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Abstract

Multi-center MRI studies can enhance power, generalizability, and discovery for clinical 

neuroimaging research in brain disorders. Here, we sought to establish the utility of a clustering 

algorithm as an alternative to more traditional intra-class correlation coefficient approaches in a 

longitudinal multi-center human phantom study. We completed annual reliability scans on 

Travelling human phantoms’. Acquisitions across sites were harmonized prospectively. Twenty-

seven MRI sessions were available across four participants, scanned on five scanners, across three 

years. For each scan, three metrics were extracted: cortical thickness (CT), white matter fractional 

anisotropy (FA), and resting state functional connectivity (FC). For each metric, hierarchical 

clustering (Ward’s method) was performed. The cluster solutions were compared to participant 

and scanner using the adjusted Rand index (ARI). For all metrics, data clustered by participant 

rather than by scanner (ARI > 0.8 comparing clusters to participants, ARI < 0.2 comparing 

clusters to scanners). These results demonstrate that hierarchical clustering can reliably identify 

structural and functional scans from different participants imaged on different scanners across 

time. With increasing interest in data-driven approaches in psychiatric and neurologic brain 

imaging studies, our findings provide a framework for multi-center analytic approaches aiming to 

identify subgroups of participants based on brain structure or function.
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1. Introduction

The collaborative NIMH-funded multi-center study, ‘Social Processes Initiative in 

Neurobiology of the Schizophrenia(s)’ (SPINS) aims to identify neural circuitry related to 

social cognitive impairments in nearly 500 people who are healthy or who have a 

schizophrenia spectrum disorder (SSD). This study is being conducted as a part of the 

NIMH’s Research Domain Criteria (RDoC) initiative. SSDs have been associated with 

changes across several structural and functional neuroimaging metrics, including deficits in 

white matter identified via cortical thickness (Schultz et al., 2010; Wheeler et al., 2015), 

diffusion imaging (Voineskos et al., 2010), and resting state functional connectivity 

(Rotarska-Jagiela et al., 2010; Zhou et al., 2007). The SPINS study adopted a multi-modal 

data acquisition approach to best characterize these structural and functional neuroimaging 

metrics and measure how they relate to social cognitive processes.

Multi-center data collection allows for larger sample sizes, enabling discovery-based 

research (Clementz et al. 2016; Drysdale et al. 2017; Van Essen et al. 2013; Insel et al. 2010; 

Cannon et al. 2017) with more generalizable results (Baker, 2016). All multi-center studies 

face challenges with data harmonization and quality control (Brown et al., 2011; Fortin et 

al., 2017; Glover et al., 2012; Huang et al., 2012; Mirzaalian et al., 2016; Simmons et al., 

2011; Wonderlick et al., 2009). Each of the three sites within the present study had different 

MRI scanners, but scan acquisition parameters were harmonized as much as possible across 

sites prior to study initiation to minimize site-based variability, and a phantom-based quality 

assurance (QA) protocol was developed to track scanner changes over time (Chavez et al., 

2018). We also collected data on a group of individuals, ‘travelling human phantoms’, who 

visited all sites annually, to assess the reliability of brain imaging metrics across scanners 

and time.

Here, we compare the travelling human phantom data on key neuroimaging outcome metrics 

to study the influence of site-specific scanner effects over a period of three years. We 

hypothesized that participant-level variability of outcome metrics is greater than scanner-

level variability both cross-sectionally and over time. We tested this assumption via cluster 

analysis (Finn et al., 2015; Shen et al., 2017). Previous studies aimed at characterizing inter-

site reliability or differences have focused on factors such as intraclass correlation (ICC) of 

various metrics across sites (Jovicich et al. 2013, 2016; Forsyth et al. 2014; Whelan et al. 

2016) or across-session reproducibility (Jovicich et al. 2014; Pfefferbaum et al. 2003; Choe 

et al. 2015; Kristo et al. 2014; Noble et al. 2017). The North American Prodrome 

Longitudinal Study (NAPLS) is an excellent example, scanning eight subjects twice each at 

eight scanners, and having examined the generalizability of the results across various 

imaging modalities and pipelines (Gee et al. 2015; Forsyth et al. 2014). The purpose of these 

analyses in traveling subjects or multi-scanner studies is often to determine if combining 
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data across scanners is acceptable (as in e.g., Cannon et al. 2017; Deprez et al. 2018) or to 

determine the specific effects of doing so on a particular measure (Helmer et al. 2016). 

While these metrics can be highly informative, they may also present an incomplete picture. 

For example, while ICCs of repeated resting fMRI data are often quite low (Anderson et al., 

2011; Birn et al., 2013; Noble et al., 2017; Patriat et al., 2013), individual scans across time 

can be reliable enough to be identifying within an individual (Finn et al., 2015), and ICCs 

may be greater for more global, connectomic measures (Noble et al., 2017), suggesting that 

ICC scores vary by measure and method, and low ICCs may obscure the true reliability of 

the measures within as opposed to between participants.

We chose an approach that examines neuroimaging outcome metrics across sites, time, and 

participants simultaneously. Rather than determining simply whether the scanner data are 

suitably harmonized (in the spirit of Glover et al. 2012), or as an estimate of the power gain 

from a multi-site study, our approach treats the outcome metrics as a classification problem 

and attempts to group the scans by participant (in the ‘fingerprinting’ spirit of Finn et al., 

2015) using neuroimaging data across multiple sites and time-points. Our structural and 

functional metrics of interest were: cortical thickness (CT) from structural T1, fractional 

anisotropy (FA) from diffusion weighted (DTI) scans, and functional connectivity (FC) from 

resting fMRI. We used hierarchical clustering to evaluate classification accuracy across time 

and site. This study had two purposes: 1) to demonstrate that MRI metrics would be 

individually identifying even across scanners, supporting the collapsing of data across sites, 

and 2) to demonstrate that hierarchical clustering applied to MRI metrics would identify 

similar scans, even in the case of a small sample with many variables. We hypothesized that 

scan metrics would cluster together by individual participant rather than by site. As an 

additional exploration of scanner influences on our neuroimaging metrics, scanner-based 

differences were examined in each neuroimaging metric, and scan-to-scan reliability was 

assessed using ICC.

2. Methods

2.1. MRI scanners

Data were collected at three sites starting in 2014. The Centre for Addiction and Mental 

Health (CMH) in Toronto used a General Electric 750w Discovery 3T MRI throughout the 

study. Maryland Psychiatric Research Center started data collection using a Siemens Tim 

Trio 3T MRI (this MRI will be referred to as MRC) in 2014-15, and then upgraded to a 

Siemens PRISMA 3T MRI in 2016 (referred to as MRP). Zucker Hillside Hospital in New 

York started data collection using a General Electric 750 Signa 3T MRI in 2014 and 2015 

(referred to as ZHH), and then upgraded to a Siemens PRISMA 3T MRI in 2016 (referred to 

as ZHP). Scans were labeled by site tag and scanning year. As scans were collected 

annually, we used the following terminology: ‘Year1’ is study initiation (fall of 2014), 

‘Year2’ is the fall of 2015, and ‘Year3’ is the fall of 2016. Thus, for example, CMH_Year1 

was a scan at the CMH scanner at study initiation, MRC_Year2 was a scan at the beginning 

of the second year on the original scanner at the MRC site, and ZHP_Year3 was a scan at 

beginning of the third year on that site’s upgraded scanner. Scans were performed at CMH 
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for years one, two and three, on the ZHH and MRC scanner for years one and two, and at 

ZHP and MRP scanners for year three only. See Table 1 for study scanning flow.

2.2. Participants (human phantoms)

Data were collected from four healthy male adult participants aged 34 to 59. No participant 

had a history of psychiatric or neurological problems, including concussion, or other serious 

medical conditions. Participant 1 (P1) had six total scans, one at each site for Year1 and 

Year2. This participant was unavailable for Year3. P2 and P3 completed all nine possible 

scans. P4 was introduced in Year3, and completed three scans (CMH, ZHP, and MRP). See 

Table 1 for a schematic of participant characteristics and study scanning flow. The study had 

REB or IRB approval at all three sites, and all participants gave informed consent.

2.3. MRI scan parameters

Scanning parameters were matched as closely as possible across all scanners, within the 

limitations of the scanner hardware. A complete list of all scan parameters by site is 

included in Supplemental Table 1. T1 anatomical scans were manufacturer-specific fast 

gradient echo sequences (MPRAGE for the Siemens scanners and BRAVO for GE scanners; 

TR = 2300 ms, 0.9 mm isotropic, no gap, interleaved ascending acquisition order, with TE 

from 2.78-3ms, as determined by the scanner-specific hardware). As is standard practice at 

that site to increase scan SNR (Kochunov et al., 2006), at MRC and MRP three T1 scans 

were acquired and subsequently averaged into a single image prior to any preprocessing. 

DTI scans used an axial EPI dual spin echo sequence (60 gradient directions, b = 1000, five 

baseline scans with b = 0 (or six in the case of the PRISMA scanners at MRP and ZHP), TR 

= 8800 ms, with the exception of ZHH where TR = 17700 ms; TE = 85 ms; FOV = 256 mm; 

in-plane matrix size was 128 × 128, 2.0 mm isotropic voxels). Resting fMRI scans used an 

EPI sequence (number of volumes acquired was 212, TR = 2000 ms, TE = 30.0 ms, FOV = 

20 cm, 40 slices of 4 mm thickness, interleaved ascending acquisition order). The resting 

MRI scan lasted seven minutes, and participants were instructed to close their eyes, remain 

awake, and let their mind wander.

2.4. MRI analyses

2.4.1. Cortical thickness (CT) analysis—T1 scans were processed using FreeSurfer 

(Fischl, 2012) (version 5.3.0). In accordance with the ENIGMA protocol (http://

enigma.usc.edu/protocols/imaging-protocols), average CT was extracted for 68 ROIs from 

the Desikan-Killiany atlas (Desikan et al., 2006).

2.4.2. Fractional anisotropy (FA) analysis—DTI data for the three sites were 

processed using the ENIGMA-DTI analysis pipeline (Jahanshad et al., 2013) (http://

enigma.ini.usc.edu/ongoing/dti-working-group/), which includes quality control and quality 

assurance steps. The ENIGMA pipeline runs a variant of tract-based spatial statistics (Smith 

et al., 2006), in which the data is warped via a non-linear transform (FNIRT) to a specific 

template and FA values are extracted from a set of ROIs, and was implemented using FSL v 

5.0.9 (Jenkinson et al., 2012). The DTI data were corrected for motion and eddy current 

distortions, a diffusion tensor was fitted for each voxel, and FA maps were generated using 

FSL. Next, individual FA maps were warped to an ENIGMA-DTI template and projected 
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onto the ENIGMA-DTI skeleton that represents the middle of the tract of major white matter 

structures. ENIGMA-DTI per-tract average values were calculated for 63 ROIs from the 

Johns Hopkins University White Matter Atlas (Mori et al., 2005) by averaging values along 

tract regions of interest in both hemispheres.

2.4.3. Functional connectivity (FC) fMRI analysis—The first four TRs were 

removed from each fMRI series followed by slice timing correction. AFNI (Cox, 1996) (v.

2014.09.22) was used to deoblique each image, perform motion correction, and perform 

brain masking. Time series outliers were removed via L1 regression (using AFNI’s 

3dDespike) and each run was scaled to have a global mean signal of 1000. Framewise 

displacement (FD) was calculated during motion correction, as was a measure of 

instantaneous global signal fluctuation (DVARS, the root mean square of in-brain intensity 

changes per TR) (Power et al., 2012). If FD or DVARS exceeded 0.3mm/TR or 3%, 

respectively, for a given TR, that TR, the one preceding it, and the one following it were 

replaced with a linear interpolate between the surviving TRs. A nuisance regression model 

was generated for each subject to remove potential noise components, with the following 

regressors: second order Legendre polynomial, the six head motion parameters, the mean 

white matter signal (WM), the mean cerebrospinal fluid signal (CSF), the global mean brain 

signal, the derivative, squares, and squares of the derivatives of these signals, and finally the 

first three principal components of the WM and CSF (aCompCor) (Muschelli et al., 2014). 

In this way, we accounted for the tissue-specific regressors, head motion parameters 

(Satterthwaite et al., 2013), and the regression of the global mean signal, which while 

introducing artefactual negative correlations is also known to increase the correspondence of 

electrophysiological and hemodynamic signals (Keller et al., 2013). Time series were then 

low-passed using a bi-directional Butterworth filter and a cut-off frequency of 0.1 Hz (Carp, 

2013). The registration transformation between each subject’s T2*-weighted (EPI BOLD) 

volumes and their T1-weighted volume were calculated between the 3Ddespike and 

nuisance regression steps described above using linear registration (6 degrees of freedom; 

FSL FLIRT). The linear (12 DOF) and non-linear transform between the T1-weighted 

volume and MNI atlas were also calculated using FNIRT. These transformations were finally 

concatenated and applied to the low-pass filtered T2*-weighted volumes to warp the fMRI 

data into MNI space in one step. Resting functional connectivity was calculated from the 

average time series within 268 ROIs (Shen et al., 2013). This atlas was selected as it was 

recently shown to be of sufficient resolution to allow for identifying individuals using their 

resting state functional connectivity alone (Finn et al., 2015). Pairwise correlations were 

calculated for each ROI, resulting in 35778 unique connections.

2.5. Statistical analysis

2.5.1. Evaluating cross scanner differences—A Mixed Effect Model was used to 

test for differences in our neuroimaging metrics across scanners. The model used scanner 

nested within year and subject, as well as year nested within subject as random effects. 

Scanner also entered the model as fixed effect since we were interested in its overall effect.

2.5.2. Hierarchical clustering—A matrix was created for each modality (CT, FA, and 

FC), with scanning sessions as rows and the neuroimaging metric as columns. All modalities 
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were analyzed similarly. Euclidean distance (the sum of the squared difference between all 

data points) was calculated between each pair of scanning sessions for each metric. Note that 

as Euclidean distance is related to the scale/range and number of points in the input data, it 

cannot be compared across metrics. Hierarchical clustering was performed using Ward’s 

minimum variance method (Ward, 1963). During each stage of the bottom-up agglomerative 

hierarchical clustering procedure, total within-cluster variance is minimized by identifying a 

new cluster pair/linkage that leads to the minimum increase in total within-cluster variance. 

Ward’s linkage works under the assumption that the initial distances between each pair of 

data is proportional to the Euclidean distance. Given that the clustering approach groups 

similar data sets together, it can be considered a classifier, with the classification being 

accurate when scans from individuals are correctly grouped together.

2.5.3. Evaluating cluster accuracy—As we had specific a priori cluster labels to 

compare (travelling human phantom ID or scanner), we compared a range of cluster 

solutions to these a priori labels using the adjusted Rand index (ARI; (Hubert and Arabie, 

1985; Rand, 1971), which was calculated via a MATLAB function (https://github.com/

areslp/matlab/blob/master/code_cospectral/RandIndex.m; accessed April 2017). The ARI is 

the probability that any pair of data points share a label across two input solutions (e.g. if 

data points A and B share a label in two cluster solutions, they are a “match”), adjusted for 

the random chance probability for matched labels given the number of pairs. ARI values 

approximating zero indicate no overlap or random overlap, and an ARI of one indicates 

perfect matching of labels. Note that for a set of unmatched labels (e.g. comparing four 

participant IDs to a solution of five clusters) the ARI will by definition be below one, 

because it is not possible for all labels to match, though an ARI can still be calculated.

‘Ground truth’ labels for each of the 27 scans were created for comparison to cluster 

metrics. These ground truth labels included participant ID (collapsed across scanner and 

year; k = 4), scanner (collapsed across participant ID and year; k = 5), and year (collapsed 

across participant ID and scanner; k = 3). Additionally, as we were interested to examine 

scanner-based effects in the data, we created an additional label of participant by site, 

collapsed across years (k = 16; e.g. P1 at CMH, P1 at MRC, P2 at CMH, etc.). For 

completeness, labels were also created for scanner by year and participant ID by year. For 

each imaging metric, the resulting linkage tree (dendrogram) was divided into separate 

solutions ranging from two to 20 clusters. Cluster membership was compared to these 

ground truth labels using the ARI, thus allowing a quantitative comparison of the accuracy 

of each cluster solution against a ground truth of a priori labels.

In order to formally assess if the ARI differed from chance, a null distribution was created 

using a permutation approach. Each label was randomized across 1000 iterations and 

compared to the cluster solutions from two to 20 clusters, thus representing a distribution of 

ARI in the null case (e.g. when labels were random but with the same frequency as the true 

labels). ARI values which fell above 99% of this null distribution were considered 

significant (i.e. the cluster solution grouped by label more so than would be expected by 

chance). The evaluation of ARI relative to these labels allowed us to quantify if scans 

clustered by any of these labels, and to what extent.
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2.5.4. Intraclass correlation coefficient (ICC) calculation—To facilitate 

comparison to other studies, ICC was calculated according to the methods of Shrout and 

Fleiss (1979), using a two-way mixed single measures model; ICC(3,1) as defined in the 

Shrout and Fleiss notation. ICC was calculated for the three metrics for each participant 

(collapsing across scanners and year), and for scanners (collapsing across participants and 

years).

3. Results

3.1. Scanner differences by metric

Mean CT, FA, and FC values for each scan, separated by scanner, are presented in Fig. 1. 

The mixed effects model revealed significant differences across scanners for mean CT, 

F(4,14) = 28.5, p < 0.0001, and for mean FA, F(4,8) = 82, p < 0.0001, but not for FC, F(4, 

9.8) = 0.78, p = 0.56. Given that there were scanner-specific effects in the CT and FA 

metrics, scanner effects were regressed out of each ROI by building a model incorporating 

one column per site (thus treating site as a non-linear nominal variable). All further analyses 

on CT and FA were run on this data with scanner-based effects regressed out, unless 

otherwise specified.

3.2. Hierarchical clustering

Cluster solutions for CT, FA, and FC are presented in Fig. 2. For both CT and FA, scans 

clustered by participant ID as opposed to site. In both cases, a four cluster solution resulted 

in a perfect match with participant ID. In the cluster results for FC, one scan from P3 (Year2 

at MRC) was excluded due to excessive motion (only 12 TRs retained after motion 

censoring). The remaining scans largely clustered by participant ID, with the exception of 

three scans from P3 (one of which clustered with P4, and two of which formed singular 

clusters). As one scan from P3 had been removed due to excessive TR censoring, we 

examined these three misclassified cases. Two of these scans each formed a cluster of size 

one. Both scans had the majority of TRs censored due to motion (113 and 136, respectively, 

out of a total of 208 TRs included in the analysis), and can therefore be considered high 

motion scans which would likely be excluded from most studies. The P3 scan that clustered 

with P4 had only a single TR removed due to censoring, thus representing a classification 

error.

We further explored motion by examining the number of TRs censored in other participants. 

The average number of censored TRs by participant is presented in Supplemental Table 2. 

Of the P3 scans which were correctly classified, the highest number of censored TRs is 66. 

Amongst other participants, the most censored TRs in a single scan is 38. Notably, while P2 

had a moderate number of censored TRs (mean 22.1, range 7–33), the scans from that 

participant were still correctly classified by participant ID. This suggests that resting fMRI 

may be generally reliable even in the presence of moderate motion, when adequate 

processing and noise reduction is performed, while emphasizing the need to remove high 

motion scans.
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As scanner effects were regressed from both FA and CT, we ran an additional clustering 

analysis on those data sets without regressing scanner effects (Supplementary Fig. 1). 

Despite the fact that there was a significant scanner effect in CT, the scans still clustered by 

participant, with the exception of P2, who split into two connected smaller clusters 

(separating MRC and MRP scans from the other sites). For FA, scanner effects were evident 

in this clustering solution, with the Prisma scanners (MRP and ZHP) forming a distinct 

cluster. Additionally, clustering on CT was rerun using only regions in the prefrontal cortex 

(Supplementary Fig. 2), showing accurate clustering by participants with only a smaller set 

prefrontal ROIs. Clustering with FC was rerun using only nodes in the default mode network 

(DMN), which resulted in a greater number of classification errors, suggesting single 

network connectivity was less useful for identifying individuals than whole brain 

connectivity.

3.3. Evaluating cluster accuracy via ARI

The analysis comparing the ARI for each cluster solution from two to 20 for each metric is 

presented in Fig. 3. Solutions for which the ARI for each label was above the 99th percentile 

of the null are flagged with a circle. For both CT and FA, the ARI for participant ID was 

above the null for all cluster solutions, with an ARI of one for the four cluster solution, 

indicating a perfect match between participant ID and the cluster solution. The ARI 

naturally decreased between ID and cluster solutions greater than four, as comparing an 

increasing number of cluster labels to the four labels in the ID solution will by definition 

decrease ARI. Year and scanner were near zero and below the null for all solutions for both 

FA and CT. ARI for ID by scanner and ID by year were above the null for several cluster 

solutions in CT and FA. However, these ARI values remained relatively low (peaking at ARI 

< 0.4, as opposed to ARI = 1 for participant IDs).

ARI analysis for FC was performed with the two high motion scans from P3 removed, as 

those scans separated to form singleton clusters and will bias the ARI scores. When 

comparing cluster solutions to participant IDs, the highest ARI was found for a four cluster 

solution (ARI = 0.922), again showing very close agreement between participant label and 

cluster labels. When comparing cluster solutions to scanners, ARI for all cluster solutions 

did not exceed our null distribution threshold. Again, ARI values comparing the cluster 

solutions for FC to the ID by scanner and ID by year were above the null for several cluster 

solutions, but were still relatively low (ARIs < 0.4) compared to ID.

3.4. Intraclass correlation coefficients

ICCs were calculated using both the original CT, FA, and FC values (prior to regressing 

scanner effects from CT and FA), and on CT and FA with scanner effects regressed out. ICC 

values for participants and scanners are presented in Table 2. For data without regressing 

scanner effects, ICCs for CT were in the range of 0.89–0.98, for FA were in the range of 

0.82–0.97, and for FC were in the range of 0.22–0.39. ICCs were in most cases higher 

within participant than within scanner. ICCs across scanners were still quite high for CT and 

FA. Regressing scanner effects from ROIs in CT and FA resulted in a reduction in ICC 

values. There was a moderate drop in within participant ICCs, save for the scans for P4 

which had an ICC near zero. This may be related to the fact that scanner and ID are in fact 
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confounded, in that not all participants had equal data on all scanners. ICC for scanner was 

negative in all cases when scanner was regressed from the data, suggesting no scan-to-scan 

reliability across scanners.

4. Discussion

We examined twenty-seven MRI datasets for four individuals collected across three sites, 

five scanners, and three annual scanning sessions. Scanning parameters were harmonized 

across sites to minimize inter-site variance. Rather than only assess reliability across scans 

and time via similarity metrics such as intraclass correlation, we used a hierarchical 

clustering approach to examine whether results of each neuroimaging measure were more 

similar within-subject compared to within-scanner. We sought to determine whether this 

clustering approach could identify an individual from all other participants (Finn et al. 

2015). Scanner-based effects were present in both the CT and FA data; these were corrected 

for by regressing scanner effects from each ROI. Alternate approaches (Chen et al., 2014; 

Fortin et al., 2017; Mirzaalian et al., 2016) may be more appropriate for group comparisons 

or multivariate statistical approaches across multiple brain regions simultaneously. 

Classification accuracy was high across all metrics, with no misclassifications in CT or FA, 

and only a single individual misclassified based on FC. Critically, the perfect or high 

classification accuracy (quantified via ARI) across individuals shows that these metrics can 

be considered reliable indicators of structure and function that are specific to an individual. 

This provides strong support for the integration of data in multi-center studies, and supports 

the use of hierarchical clustering to identify individuals across imaging metrics.

While traditional analyses of neuroimaging data have relied upon group statistics, they 

explicitly assume homogeneity within the samples under investigation. This assumption is 

dubious even in healthy individuals, where variability in task activity (Miller et al. 2012) and 

functional architecture (Gordon et al. 2017) appear to be the norm rather than the exception. 

Data driven approaches may be less limited by heterogeneity compared to case-control 

designs, and thus may represent an opportunity for discovery, especially within psychiatric 

populations (Van Horn, Grafton, and Miller 2008). Recent work has highlighted the power 

of clustering approaches for uncovering new disease and treatment response subtypes 

respectively (Clementz et al. 2016; Drysdale et al. 2017). We demonstrated that clustering 

can be used to group scans with similar characteristics, even when site/scanner based effects 

are present. Furthermore, even when examining the full spectra of information available for 

a given neuroimaging metric, we were able to achieve high classification accuracy. This 

supports the use of hierarchical clustering as a tool for discovery to identify groups of 

participants in a larger dataset with similar brain structure or connectivity. Furthermore, it 

may be reasonable to do so using data from the entire brain rather than using a data 

reduction approach or selecting a set of regions a priori. Such data reduction and feature 

selection practices can have a strong biasing effect on classification, may eliminate 

important sources of individual variability, and affect reproducibility. The importance of 

individual neuroanatomical variability (Mueller et al. 2013), even in healthy young adult 

humans has been shown in a recent study using the large multi-site Human Connectome 

dataset identifying a subset of participants with atypical patterns of fMRI task activations 
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(Tavor et al. 2016). Approaches such as hierarchical clustering may group together 

participants with common and relevant atypical activity patterns.

This analysis has an advantage over previous studies examining cross-scanner variability: 

rather than using measures such as different forms of ICC, we used an unsupervised 

classification approach which groups data sets (in this case, scans) by similarity. Recent 

work has emphasized relatively poor scan-to-scan reliability across shorter resting state 

functional acquisitions (Anderson et al., 2011; Birn et al., 2013; Noble et al., 2017; Shou et 

al., 2013), and the reliability of functional connectivity may be greater when an 

individualized as opposed to group parcellation scheme is used (Laumann et al., 2015). 

However, despite this relatively low reliability for FC as measured by ICC and reduced ICC 

when scanner effects were regressed from CT and FA, all metrics showed strong clustering 

by participant. This demonstrates that even in the context of low scan-to-scan reliability the 

FC data remains individually identifying. As demonstrated in Finn et al. (2015), resting state 

connectivity can be individually identifying. It is becoming progressively clear that 

structural and functional patterns within an individual’s brain are consistent to the point that 

they may be considered a stable and identifying characteristic of that individual, even when 

measured across scanners. As such, we suggest that the lower reliability in functional 

metrics should not preclude them as individually and clinically meaningful measurements. 

When our results and those in the literature are taken together, ICC and clustering 

approaches provide distinct and potentially complementary metrics: ICC precisely assesses 

how similar a data series is across points, making it a good measure of reliability, while 

clustering assesses differences and similarities across individuals, making it useful for 

identification and classification even in cases where ICC may not be particularly high. It is 

also worth noting the utility of multivariate ICA approaches (Cannon et al., 2014; Noble et 

al., 2017; Shou et al., 2013) which may provide more accurate measure of scan-to-scan 

variance under some circumstances.

We used the ARI as an objective assessment of the relationship between cluster membership 

and scanner or participant ID. In all cases, ARI related to ID was significantly greater than 

chance, while ARI related to scanner site was not different from chance. These findings 

demonstrate that accurate classification is possible based on an individual’s neuroimaging 

data collected from different scanners across time, particularly when sufficient corrections 

are applied. It is worth noting that labels of ID by scanner and ID by year also showed 

significant ARIs across several cluster solutions for all metrics. In this specific set of scans, 

it is challenging to fully tease apart year and scanner effects from IDs due to the different 

combinations of scanner and time across participants. As such, these significant ARIs for ID 

by scanner or ID by year may reflect the unbalanced nature of the design, or represent true 

effects of unaccounted for differences among scanners and change across years. While we 

attempted to address the scanner effects by regressing scanner from our metrics of interest, 

more recent multivariate approaches to scanner variance may do a better job at removing 

cross-site variance (Chen et al., 2014; Fortin et al., 2017; Mirzaalian et al., 2016).

In terms of limitations, the clustering in FC did fail on two scans that had particularly high 

motion and a large number of volumes censored during preprocessing. However, clustering 

was successful when as many as 30% of the TRs were censored. This suggests that 
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functional connectivity remains identifying even in the presence of moderate motion, but 

high motion scans (which, based on our data, might be defined by scans with around 1/3 of 

TRs rejected) should be excluded from further analysis. The use of repeated multi-site scans 

can provide a more objective assessment for defining thresholds for rejecting data from a 

study. We also focused on whole-brain patterns of activity in our clustering approach, which 

may have obscured regionally specific scanner effects which may be particularly important 

for functional localization studies. Relatedly, our F-test for scanner effects considered 

overall FC (as opposed to mass univariate testing of all edges), and thus may not reveal 

regional variations of FC which could influence comparisons between participants.
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Fig. 1. 
Mean cortical thickness (CT; left), fractional anisotropy (FA; center), and functional 

connectivity (FC; right) values for every scan, separated by color/shape (for participant ID) 

and scanner (columns). Significant scanner based differences in the means were present in 

both CT and FA, but not FC.
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Fig. 2. 
Results of the hierarchical clustering analysis for: A) cortical thickness (CT); B) fractional 

anisotropy (FA); C) functional connectivity (FC). The distance matrix shows Euclidean 

distances between scans (defined as the sum of the squared difference between each ROI for 

each pair of scans, such that lower distances between scans mean they are more similar). The 

cluster tree (dendrogram) is shown on the left. Color coding on the dendrogram represents 

participant ID. Participant ID, scanner, and year for each scan in the distance matrix is 

shown on the right.
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Fig. 3. 
Cluster solutions for cortical thickness (CT; top), fractional anisotropy (FA; middle) and 

functional connectivity (FC; bottom) for cluster solutions ranging from two to 20 clusters. 

An analysis was conducted to establish if a given cluster solution was related to the 

participant ID or scanner. Year was included as a ‘control’ variable. An adjusted Rand index 

(ARI) was calculated for each cluster solution and scan-related variables, namely participant 

ID (4 labels; P1, P2, P3, P4), scanner (5 labels; CMH, MRC, MRP, ZHH, ZHP), year (3 

labels; Year1, year2, year3), a combination of ID by scan site (16 labels; e.g. P1 at CMH, P1 

at MRC, etc.), ID by year (9 labels; e.g. P1 during Year1, P1 during year2, etc.), and year by 

scanner (9 labels, e.g. CMH at Year1, CMH at year2, etc.). Circles/dots indicate ARI values 

which are above chance as determined via a null distribution created using a permutation 

test, suggesting greater than chance overlap between that label and the cluster solution.
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Table 2

ICC values within participant and within scanner.

P1 P2 P3 P4 CMH MRC MRP ZHH ZHP

Original values (no regression for scanner effects)

CT 0.98 0.91 0.97 0.90 0.89 0.91 0.89 0.89 0.90

FA 0.97 0.96 0.95 0.82 0.88 0.84 0.85 0.83 0.89

FC 0.37 0.39 0.26 0.39 0.30 0.22 0.27 0.25 0.31

Modified values (after regressing scanner effects)

CT 0.82 0.54 0.75 0.05 −0.13 −0.20 −0.20 −0.50 −0.50

FA 0.90 0.52 0.74 0.00 −0.10 −0.20 −0.17 −0.38 −0.34
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