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Key Points

•CD37 is highly
expressed across mul-
tiple types of B-cell
lymphoma, represent-
ing a potential target for
CAR-based therapy.

• T cells expressing
CD37CAR are effi-
ciently redirected and
can control B-cell lym-
phoma tumor progres-
sion in xenograft
models.

T cells modified to express chimeric antigen receptor (CAR) targeting CD19 (CD19CAR)

have produced remarkable clinical responses in patients with relapsed/refractory

B-cell acute lymphoblastic leukemia. CD19CAR T-cell therapy has also demonstrated

prominent effects in B-cell non-Hodgkin lymphoma (B-NHL) patients. However, a subset

of patients who relapse after CD19CAR T-cell therapy have outgrowth of CD192 tumor

cells. Hence, development of alternative CARs targeting other B-cell markers represents

an unmet medical need for B-cell acute lymphoblastic leukemia and B-NHL. Here,

we confirmed previous data by showing that, overall, B-NHL has high expression of

CD37. A second-generation CD37CAR was designed, and its efficacy in T cells was

compared with that of CD19CAR. In vitro assessment of cytotoxicity and T-cell function

upon coculture of the CAR T cells with different target B-cell lymphoma cell lines

demonstrated comparable efficacy between the 2 CARs. In an aggressive B-cell

lymphoma xenograft model, CD37CAR T cells were as potent as CD19CAR T cells in

controlling tumor growth. In a second xenograft model, using U2932 lymphoma cells

containing a CD192 subpopulation, CD37CAR T cells efficiently controlled tumor growth

and prolonged survival, whereas CD19CAR T cells had limited effect. We further show

that, unlike CD19CAR, CD37CAR was not sensitive to antigen masking. Finally, CD37CAR

reactivity was restricted to B-lineage cells. Collectively, our results demonstrated that

CD37CAR T cells also can effectively eradicate B-cell lymphoma tumors when CD19

antigen expression is lost and support further clinical testing for patients with

relapsed/refractory B-NHL.

Introduction

The introduction of the anti-CD20 antibody rituximab as a single agent or in combination with
conventional chemotherapy regimens has improved the clinical outcome for patients across multiple
B-cell non-Hodgkin lymphoma (B-NHL) types, including diffuse large B-cell lymphoma (DLBCL),
follicular lymphoma (FL), mantle cell lymphoma (MCL), and chronic lymphocytic leukemia (CLL).
However, patients with primary chemotherapy refractory disease or patients who relapse often have
inferior prognoses.1-3
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Chimeric antigen receptor (CAR) T-cell therapy is emerging as
a new treatment modality for relapsed/refractory patients. CD19-
targeted CAR T cells have demonstrated remarkable response
rates and induced long-term complete remissions in B-cell acute
lymphoblastic leukemia (B-ALL) patients in multiple clinical trials.4-7

Recent studies have also shown efficacy against different types
of B-cell lymphoma, leading to robust clinical responses7-15; however,
despite initial clinical responses, a significant number of patients
experience relapse.16,17 Two main types of relapses have been
reported: the first type is linked to poor expansion and durability of
CAR T cells in vivo, whereas the second type is linked to emergence
of CD192 tumor cells.16 CARs targeting alternative B-cell–
associated antigens are under development (reviewed in Fesnak
et al18). This approach may help to rescue patients with CD192

tumor cell relapses or, in combination with CD19-targeted CAR
(CD19CAR) T cells, may increase response rates.

CD37 is a tetraspanin membrane protein that is highly expressed
on normal B cells but downregulated in plasma cells.19 Hematopoi-
etic stem cells do not express CD37; however, low expression levels
have been reported in T cells, macrophages, monocytes, dendritic
cells, and natural killer (NK) cells.20,21 The biological function of
CD37 has not been fully elucidated, but it might be linked to
survival and apoptotic signals, as well as tumor suppression.22,23

High levels of expression have been shown across all types of
B-NHL.19 Therefore, CD37 is a potential target for immunotherapy
of B-cell malignancies. Several agents against CD37 are under
development in phase 1 and phase 2 trials, including a naked antibody
(BI836826), a homodimeric targeting peptide (otlertuzumab/TRU-
016), antibodies coupled to toxins (IMGN529 and AGS67E), and
a radioimmunoconjugate (177Lu-lilotomab; Betalutin).24,25 Impor-
tantly, the preclinical development of a CAR construct targeted
against CD37 (CD37CAR) was recently reported and shown to
be efficient in B- and T-cell malignancies.26

In this article, we present the development of a CD37CAR designed
from the antibody clone HH1 and its preclinical validation using a
transient expression setting. We first confirmed expression of CD37
in tumor biopsies from patients with different types of B-NHL and
in B-lymphoma cell lines. We designed a second-generation
CD37CAR construct and showed that it was efficiently expressed
in T cells. Importantly, CD37CAR T cells demonstrated efficiency
and specificity against B-cell lymphoma in vitro and in 2 mouse
lymphoma xenograft models. We further studied the recently
reported phenomenon of antigen masking27 and demonstrated that
CD37CAR-expressing tumor cells did not become resistant to
CD37CAR T cells, in contrast to what is observed with CD19CAR.
We finally assessed the safety of our construct and observed a
response restricted to the B-cell lineage. Taken together, our data
confirm the preclinical validation reported by Maus and col-
leagues26 and pave the way for further clinical development of
CD37CAR T-cell therapy in B-cell lymphoma.

Methods

Patient material and cell lines

The study was conducted in accordance with the Declaration of Helsinki
and with approval from the Regional Committees for Medical and
Health Research Ethics. Specimens were collected from 55 B-cell
lymphoma patients before treatment, including FL (n 5 19), DLBCL
(n 5 18), MCL (n 5 10), marginal zone lymphoma (MZL; n = 2),

and CLL (n 5 6) samples. Tonsils from 15 healthy donors were
also collected. The human cell lines BL-41, DAUDI, GRANTA 519,
K422, K562, JEKO-1, Jurkat6, MAVER-1, MINO, RAJI, RAMOS,
ROS-50, SC-1, SU-DHL6, and U2932 were obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen.
The human cell lines SU-DHL4, Oci-Ly3, Oci-Ly7, and Oci-Ly10
were kind gifts from L. M. Staudt (National Cancer Institute, National
Institutes of Health). Phoenix-AMPHO cells were obtained from
American Type Culture Collection. All cell lines were routinely tested
for the presence of mycoplasma (Venor GeM; Minerva Biolabs,
Berlin, Germany). They were maintained in RPMI 1640 medium
supplemented with 10% fetal calf serum (both from PAA Laborato-
ries, Cölbe, Germany) and 0.05 mg/mL gentamycin (Garamycin;
Schering-Plough Europe, Brussels, Belgium).

Immunophenotyping by flow cytometry

Patient specimens were stained with the following antibodies: CD19-
BV510 (HIB19), immunoglobulin (Ig)l–Pacific Blue (MHL-38), CD3
BV785 (OKT3) (all from BioLegend, San Diego, CA), CD20–APC–H7
(L27), CD22-APC (S-HCL-1), and Igk–PerCPCy5.5 (G20-193) (all
from BD Biosciences, San Diego, CA). CD37–Alexa Fluor 488 (HH1)
was produced in-house. The cell lines were stained with CD19-PE
(HIB19), CD20–Pacific Blue, CD22-FITC, and CD37–Alexa Fluor 647
(M-B371) (all from BDBiosciences), anti-CD19 (fmc63; EMDMillipore,
Billerica, MA), and anti-CD37 (HH1; produced in-house); anti-mouse
IgG-APC (BioLegend) was used as a secondary antibody. CD37CAR
expression was detected by anti-mouse Fab antibody (Jackson
ImmunoResearch,West Grove, PA), andCD19CARwas detected by
biotinylated Protein L (GenScript, Piscataway, NJ) and streptavidin-PE
(BD Biosciences). Flow cytometry was performed on a BD
FACSCanto II or a BD LSR II (both from BD Biosciences) and
analyzed with FlowJo software (TreeStar, Ashland, OR) or online
Cytobank software (https://www.cytobank.org).

DNA constructs and retrovirus preparation

Total messenger RNA (mRNA) was isolated from HH1 hybridoma,28

and 59–rapid amplification of complementary DNA ends was
performed to identify the variable fragments of the heavy and light
chains. A single-chain variable (scFv) construct was designed; the
complete method will be published elsewhere (H.K., Elizabeth
Baken, David John Warren, Geir Åge Løset, E.M.I., and S.W.,
manuscript in preparation). The second generation CD37CAR
consists of an scFv designed as follows: leader sequence–light
chain–(G4S)4–heavy chain, followed by a CD8 hinge and trans-
membrane domain (aa 128-210, UniProt P01732) fused to 4-1BB-
CD3z signaling domains (aa 208-255, UniProt P07011 and aa
52-164, UniProt P20963, respectively). A codon-optimized se-
quence was generated and ordered (Eurofins, Hamburg, Germany).
After subcloning into the Gateway system, the insert was subcloned
into an mRNA synthesis vector, pCIpA102. The scFv of CD19CAR
(a humanized version of the fmc63 hybridoma; a kind gift from Martin
Pule, University College London, London, United Kingdom) was
subcloned into our second-generation construct. We also generated
a retroviral construct of the firefly luciferase-GFP (a kind gift from
Rainer Löw, BioNTech IMFS, Idar-Oberstein, Germany)29 in the
retroviral vector pMP71. B-lymphoma cell lines were transduced as
previously described30 and sorted on the basis of GFP expression.
Additionally, luciferase-GFP1 BL-41 cell lines were transduced to
stably express CD19CAR or CD37CAR constructs in the same
format and sorted by anti-mouse Fab.
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Synthetic mRNA preparation

The in vitro transcribed (IVT) mRNA was synthesized using a
RiboMA Large Scale RNA Production T7 System (Promega,
Madison, WI), as previously described.31,32 Anti-Reverse Cap
Analog [39-O-Me-m7G(59)ppp(59)G; TriLink Biotechnologies,
San Diego, CA] was used to cap the mRNA. The IVT mRNAs
were qualitatively and quantitatively analyzed by agarose gel
electrophoresis and NanoDrop (Thermo Fisher Scientific,
Waltham, MA) prior to electroporation.

In vitro expansion and electroporation of human

T cells

Human T cells were isolated from healthy donors under an approved
institutional protocol and expanded with CD3/CD28 beads
(Dynabeads ClinExVivo CD3/CD28; Thermo Fisher Scientific), as
previously described.31,32 For electroporation, T cells were expanded
for 10 days, collected, washed twice, and resuspended in CellGro
DC Medium (CellGenix, Freiburg, Germany) at a final concentration
of 62.53 106 cells per milliliter. Subsequently, the T-cell suspension
was mixed with 100 mg/mL IVT mRNA (CD19CAR or CD37CAR) or
only distilled water (mock) and electroporated in a 4-mm gap cuvette
at 500 V and 2 milliseconds using a BTX 830 Square Wave
Electroporation System (BTX Technologies, Hawthorne, NY).
Immediately after electroporation, T cells were placed in complete
CellGro DC Medium at 37°C in 5% CO2 overnight to allow CAR
expression.

Bioluminescence-based cytotoxicity assay

The killing assay was performed as previously described.32 Briefly,
luciferase-expressing target lymphoma cells were mixed with
75 mg/mL XenoLight D-Luciferin potassium salt (Perkin Elmer,
Waltham, MA) and subsequently seeded in 96-well white plates
in triplicate. Effector CAR T cells were added at the indicated
effector-to-target (E:T) ratios and incubated in a 5% CO2 incubator
at 37°C for the indicated time points. Bioluminescence (BLI) was
measured with a luminometer (VICTORMultilabel Plate Reader; Perkin
Elmer) as relative light units (RLU). Triplicate wells were averaged, and
lysis percentage was calculated using the following equation: percent-
age specific killing 5 100 3 (spontaneous cell death RLU 2 sample
RLU)/(spontaneous death RLU 2 maximal killing RLU).

Degranulation and cytokine analysis

Effector CAR T cells and target lymphoma cells were plated in
duplicates at an E:T ratio of 1:2 in complete RPMI medium in a
96-well plate. Then, PerCP-Cy5.5–labeled anti-CD107a antibody
(BioLegend), GolgiStop (BD Biosciences), and GolgiPlug (BD
Biosciences) were added, and the plates were incubated in a
5% CO2 incubator at 37°C for 6 hours. After incubation, cells
were stained extracellularly with anti-CD3–BV421 antibody (BioL-
egend) and intracellularly with anti-interferon-g–FITC and anti-tumor
necrosis factor–PE/Cy7 antibodies (all from BD Biosciences),
as described previously,32 and flow cytometry was performed. For
cross-reactivity analysis, CAR T cells were plated in duplicates
with autologous CD191 B cells, CD31 T cells, CD561 NK cells,
and CD141 monocytes from 3 healthy donor peripheral blood
mononuclear cells (PBMCs) and sorted with positive isolation
kits (Dynabeads; Thermo Fisher Scientific) at E:T ratios of 1:2;
subsequently, CD107a expression by effector CAR T cells was
analyzed as mentioned above.

Mouse xenograft studies

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were bred in-house
and maintained in pathogen-free conditions under an approved
institutional animal care protocol. Six- to 10-week-old NSG mice
were injected subcutaneously with 106 luciferase-expressing BL-41
or U2932 cells to establish flank tumors. After 4 or 12 days, 107

CAR T cells were injected intratumorally every 3 days for 2 weeks.
Tumor growth was monitored by caliper.

Colony-forming cell assay

Bone marrow progenitor cells were incubated with the T cells for
14 days at 37°C, 5% CO2, and .95% humidity. Individual clusters
of cells (colonies) were easily identified using a high-quality
microscope. A 60-mm scoring grid was in the bottom of each dish,
and all colonies were counted and divided into 3 groups: (1)
colony-forming unit (CFU) erythroid with erythroblasts and/or
burst-forming erythroid units, (2) CFU with granulocytes, macro-
phages, or cells of both lineages, and (3) CFU with erythroid-
granulocyte-macrophage-megakaryocyte with erythroblasts and
cells of at least 1 other lineage. Cell clusters were not counted
as colonies unless .40 cells were visible.

Statistical analysis

Comparisons between 2 groups were assessed by the Student
t test with Bonferroni correction or the Mann-Whitney U test. Survival
studies were assessed by Kaplan-Meier curves and the log-rank
(Mantel-Cox) test. Data were analyzed with Prism 6 software
(GraphPad Software, La Jolla, CA). P , .05 was considered
statistically significant.

Results

CD37 is widely expressed across multiple types of

B-cell lymphoma

To identify relevant targets for CAR T-cell therapy, surface expression
of the B-cell markers CD19, CD20, CD22, and CD37 was studied
by flow cytometry analysis of viable tumor cell suspensions from
FL, DLBCL, MCL, MZL, and CLL patients. B cells were identified as
CD32CD201 cells, and malignant B cells were further identified
based on Ig light chain restriction (supplemental Figure 1). B-NHL
tumor cells displayed reduced expression levels of several B-cell
markers, including CD19 (FL, DLBCL), CD20 (FL, CLL/MZL), and
CD22 (FL, DLBCL, MCL), compared with healthy donor tonsillar
B cells (Figure 1A). Interestingly, the expression level of CD37 across
all types of B-NHL was high and comparable to healthy donor B cells
(Figure 1A). For most of the antigens analyzed, variable expression
levels were observed within non-Hodgkin lymphoma (NHL) subtypes
(Figure 1A). Furthermore, tumor cell expression of CD19 and CD37
varied within individual patient samples in some cases and displayed
different patterns (ie, high levels of both antigens, high levels
of CD37 but low levels of CD19 or vice versa) (Figure 1B-C).
Analyzing the percentage of positive tumor cells revealed that 9 of
41 cases had CD19 expression,95%, whereas only 4 cases had
CD37 expression ,95% (Figure 1D). We also observed variation
in the expression levels of the same markers in B-cell lymphoma
cell lines (supplemental Figure 2), but an overall presence of
CD37. Taken together, because of its overall high expression
across different types of B-NHL, the CD37 antigen is an attractive
CAR target.
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CD37CAR T cells demonstrate potent in vitro activity

against B-cell lymphoma cell lines

We isolated the coding sequence of the anti-CD37 antibody produced
by the HH1 hybridoma.28 An scFv construct was synthesized and
fused to the CD8 hinge and transmembrane domains, the 4-1BB
costimulatory domain, and the CD3z subunit (see “Methods”). A
CD19CAR containing humanized scFv from fmc63 hybridoma and an
identical scaffold were prepared for comparison (Figure 2A). Electro-
poration of human peripheral blood T cells with mRNAs encoding
these constructs resulted in high levels of CAR expression (.95% for
both CARs; Figure 2B). We then evaluated their activity against
several B-cell lymphoma cell lines expressing different levels of CD19
and CD37 surface proteins. CD19CAR and CD37CAR T cells
generally demonstrated potent killing efficacy toward these cells
(Figure 3). As expected, CD37CAR T cells outperformed CD19CAR
T cells against the lymphoma cell line U2932 (Figure 3), which
contained a subset of cells with loss of CD19 expression (supplemen-
tal Figure 2B). We also tested the selectivity of these constructs
against CD192/CD372 cell lines (K562 and J76) and did not
observe any distinguishable differences in terms of functional
activities. Importantly, as the result of variations in the luciferase levels
for each target cell line and the variable donor T-cell alloreactivity
(data not shown), the killing efficacy was validated only upon
comparison between mock electroporated T cells and CAR T cells

from the same donor. From these data, we concluded that CD37CAR
T cells efficiently killed CD371 B-cell lines with similar or higher
efficiency than CD19CAR T cells, depending on the target cells’
expression levels of CD37 and CD19. CD37CAR was also potent
against CD192 targets, suggesting that the loss of CD19 was not
affecting CD37 presence, hence CD37CAR target recognition.

CD37CAR T cells efficiently kill the CD192 subset of

U2932 cells

To further study CD37CAR T cells’ ability to kill B-cell lymphoma
cells with reduced or missing CD19 expression, we used the
CD191/CD192 heterogeneous cell line U2932, which is homo-
genously CD371 (Figure 4A; supplemental Figure 2B). As
controls, we included the BL-41 cell line (CD191/CD371) and
the T-cell line Jurkat (CD192/CD372). CD37CAR T cells out-
performed CD19CAR T cells in terms of killing capacity against
BL-41 and U2932 cell lines (Figure 4B) but displayed a similar
degranulation pattern (Figure 4D). In contrast, CD19CAR T cells
produced more interferon-g and tumor necrosis factor-a than
CD37CAR T cells when the CAR T cells were activated by BL-41
or U2932 cells (Figure 4C). To investigate selectivity in CAR T-cell
killing, the CAR T cells were cocultured with GFP-transduced U2932
cells for 5 hours only, to allow some target cells to be detectable. This
approach revealed that CD19CAR T cells restricted their killing to
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Figure 1. Surface expression of CD19, CD20, CD22, and CD37 in multiple subtypes of B-NHL. Flow cytometry was used to analyze single-cell suspensions from FL,

DLBCL, MCL, CLL, and MZL, as well as tonsils from healthy donors. Tumor cells were identified by gating on CD32CD201 B cells, followed by gating on tumor-restricted Ig

light chain (Ig light chain–negative B cells in some cases). (A) Expression of CD37, CD19, CD20, and CD22 in tumor cells from NHL patients and in B cells from healthy

donor tonsils. Relative protein expression was calculated through Cytobank using arcsinh transformation of median fluorescence intensity (MFI) of the cell population of interest

as follows: fold change 5 arcsinh (MFI of protein in B cells/scale argument) 2 arcsinh (MFI of protein in T cells/scale argument). FL: n 5 5 or n 5 18 (CD19 and CD20),

DLBCL: n 5 18, MCL: n 5 10, CLL/MZL: n 5 8, tonsils: n 5 8 or n 5 15 (CD19 and CD20). (B) Association of CD37 and CD19 tumor cell expression levels in B-NHL.

(C) Examples of CD19 and CD37 expression in tumor cells from 3 DLBCL patients. (D) Percent expression of CD19 and CD37 in individual samples from NHL patients.

*P , .05, **P , .01, ****P , .0001, Mann-Whitney U nonparametric test.
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CD191 cells, whereas CD37CAR T cells reacted against CD191 and
CD192 cells (Figure 4E). These results further support the potential
role of CD37CAR T cells in B-NHL, especially in patients whose tumor
cells contain no or low numbers of CD19 molecules.

CD37CAR T cells mediate regression of established

B-cell lymphoma tumors

To confirm our in vitro data and validate the efficacy of CD37CAR
T cells in a clinical setting, we established 2 murine xenograft models
with BL-41 and U2932 lymphoma cells. We prepared the T cells as
for a first-in-man trial in which the transient redirection method would
be favored. Hence, a large batch of T cells was electroporated and
stocked for multiple injections. We inoculated the cancer cells sub-
cutaneously to distinguish a clear tumor burden. Mice were randomized
and injected with the indicated CAR T cells or mock T cells.

When BL-41 tumors were treated, mock T cells failed to control
the tumor growth, and the mice rapidly succumbed to cancer
(Figure 5A-B, green group). In contrast, treatment with CD19CAR
or CD37CAR T cells significantly reduced tumor growth of BL-41
tumors and tended to prolong survival (Figure 5A-B, red and blue
groups, respectively). Upon analysis of the T-cell population that
infiltrated the tumor tissues after 27 days of treatment, we observed
more T cells in mice treated with CAR T cells than with mock
T cells (Figure 5C). Because of the transient expression of CARs,

tracking of CAR T cells was not possible at this time point. Further
analysis did not reveal any differences in terms of expression of
PD-1 exhaustion marker (Figure 5D). These data demonstrate that
transient CD37CAR expression and multiple intratumoral injec-
tions were sufficient to slow the growth of an aggressive tumor as
efficiently as CD19CAR-redirected T cells.

We then studied the in vivo efficacy of CD37CAR T cells in NSG
mice engrafted with U2932 tumors that contained a CD192

population. As expected, U2932 tumors progressively grew in the
mice treated with mock T cells and killed them (Figure 5E-F, green
group). CD19CAR T cells performed better than the mock cells but
were not able to completely control tumor growth (Figure 5E-F, red
group). In contrast, CD37CAR T cells drastically reduced tumor
progression and significantly prolonged survival (Figure 5E-F, blue
group). In summary, these findings demonstrate the antitumor
efficacy of CD37CAR T-cell therapy in vivo and suggest that
CD37CAR therapy could be an alternative to CD19CAR therapy
in CD371, but CD192 or CD19low, expressing B-NHL.

CD37CAR-expressing B cells do not prevent CD37CAR

T-cell functionality

As recently reported by Ruella and colleagues,27 accidental CD19CAR
expression in patient B cells led to CD192 relapse through masking
of CD19 epitopes upon cis interaction with CD19CAR. We tested
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whether CD37CAR was also masking the target epitope when
expressed in target cells. We first generated BL-41 cell lines stably
expressing each CAR construct and showed that CD19CAR
completely blocked CD19 surface detection without affecting
CD37 signal (Figure 6A). Interestingly, CD37CAR expression in
BL-41 cells did not mask CD37 or CD19 expression (Figure 6A).
Importantly, these results were observed when using antibodies
with the same origin as the ones used for the CAR designs or
different antibody clones. We further analyzed the killing activity
of CAR T cells against CAR-expressing tumor cells (Figure 6B).

CD37CAR T cells mediated specific lysis, independent of whether
the target cells expressed CD37CAR. This contrasted with CD19CAR
T cells, whose cytotoxicity was significantly impaired by CD19CAR
expression in tumor cells, again confirming the previous report.27

Moreover, when transposed to a system based on complete
transient expression of the CAR (in target and effector cells), we
observed similar results in terms of expression (supplemental
Figure 3A-E), cytokine production (supplemental Figure 3F-G),
and killing capacity (supplemental Figure 3H). These results reveal
a clear safety advantage in the manufacturing of CD37CAR
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T cells. Further investigation will be necessary to understand the
mechanism behind this effect.

CD37CAR T cells are B-cell lineage specific

To complete our preclinical study, we also assessed the safety of
CD37CAR. CD37 antigen was previously claimed to be expressed

at low levels in other hematopoietic cells,21 a result that we could
not confirm (data not shown). Therefore, we investigated the safety
of CD37CAR T cells by testing their reactivity against autologous
B cells, T cells, NK cells, and monocytes from 3 donors using the
degranulation marker CD107a. We observed that CD37CAR
T cells efficiently recognized B cells compared with mock T cells
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in all 3 donors, whereas no other cell types seemed to significantly
increase stimulation (Figure 7A). CD107a was sometimes de-
tected upon coincubation with T cells (donor 1, donor 2) or NK
cells (donor 3) in all conditions (mock, CD19CAR, or CD37CAR),
suggesting that these signals were unspecific. Small differences
were also observed in monocytes (donor 1), but this was not

above the background activity detected in the absence of target
(Figure 7A). Next, we investigated the effect of CD19CAR and
CD37CAR T cells on the colony-forming ability of bone marrow
progenitor cells. Importantly, myeloid and erythroid colony
formation in bone marrow samples was not affected following a
coculture with CAR T cells at an E:T ratio of 5:1 (Figure 7B).
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These data show that CD37CAR T cells had no detectable off-
target toxicity toward other hematopoietic lineages and suggest
that killing guided by CD37CAR, as by CD19CAR, will be
restricted to the B-cell lineage. Using the same donor CAR T cells,
we performed Bio-Plex cytokine analysis of mock or CAR T cells
after coculture with BL-41 or U2932 cells (Figure 7C-D;
supplemental Figure 4). Overall, CD19CAR T cells exhibited
higher cytokine secretion than CD37CAR T cells when cultured
with target cells. Whether the lower cytokine secretion observed

with CD37CAR T cells can also translate into reduced severity of
side effects needs to be demonstrated in a clinical setting.

Discussion

CD19CAR T-cell therapy has shown unprecedented efficacy in
several clinical trials in chemoresistant B-ALL and B-cell lymphoma.33,34

These results led to US Food and Drug Administration approval, in
2017, of 2 CD19CAR products for the treatment of relapsed/refractory
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B-ALL and aggressive B-cell lymphoma.35,36 However, despite the
fact that the majority of these patients initially responded to the
therapy, a significant subset of them exhibited relapses character-
ized by the apparent loss of CD19 antigen expression.16,37 This may
be an important tumor-escape mechanism, rendering the malignant
B cells refractory to CD19-directed CAR T cells. The number of
relapsed patients in B-cell lymphoma might also increase, because the
follow-up times are still short. Thus, strategies designed to circumvent
this escape mechanism would potentially improve patient outcomes.

A logical approach would be to target other surface markers
expressed on malignant B cells, including CD20, CD22, CD123,
or Ig-tumor restricted light chain (Igk or Igl). Clinical trials
are underway with CD20- and CD22-targeted CAR T cells.38

Interestingly, CD22-targeted CAR T cells have shown clinical
efficacy in B-ALL patients who developed resistance to anti-
CD19 immunotherapy.39 The majority of these patients experi-
enced relapse associated with reduced expression of CD22 on
escaping clones. A recent study has shown that CAR T cells with
dual targeting of CD19 and CD123 are able to induce regression
of CD192 blasts in a preclinical model of B-ALL.40 Another
emerging resistance mechanism, which has been reported in
B-cell lymphoma, is upregulation of PD-L1 on tumor-associated
macrophages and tumor cells after CD19CAR T cell therapy.10

Thus, combining CAR T-cell therapy with immune checkpoint
blockade against the PD-1/PD-L1 axis could improve efficacy
and overcome resistance following engineered T-cell therapy for
B-cell lymphoma patients.

CD37 recently regained attention as a promising target in B-cell
lymphoma but typically not for B-ALL or multiple myeloma, because
the antigen is absent in early stages of B-cell differentiation and
is also reduced in plasma cells.20,21 Here, we have shown that
CD37 is highly expressed across FL, DLBCL, MCL, MZL, and
CLL, which constitute the majority of B-NHLs. This is in contrast
to a previous study reporting loss of CD37 expression in 60% of
DLBCL patients, which was predictive of decreased survival.41

The study assessed a much larger number of patients than we
did; however, all DLBCL samples tested were positive. The
discrepancy could be due to a difference in epitope recognition
or the dissimilar detection methods. The uniform and high
expression would imply that CD37 could become an important
target for immunotherapy in B-cell lymphoma. Screening of tumor
specimens from B-cell lymphoma patients also revealed that
some lymphoma cells were relatively high in CD37 expression
and low in CD19 expression or vice versa. Given our observation
that efficacy of CAR T cell therapy correlated with target
antigen expression, this type of screening may become crucial
to identify the patient groups that are likely to benefit from a
targeted therapy.

To study the role of CD37CAR T cells in a model resembling
relapse due to CD19 loss, we used the U2932 cell line, which
consisted of 2 populations (CD192 and CD191). Both subsets
showed a uniform high expression of CD37. By using this cell line,

we were able to show that CD37CAR T cells effectively killed
U2932 cells and significantly prolonged survival in mice with
established tumors, irrespective of CD19 expression. CD191

U2932 cells harbor BCL2 amplification and BCL6 translocation,
whereas CD192 cells harbor BCL2 amplification and MYC
translocation.42 The latter subset may represent a good model
for double-hit lymphoma, which is known to have an inferior
outcome with standard therapies.43-45 Hence, our demonstration
that CD37CAR T cells efficiently eradicated U2932 tumors is
promising and should prompt further investigation of the usefulness
of this novel concept in the treatment of hard-to-treat lymphomas.

Weak expression of CD37 by T cells, monocytes, macrophages,
dendritic cells, and NK cells has been reported,21 but we could not
confirm these data using different anti-CD37 antibodies (data not
shown). One can speculate that some cells might express it in
a cyclic way or under conditions that we did not test in our set-
up. Our safety assessment against autologous PBMCs does
not exclude CD37 expression in non-B cells, but the lack of
CD37CAR T-cell reactivity suggests reactivity specifically toward
B-lineage cells. In addition, CD37CAR T cells had no effect on
CFU formation from bone marrow progenitors. We also observed
some background activity with CD19CAR and CD37CAR, which
we attribute to enhanced tonic signaling reminiscent of the
overexpression of the CAR. Indeed, the presence of signaling
domains, such as CD3z and CD28 or 4-1BB, have been shown
by other investigators to influence T-cell biology, even in the
absence of antigen stimulation.46,47 Although our data do not
indicate cross-reactivity with other immune cells, unwanted off-
target toxicity cannot be excluded before testing CD37CAR T cells
in patients. Importantly, anti-CD37 antibody therapy, using the same
antibody clone from which our CD37CAR construct is derived,
conjugated with the isotope 177Lu, is currently under investigation in
clinical phase 1/2 trials and was demonstrated to be safe and well
tolerated.48 Furthermore, treatment with the anti-CD37 monoclonal
antibody otlertuzumab, in combination with bendamustine, was well
tolerated in refractory CLL patients.49 Still, to improve safety for
first-in-man clinical studies, transient CD37CAR expression (mRNA
electroporation) could be a valid option to evaluate potential off-
tumor on-target toxicities in a more controlled manner.50,51

In summary, we describe a novel strategy for the treatment of B-cell
lymphoma by targeting CD37 via CAR T cells. Another group has
recently presented a CD37CAR construct and reached the same
conclusions.26 Interestingly, they also demonstrated a potential
usefulness for CD37CAR in the treatment of CD371 T-cell
lymphoma.26 CD37CAR T cells can eradicate B-cell lymphoma
tumors, including those resistant to CD19-directed CAR T cells due
to loss of CD19 antigen expression. Our present data are in line
with their work, which supports the testing of CD37CAR in a clinical
setting. Finally, in contrast to antigen masking, as observed for
CD19CAR and CD22CAR,27 CD37CAR coexpression with CD37
did not affect CD37 detection. Thus, our data warrant clinical
development of CD37CAR T cells in patients with recurrent and
refractory B-NHL.

Figure 7. (continued) Data represent mean 6 standard deviation of hexaplicates. Representative data from 1 of 3 experiments are shown, P . .5 for all data. Cytokine

and chemokine secretion was measured by Bio-Plex assay of supernatants from T cells from 3 healthy donors, transfected with CD19CAR or CD37CAR and

activated by coculture with BL-41 cells (C) or U2932 cells (D) for 24 hours at an E:T ratio of 1:2. Data represent mean 6 standard deviation of triplicates. Data from

1 of 2 experiments are shown.
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