terminally acetylated population over 49 image fields of the same sequence, background 

observations expected from non-Edman events were determined (left panel) and the 
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foreground counts adjusted to determine the signal above background (right panel, see 

Methods for calculation).
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Figure 5: Fluorosequencing can discriminate individual peptide molecules in zeptomole-scale 
mixtures and uniquely identify their parent proteins.
(A) Histograms tallying counts of molecules sequenced from a mixture of GC♦AGC♦AGAG 

with GAGC♦GAC♦GAGAD (left panel, 98 image fields) and GAC♦C♦AGAAD with 

GAGC♦GAC♦GAGAD (right panel, 49 image fields) highlight the ability to distinguish 

individual peptides within mixtures. (B) Data on 4 individual insulin peptides that, in 

combination, uniquely identify insulin in the human proteome. (Top panel) adjusted three 

dye histogram for insulin A2 chain (QC♦C♦TSIC♦SLYNE) showing the expected signal at 
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amino acid positions 2, 3, and 7 (magnified in inset). The remaining panels plot adjusted 

single dye histograms for insulin A3 (NYC♦N), B1 (FVNQHLC♦GSHLVE), and B2 chains 

(ALYLVC♦GE), respectively; each histogram represents 100 image fields. (C) Data on 

recombinant human insulin B chain after purification, GluC proteolysis and cysteine 

labeling shows the expected peaks at cycles 6 and 7 (100 image fields) as expected for the 

mixture of B2 and B1 peptides, respectively. (D) The fluorescent sequence of peptide 

RK†TTRK†M is sufficient to uniquely identify its parent protein F4H473 from the 

Cellulomonas fimi protein. The adjusted two dye sequencing histogram (left panel, 49 image 

fields) reveals the sequence as xKxxxK[x]≥0 which can be compared to a reference database 

(center panel) created by modeling fluorescent sequences for all possible peptides in the 

proteome assuming predefined protease cleavage and dye labeling specificities (right panel), 

here modeling cyanogen bromide cleavage after M and labeling K. ♦ indicates Atto647N 

conjugated to cysteine and † indicates Atto647N coupled to lysine residues. Supplementary 

Figs. 13–14 provide full single, double, and triple dye histograms, as appropriate.
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Figure 6: Direct single molecule sequencing of phosphoserine positions within RNA polymerase 
II C-terminal domain (CTD) repeat peptides.
(A) Phosphorylated serines or threonines can be specifically labeled with fluorescent dyes 

by beta-elimination and conjugate addition17, then sequenced to determine the amino acid 

positions of the phosphorylated residues within each molecule, as demonstrated in (B) for 

CTD repeat peptides phosphorylated at either Serine 2 (top panel) or Serine 5 (bottom 

panel). Histograms in panels A and B each report observations from 49 image fields.
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