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Deep sequencing genomic analysis is becoming increasingly common in clinical research and practice, enabling
accurate identification of diagnostic, prognostic, and predictive determinants. Variant calling, distinguishing
between truemutations and experimental errors, is a central task of genomic analysis and often requires sophis-
ticated statistical, computational, and/or heuristic techniques. Although variant callers seek to overcome noise
inherent in biological experiments, variant calling can be significantly affected by outside factors including
those used to prepare, store, and analyze samples. The goal of this review is to discuss known experimental fea-
tures, such as sample preparation, library preparation, and sequencing, alongside diverse biological and clinical
variables, and evaluate their effect on variant caller selection and optimization.
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1. Introduction

Genomic sequencing is a multi-step process that converts clinical
samples to actionable mutational knowledge. In a typical clinical geno-
mics workflow, clinical investigators identify patients for whom geno-
mic sequencing is appropriate, clinical and experimental staff are
responsible for sample collection and storage, a sequencing group
prepares the sample for sequencing and then runs it through a
high-throughput sequencer, and the raw outputs of the sequencing
are then given to computing specialistswho are responsible for process-
ing the data, which is then returned to the clinical investigators and ex-
perimentalists for interpretation and clinical decision-making. The
accuracy of computational data analysis and its final interpretation can
be significantly influenced by biological, clinical, and laboratory con-
founders, such as a sample preparation, storage, or the sequencing tech-
nology used [1–5]. Here, we will discuss common experimental and
biological challenges faced in clinical genomic sequencing and how
they affect a choice of computing tools used for their analysis.

Clinical genomic studies are generally focused on the identification
of genetic variants from DNA sequencing data, where variants are
defined as single nucleotide variants (SNVs), small insertions and dele-
tions (indels), and structural variants (SVs). The primary computational
challenge in DNA sequencing data analysis is identifying and differenti-
ating “true variants” from “noise” for a given sample, a task referred to
as variant calling. Variant callers are vastly diverse in terms of their
core mathematical algorithms and acceptable inputs (Fig. 1), and we
refer our readers to Xu [6] for his careful mathematical overview.

The oldest group of variant callers used in clinical genomics includes
those specifically designed for germline variant identification
(i.e., hereditary variants naturally occurring in the human population),
including HaplotypeCaller from the Genome Analysis Tool Kit (GATK)
[7], MAQ [8], and SAMtools mpileup [9], which are still maintained
and have shown reliable performance. The newer group of variant cal-
lers is primarily designed for somatic variant calling (i.e., detecting
non-hereditary mutations in somatic cells, especially as they relate to
carcinogenesis) that either use paired tumor-normal samples to distin-
guish between germline polymorphisms, somatic variants, and se-
quencing errors (examples include MuTect2 [10], VarDict [11], and
VarScan2 [12]) or somatic callers that allow for unpaired sample use,
important in the case of archival samples where matched normal sam-
ples are not available, an example of which is LoFreqStar [13–15]. More
recently, sequencing methods have begun to include unique molecular
identifiers (UMIs) or barcodes and require specialized callers such as
DeepSNVMiner [16] and smCounter2 [17,18], with enhanced perfor-
mance at low variant allele frequencies (VAFs, the percentage of reads
containing a variant in a given sample) [17–20].

Due to the diversity of variant callers and their outputs, some groups
have generated holistic surveys of the variant caller landscape using
simulated data sets [5] or standardized variant profiles, such as those
generated by theGenome In A Bottle consortium [21–23]. Significant ef-
fort has also been devoted to a variety of crowdsourced competition-
based benchmarking efforts [24,25]. Recently, there has been an effort
to develop standardized benchmarking measures for variant calling,
but these projects are still in their early phases [26]. The results of
these efforts have been positive, but practical guides for how to translate
them into clinical decision-making have yet to be developed.

As genomic analysis becomesmore common in clinical practice, it is
critical for the scientific community to understand not only how to ac-
curately model mutations and experimental error but also how to
choose an appropriate variant caller and how various aspects of clinical
and laboratory workflow can affect the performance of the algorithms
they use [27]. The goal of this review is to discuss known experimental
features, such as sample preparation, library preparation, and sequenc-
ing alongside diverse biological and clinical features and evaluate their
effect on variant caller selection and optimization.
2. Experimental Features: From Sample Preparation to Sequencing

The performance of variant callers can be affected by experimental
confounders, such as sample preparation, library preparation, and se-
quencing technology (see Graphical Abstract), with several variant cal-
lers explicitly designed to address one or more of these experimental
confounders.

2.1. Sample Acquisition and Storage

Sample acquisition, preparation, and storage protocols can play a
major role in variant calling performance. In modern clinical genomics
studies, pairing optimal sample preparation protocols with appropriate
variant callers is critical to accurate variant identification.

2.1.1. Sampling and Contamination
For traditional clinical assays, such as cell counts or microscopic pa-

thology, a small amount of cellular contamination associated with sam-
ple acquisition (e.g., epithelial cells from a needle puncture) has a
negligible effect. Conversely, the presence of surrounding tissues in a
genomic sample can affect the statistical error estimations used to quan-
tify VAF and can adversely affect lower-bound variant detection limits
(see Fig. 2 for a visual representation of the consequences of this effect)
[2]. For example, healthy germline tissue could dilute the genetic mate-
rial of cancer clones, thus artificially reducing the VAF of any somatic
mutations. Significant germline contamination and low VAF may lead
to false negative calls, or most often a failure to call true variants due
to a reduction of VAF below cutoff values. Such contamination can be
addressed by including paired germline samples [28,29], which allow
variant callers such as JointSNVMix [30], Strelka [31,32], MuTect2 [10]
or SNVSniffer [33] to account for both background error rates and
germline variants, with the latter eliminated from somatic variant
calls [2].

For more accurate estimation of background error rates, pooled un-
paired normal samples can be coupled with paired germline samples
and utilized in EBCall [34]. However, care must be taken to ensure any
normal sample data are generated using the same sequencingworkflow
as that of the experimental samples because variations in library prepa-
ration method and sequencing platform can significantly alter back-
ground error rates (see Sections 2.2 and 2.3).

In cases when no paired germline samples are available, LoFreqStar
[13] provides reliable outputs for tumor-only samples [2], yet still infe-
rior accuracy when compared to the average performance when paired
germline samples are used [2]. Furthermore, LumosVar [35] provides a
creative solution to overcome the absence of germline paired samples
by integrating multiple data sources, including known germline SNPs
from the dbSNP database [36], pooled unpaired normal samples
(when available), and an innovative expectation maximization ap-
proach formore accurate allelic copy number and clonal sample fraction
estimation [35].

2.1.2. Preservation and Storage
Almost all clinical samples, whether fresh or from long-term storage,

include preservative or stabilizer. The most common preservation
method of archival tissue samples is formalin fixation and paraffin em-
bedding (FFPE) [37,38]. FFPE samples are readily available and easy to
store, but formalin fixation can have profound effects on variant calling
because it introduces artificial base alterations and DNA fragmentation
[4]. Similarly, the storage duration of an archival sample can negatively
affect DNA extraction yield [39]. These alterations can affect genome
alignment and increase estimated background error rates, making it
more difficult to accurately detect rare variants [4]. Because of these
aligner effects, it is important to select a variant caller that performs
local realignments and/or performs well with large amounts of clipped
reads (i.e., reads that have had some part of their sequence ignored or
deleted during alignment), with VarDict [11] accomplishing both of



Fig. 1. Comparison of common variant caller features in selected variant callers. A comparative analysis of variant callers with variant type identified, sequencing type, and major
capabilities listed. Color codes: blue, feature present; orange, feature absent; yellow, possible with parameter tuning; white, insufficient data [111–126,128,130].
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these goalswith a novel approach to address reads clipped during align-
ment (Fig. 1) as well as Platypus [40] and DeepSNVMiner [16,40].
2.2. Library Preparation

Before a sample can be sequenced, it must be processed to convert
whole genomic DNA molecules into a collection of DNA fragments
that are appropriate for accurate genomic sequencing and analysis.
This process is referred to as library preparation. Library preparation
workflows can vary depending on experimental goals, and some of
the most important steps that might affect variant caller performance
include DNA amplification, isolation of specific genomic regions of
interest (e.g., in the case of exome or targeted sequencing), and ligation
of index sequences and/or UMIs (Fig. 3) [41].

2.2.1. DNA Amplification
Amplification of DNA fragments during library preparation (i.e., DNA

amplification) is the largest contributor to background error in many li-
brary preparation protocols [42]. Because most modern amplification
strategies are based on polymerase chain reactions (PCR), they are sub-
ject to all of the biases of PCR, but these biases become exponentially
more influential for low variant frequencies or relatively low-coverage
regions of interest [43]. Common features of PCR-induced bias include
overrepresentation of repetitive sequences and under-representation
of high-GC regions [42], in addition to mutations that can be introduced



Fig. 2. Effect of variant caller sensitivity and VAF on variant detection. Simulated traces of wild-type and variant frequencies in a genomic region. (A) Simulated germline sample showing
most variant frequencies clustered around0, 0.5, and 1. This allows variant calling algorithms to exclude VAFs outsideof narrow ranges as experimental error. (B) Simulated cancer somatic
sample showing wider ranges of variant frequencies, including very low frequencies. Optimal variant caller tuning can increase the sensitivity of variant callers to detect rare variants.
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by polymerase errors (Fig. 3) [43,44]. It is not currently fully understood
how amplification-related biases affect the output of variant callers.
However, UMI-aware variant callers, such as DeepSNVMiner [16],
MAGERI [45], and smCounter2 [17,18] can use UMI sequences known
beforehand tomore accuratelymodel sources of error in sequencing ex-
periments, especially those generated by PCR amplification (see
Section 2.2.3 for more details on UMI-based sequencing).

2.2.2. Isolation of Regions of Interest
Library preparation protocols can vary substantially depending on

the sequencing modalities, which are utilized to enrich for specific re-
gions of interest (i.e., exons, targeted genes, etc.). These sequencingmo-
dalities include whole genome sequencing (WGS, sequencing of both
exons and introns of the genome), whole exome sequencing (WES, se-
quencing of exons of the genome) and targeted sequencing panels (se-
quencing of smaller numbers of genes of interest). For example, inWGS,
library preparation includes DNA isolation and fragmentation (usually
through sonication), with subsequent ligation and possible amplifica-
tion. Library preparation for WES and targeted sequencing, when com-
pared to WGS, often includes several extra steps related to capturing
their specific fragments of interest. In particular, in WES, biotinylated
probes hybridize to (or “capture”) DNA fragments associated with
known exons, which are then isolated using streptavidin beads [46],
while in targeted sequencing specific primers linked to sequencing
tags enrich for the genes of interest, and this enrichment is an essential
step of the protocol [47]. More detailed descriptions of these and other
sequencingmodalities can be found in the Illumina SequencingMethod
Explorer [48].

The nature of different sequencing modalities and their subsequent
library preparation result in variable capture efficiency,which can be es-
pecially problematic at borders between sequenced and sequenced re-
gions [49] and in the presence of repetitive sequences and other
regions that are traditionally difficult to align and call [50]. Furthermore,
these result in substantial differences at a later sequencing step, such as
different amounts of coverage (i.e., the percentage of the genome that
has sequencing reads that align to it), sequencing depth (i.e., the mean
number of reads that align to any given point in the genomic region of
interest), and sequencing uniformity (i.e., the consistency of sequencing
depth across the region of interest). By definition, WGS has higher cov-
erage than WES or targeted sequencing, which have generally had
higher depth at a cost of lower uniformity [51].

Thus it is important to select variant callers that have been
benchmarked for use with specific sequencing modalities [51]. For ex-
ample, variant callers such as MuTect2 [10] and Strelka2 [32] show
better performance in sequencing modalities with higher depth and
lower coverage, such asWES. In modalities that may have lower unifor-
mity, such as targeted sequencing, it is important to select variant callers
that perform local realignment, including LoFreqStar [13] and VarDict
[11] (also see Fig. 1 and Table 1).
2.2.3. Sequencing Identifiers
Nearly all modern library preparation approaches involve adding an

identifier sequence (also known as “index sequences”) to the inputDNA
fragments, which is typically a unique 8 base pair-long sequence added
to the 3′ end of the fragment. In most cases, the primary motivation for
this molecular indexing is to identify/mark individual samples in a
multiplexed sequencing run (i.e., a sequencing run containing multiple
samples). However, the use of these index sequences can also result in
errors known as index swaps, which occur during sequencing and li-
brary preparation [52]. Index swaps represent events in which a sample
identifier sequence in a multiplexed sequencing run is swapped to that
of another sample in the sample pool, effectively registering a DNA frag-
ment as originating from the wrong sample. This swapping is believed
to occur when a piece of DNA containing an index sequence, whether
free in solution or attached to a fragment in its native sample, errone-
ously anneals to a fragment from a nearby sample during amplification
[52].

Index swapping usually occurs at a low rate, yet there are situations
that can lead to much higher rates of index swapping having a signifi-
cant effect on variant calling [52]. For example, sequencers that use pat-
ternedflow cellswith Exclusion Amplification (ExAmp) chemistry, such
as Illumina HiSeqX, HiSeq4000, and NovaSeq platforms [52,53] can lead
to more common index swaps, attributed to the excess of sequencing
primers in the presence of specific ExAmp reagent mixes [53]. Exome
sequencing per se is also associatedwith higher rates of index swapping
due to PCR amplification during the exome capture process, when frag-
ments from multiple samples in close spatial proximity may be bound
by the same bead [52]. Such index swapping events occur in 3% of
reads on average, yet can rise to up to 6% [52], which is sufficient to
alter measured VAFs for affected samples in ways that may lead to
both false positive and false negative calls.

Currently, the most reliable approaches to address index swapping
are implemented at the library preparation phase of a sequencing ex-
periment and include modifications to the sequencing chemistry to
generate dual-indexed libraries, which for example is available in kit
form from Illumina [53]. Computationally, the index swapping chal-
lenge has currently been extensively addressed for single-cell RNA



Fig. 3. Detailed molecular steps involved in a typical library preparation protocol. Factors affecting variant caller performance at each stage of the library preparation workflow (whole
genome sequencing is used as an example).
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sequencing applications [54,55], with high potential to be extended to
other sequencing modalities in the future.

In addition to sample membership, sequencing identifiers have re-
cently been successfully utilized in targeted sequencing for rare variants
[56] and in such cases have been referred to as molecular barcodes or
unique molecular identifiers (UMIs). UMIs are often longer than typical
sequencing identifiers ranging from a minimum of 8 bases to over 28
bases, allowing variant callers to better distinguish between rare vari-
ants and errors resulting from library preparation or sequencing
[57,58]. Fully utilizing data generated using UMI-based techniques usu-
ally requires specialized variant callers such as DeepSNVMiner [16],
MAGERI [45], or smCounter2 [17,18]. Unfortunately, large amounts of
genomic data lack these UMIs, althoughUMI-based sequencingmay be-
come standard practice in the future.

2.3. Sequencing Methods

Different sequencing methods have very different chemical and sig-
nal acquisition approaches, including slide-based and bead-based se-
quencing by synthesis, single molecule real-time (SMRT) sequencing,
and nanopore sequencing, which can lead to fundamental differences
in their sequence outputs [59]. Most commercial sequencing methods
are characterized by high robustness with low error rates yet can result
in systemic biases such as those introduced by amplification, similar to
the effects of amplification during library preparation [60]. In fact, an
early polymerase error during library preparation would result in a ho-
mogeneous distribution of aberrant sequences potentially mixed with
non-aberrant, but an early polymerase error during slide-based se-
quencing by synthesis will result in a single spatially localized read.
Many sequencing services and equipment providers continuously up-
date their methods and kits to minimize known sources of error, but
in some cases, these updates can involve new sequencing chemistry
or detection methods that necessitate specialized variant calling tools
or optimizations [6,57,58]. For example, Illumina now offers dual-
indexed sequencing kits [53] to address the index swapping issue
discussed in Section 2.2.3. Use of these kits improves variant calling
confidence for rare variants by decreasing false negative results [52].
Molecular barcoding and its associated variant callers are another well
recognized example of this type of specialization (Section 2.2.3)
[16,17,20,45].



Table 1
Variant callers and laboratory protocols to address selected sequencing scenarios.

Features Laboratory
intervention

Recommended variant callers

Germline
contamination

Germline control JointSNVMix [30], Strelka2 [32], MuTect2
[10], SNVSniffer [33]

Highly admixed
sample

Germline sample
+ normal controls

VarDict [11], Platypus [40], EBCall [34]

Archival FFPE
sample

VarDict [11], Platypus [40],
DeepSNVMiner [16]

Cell-free DNA iDES [20], SiNVICT [82]
Unique molecular
identifiers
(UMIs)

DeepSNVMiner [16], iDES [20], MAGERI
[45], smCounter2 [17,18]

Exome
sequencing

Dual-indexed
sequencing

MuTect2 [10], Strelka2 [32], EBCall [34]

Targeted
sequencing

LoFreqStar [13], VarDict [11]

Bead-based
sequencing

MuTect2 [10], VarDict [11], HapMuC [66]

Single-molecule
real-time
(SMRT)

GenomicConsensus [70]

Nanopore PoreSeq [127]
Important
low-frequency
variants

UMI-based
sequencing

DeepSNVMiner [16], smCounter2 [18],
MuTect2 [10], VarDict [11], Platypus [40]

Chromosomal
instability

VarDict [11], Seurat [98], Platypus [40]

Pediatric patient MuTect2 [10], Platypus [40], SomVarIUS
[129], Pisces [109]

Hereditary disease Germline control VarDict [11], Platypus [40], Pisces [109],
VarScan2 [12], HaplotypeCaller [7]
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2.3.1. Slide-Based Sequencing by Synthesis (Illumina)
One of the most popular high-throughput sequencing methods in

use today is slide- or plate-based sequencing by synthesis, which
operates by generating a signal trace each time a new nucleotide is
added to newly synthesized strands of DNA that are bound to the
slide or plate in tight cluster [59,61,62]. There are a variety of different
methods to generate these signal traces, but themost common is optical
excitation and quenching [63]. Because sequencing by synthesis uses
bridge PCR or a similar process to generate signals, it is vulnerable to
amplification errors (see Section 2.2.1), especially early in the sequenc-
ing run, when a polymerase error may be propagated to all of the
daughter strands of a given reaction cluster [64], thus altering the
cluster's sequencing “trace” (i.e., the series of signals that correspond
to each nucleotide in the sequencing fragment). However, these errors
are generally biased to specific nucleotides and occur at known rates,
so there is some potential for variant callers tomodel this error. Another
related type of error that is especially prevalent in this sequencing
method is index swapping, which is discussed in Section 2.2.3. Because
slide-based sequencing machines are by far the most common, the
majority of available genomic data has been generated with this
method, and thus, the majority of variant callers, including Mutect2
[10], LoFreqStar [13], and JointSNVMix [30], have been primarily
benchmarked and tested using these data or simulated data informed
by these data.
2.3.2. Bead-Based Sequencing by Synthesis (Life Technologies/Ion Torrent)
Conceptually, bead-based sequencing methods are very similar to

slide-based sequencing by synthesis, but the use of beads allows for
additional flexibilitywhen reading signals from the sequencing reaction
because beads are not bound to the single plane of a slide. Notably,
although some bead-based approaches use pyrosequencing, they can
also use direct electronic excitation [61]. This difference in signaling
detection can affect base quality scores and even result in sequence
truncation [65], both of which can affect aligner and variant caller per-
formance. Variant callers with options to set read quality cutoffs (such
as MuTect2 [10]) may show better or more reliable performance for
bead-based approaches. Furthermore, it can be beneficial to select vari-
ant callers that execute local realignment as a part of their method, such
as VarDict or HapMuC [11,66].

2.3.3. Single-Molecule Real-Time Sequencing (Pacific Biosciences)
SMRT sequencing represents a significant conceptual departure

from typical sequencing-by-synthesis methods. As its name suggests,
this approach is capable of sequencing single long molecules of DNA,
which it accomplishes using zero-mode waveguide chambers seeded
with a single DNA polymerase [67]. This allows the technology to accu-
rately detect the fluorescent output of a single nucleotide incorporation
reaction. SMRT technology is capable of sequencing very large DNA
molecules, often in the size of kilobases, which can have significant ad-
vantages in applications that involve highly repetitive sequences or
other features not amenable to more conventional short-read align-
ments. However, SMRT sequencing's error profile is very different
than that of typical sequencing-by-synthesis reactions [68]. For exam-
ple, the error rate of SMRT sequencing is substantially higher, with a
high propensity for indels, but each DNA molecule is analyzed in isola-
tion without modification (rather than relying on clusters of synthe-
sized sequences), so multiple passes over the same molecule can
generate a more accurate consensus sequence [69]. These error profiles
and long read lengths generally require specialized variant calling algo-
rithms, such asGenomicConsensus [70] distributed by PacBio, and accu-
rately aligning and calling variants from these data are currently an area
of active research [71,72].

2.3.4. Nanopore Sequencing (Oxford)
As its name suggests, Oxford nanopore technology uses molecular

motors to drive DNA molecules through nanopores, and the changes
in electrical current induced as each base on the DNA molecule passes
through the pore are measured and used to determine the sequence
of the DNA molecule. Like other single-molecule methods (such as
SMRT discussed in Section 2.3.3), this technology has relatively high
error rates and produces long reads, so it requires specialized alignment
and variant calling algorithms, including PoreSeq [71,72]. Although
most long-read alignment and variant calling utilities support both
SMRT and nanopore input data, their performance between the two
technologies can differ significantly [69,73]. However, variant calling
for long-read sequencing technologies is currently an active area of re-
search, and disparities in variant calling performance between
nanopore and SMRT sequencing studies are largely unknown [73].

3. Biological Features

In addition to experimental confounders discussed above, many of
fundamental aspects of tissue and tumor biology are important for var-
iant caller selection, with the two most important features for variant
calling being the presence of rare variants and chromosomal instability.

3.1. Low Variant Allele Frequencies

Many treatment methods, including radiation and chemotherapy,
can act as selective forces that drive clonal evolution in the tumor
[74], characterized by the outgrowth of rare cell populations that are re-
sistant to the outside factors. For instance, in treatment-resistant or re-
lapsed liquid tumors, this is represented by a so-calledminimal residual
disease (MRD) [75,76], which often results in false negative variant calls
as the variants may exhibit VAFs below the cutoff used by a typical var-
iant caller. In these situations, sequencing techniques that utilize
barcoding followed by variant callers designed to detect low VAFs,
such as DeepSNVMiner [16] and smCounter2 [17,18], are advised, and
if possible, longitudinal samples should be taken to monitor disease
dynamics [77].
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The accuracy of VAFs, as representative of the true variant frequen-
cies in the tumor, can also be dependent on the sampling method
used. For example, a core needle biopsy from a solid tumor might only
sample a small area of the total tumormass, and a rare variant in the bi-
opsy may be a dominant variant in another region of the tumor. In this
case, the reliability of VAFs as a diagnostic or prognostic criterionwill be
decreased. In such cases, paired tumor and germline control samples are
recommended to help distinguish between germline and rare somatic
variants. These paired samples can be used as inputs for any number
of paired-sample variant callers (Fig. 1), including VarDict [11] or Platy-
pus [40], which use germline control samples to model background
error.

Another example in which detection of low VAFs is critical is variant
calling from cell-free DNA (cfDNA) samples. The most recent highly
promising use for cell-free DNA sequencing in oncology is identification
and characterization of circulating tumor DNA [78], which allows for
early diagnostic, prognostic, and predictive capabilities. Cell-free
sequencing typically involves very small amounts of input DNA and re-
lies on numerous rounds of PCR amplification to generate sufficient ma-
terial for a sequencing run, thus resulting in the accumulation of
amplification errors at a rate beyond that seen in more typical applica-
tions [79]. UMI-based sequencing methods and their associated variant
callers (discussed in Section 2.2.3), such as DeepSNVMiner [16],
MAGERI [45], and smCounter2 [17,18], have shown acceptable perfor-
mance [80,81], however they might be insufficient due to higher than
usual rates of amplification errors [18]. To overcome this limitation, a
variety of cfDNA-specific software packages have been developed and/
or extended such as SiNVICT [82] and iDES [20], the latter of which cou-
ples the advantages of UMI-based variant calling with “background
polishing” to control for known sequencing errors. Other tools, such as
PEC [79] are specifically designed to be incorporated into the existing
variant calling pipelines and seek to specifically address PCR-related
errors as the pre-processing step.

3.2. Chromosomal Instability

In addition to small insertions or deletions (i.e., indels) or single nu-
cleotide mutations, many cancers are characterized by larger structural
variants (SVs), which can be markers of disease aggressiveness and
treatment outcomes [83–86]. For most cancers, variants at every scale,
from the loss of whole chromosomes or chromosome arms [87] to sin-
gle nucleotide polymorphisms [1], can have varying degrees of clinical
relevance, and there is evidence that these different scales of variants
can have synergistic or novel effects when present in the same tumor
[3], with potential interfaces between small-scale mutations and cyto-
genetic features [88–90]. A canonical example of this type of interaction
between different variant types is Philadelphia chromosome and its role
in chronic myelogenous leukemia. In particular, the Philadelphia chro-
mosome is an SV generated by reciprocal translocation between chro-
mosomes 9 and 22 that produces the BCR-ABL1 fusion protein. This
fusion protein is a primary driver of chronic myelogenous leukemia
pathogenesis and can be successfully targeted using a variety of thera-
pies (e.g., imatinib) [91]. However, secondary point mutations in the
kinase domain of the BCR-ABL1 fusion protein can confer resistance to
treatment, which drastically affects patient outcome [92].

Many variant callers are focused on the identification of relatively
small variants [11,30,93–96] and do not explicitly take into account
larger structural chromosomal alterations, which can be far more diffi-
cult to identify without specialized SV identification algorithms. In cur-
rent clinical practice, most malignancies in which SVs are important,
such as hematologic malignancies, are experimentally analyzed using
dedicated cytogenetic methods such as fluorescence in situ hybridiza-
tion (FISH) [83,84,97]. A few currently available variant callers do at-
tempt to identify SVs, including VarDict [11], Seurat [98], and Platypus
[40], but their accuracy and effectiveness has yet to exceed that of pre-
ferred cytogenetic laboratory methods.
4. Clinical Features

Clinical features, including but not limited to patient age and pres-
ence of heritablemutations, are also important considerations in variant
caller selection.

4.1. Patient Age

Patient age is an important clinical factor in variant caller selection,
especially for pediatric malignancies. Many pediatric cancers have ge-
nomic profiles that are significantly different from their adult counter-
parts [99–101]. Their somatic mutation frequency is generally lower,
and they often have a smaller set of potentially relevant mutations
[100]. Thus, variant callers with high sensitivity for identifying rare var-
iants, such as MuTect2 [2,10], would be recommended. Furthermore,
because SVs, especially translocations, also play key causative roles in
many pediatric cancers [102,103], it may be important to select variant
callers that can also accurately call SVs such as Platypus [40], but more
reliable SV data may be generated by non-sequencing methods (see
Section 3.2 for more information on SV calling).

4.2. Heritability

Several malignancies are associated with a variety of inherited vari-
ants that affect their diagnosis, prognosis, and clinical outcomes
[104–106]. Some of themost common examples of these inherited can-
cer syndromes include Lynch syndrome, which represents a collection
of polymorphisms in DNAmismatch repair genes that causes colon can-
cer [107], and hereditary breast and ovarian cancer (HBOC) syndrome,
which represents polymorphisms in the BRCA1 or BRCA2 genes [108].
As inherited variants associatedwith cancer predisposition are germline
rather than somatic, it is important to select a variant caller that distin-
guishes between germline and somatic mutations, such as VarDict [11],
Platypus [40], Pisces [109], andVarScan2 [12]. An alternative is to specif-
ically call variants from germline samples, in which case GATK's
HaplotypeCaller [7] is routinely recommended. The accurate identifica-
tion of these inherited variants in parents will not only help with diag-
nosis, prognosis, and disease monitoring, but also guide preventative
measures, such asmore aggressive prophylactic monitoring in offspring
[110].

5. Conclusions

Variant calling is one of the canonical challenges in computational
genomics. Variant callers are both numerous and diverse in terms of
algorithmic designs as well as intended uses. Some variant callers are
designed for broad use with a wide variety of sample types and se-
quencing workflows, whereas others are optimized for a single class
of sample types or a single sequencing method. However, regardless
of design goals, all variant callers must solve the fundamental problem
of distinguishing between true mutations and experimental noise. In
many cases, the frequency of rare variants can drift below the levels
of experimental noise in a system, which makes the accurate variant
calling for such cases extremely challenging. This challenge in
distinguishing true variants from noise can be partially addressed by
selecting variant callers with the best performance for a given data set.
Optimizing variant calling in complex clinical environments requires
detailed understanding of both the clinical and laboratory workflows,
including sample acquisition and sequencing approach, as well as
disease features. Knowledge of these factors allows selection of optimal
variant calling pipeline for each genomic experiment, enabling most
biologically relevant data interpretation.
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