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Introduction
Multiple sclerosis (MS) is a neuroinflammatory 
disease of the central nervous system that may 
lead to progressive disability.1 In particular, gray 
matter (GM) involvement has been shown to be 
important for the long-term outcome and is 
closely related to clinical disability.2,3 In fact, GM 
atrophy correlates with disease progression and 

emerging disability to a greater extent than ‘clas-
sical’ T2-hyperintensive lesions.4 Furthermore, 
regional cortical atrophy patterns showed even 
stronger associations with clinical dysfunction 
than global cortical atrophy.5

Despite continuous GM damage, varying inter-
individual rates of atrophy and distinct timespans 
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for evolution from the relapsing–remitting to the 
progressive phase of the disease are well known.6,7 
In this context, the lack of persistent clinical wors-
ening in the initial phase of relapsing–remitting 
MS (RRMS) might be explained by the mainte-
nance of structural, in particular cortical, integrity 
for efficient information transfer across brain 
regions despite chronic neuroinflammation.

Structural network-based approaches offer new 
avenues to depict the topological organization of 
the human brain complementary to conventional 
volumetric and morphometric measurements, and 
can reveal general principles about the underlying 
anatomical connections.8,9 Recent studies have 
demonstrated that a robust quantification of struc-
tural connectivity can be achieved using diffusion 
magnetic resonance imaging (MRI) or cortical 
thickness measurements.10,11 The latter uses struc-
tural covariance measures, i.e. cortical thickness 
measurements, which allows for the calculation of 
inter-regional statistical associations at the group 
level.12 This approach considers two cortical areas 
anatomically connected if they show statistically 
significant correlations in cortical thickness and 
therefore takes the relationship between cortical 
regions into consideration.13 The resultant inter-
regional correlation matrix (containing a set of ele-
ments representing the implicit strength of the 
connections) can be further analyzed in combina-
tion with graph theory to quantitatively character-
ize brain connectivity patterns.14

In MS, one cross-sectional structural cortical net-
work study of RRMS patients with at least two 
attacks within the preceding 2 years observed dis-
rupted brain connectivity in the cortex propor-
tional to the white matter (WM) lesion load.15 In 
a further multimodal approach, a disruption of 
structural GM network topology was found to be 
important to understand concomitant alterations 
in functional connectivity obtained through mag-
netoencephalography.16 A similar pattern towards 
a globally disconnected topological organization, 
which has been associated with clinical disability, 
has also been demonstrated in the WM using dif-
fusion MRI.17 In a recently published cross-sec-
tional network approach in early RRMS, we could 
demonstrate that the connectivity profile recon-
structed by diffusion MRI with probabilistic trac-
tography is characterized by a modular 
decomposition and increased local processing,18 
even in comparison with patients with clinically 
isolated syndrome (CIS).19 However, little is 

known about the structural dynamics of the corti-
cal network in the initial phase of RRMS and in 
particular the impact of overall disease activity on 
network properties over time.

Here, we investigated the cortical architecture 
over 1 year at the beginning of the disease using 
cortical thickness measurements to reconstruct 
the structural connectivity network in order to 
identify the initial network response to damage.

We aimed to: (i) assess the topological organiza-
tion and connectivity profile over time in the cor-
tex of patients with early MS in comparison with 
healthy controls (HCs); (ii) contrast network 
dynamics with conventional atrophy measure-
ments; (iii) test whether cortical networks differ 
between patients with and without disease activ-
ity; and (iv) determine the reliability of the net-
work characteristics in a second cohort of MS 
patients at shorter intervals (trimonthly scans).

Methods

Patients and study design
For this prospective study, patients with RRMS 
were recruited and underwent a standardized 
MRI protocol.20 For our main analysis we 
included patients from 2011 to 2016 with disease 
duration less than 5 years, who were relapse-free 
for at least 30 days prior to enrolment. The study 
was approved by the ethics committee of the State 
Medical Board of Rhineland-Palatine (approval 
number 837.543.11 (8085); all patients provided 
written informed consent). Each patient was 
assessed clinically to determine the Expanded 
Disability Status Scale (EDSS) score. Ultimately, 
92 MS patients (65 female, mean age: 32.9 ± 
9.9 years; mean disease duration: 12.1 ± 
14.5 months) were included in the main analysis 
(Figure 1). Furthermore, we included 101 HCs 
without a history of neurological dysfunction (59 
female, mean age: 19.7 ± 0.9 years). HCs and 
patients were followed up over 1 year. Patients 
were divided into two groups with either NEDA 
(no evidence of disease activity) or EDA (evi-
dence of disease activity) over 12 months based 
on the recently established NEDA-3 criteria.21 
NEDA was defined as the absence of clinical 
relapses between the first and second MRI scan, 
no progress in T2 lesion load, no gadolinium-
enhanced lesions in the follow-up MRI and no 
worsening of the EDSS score. EDSS worsening 
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was defined as an increase of ⩾1 point in the 
EDSS score for a baseline score of ⩾1.5 or a 1.5 
point increase for a baseline score of 0.

In an additional analysis, a separate group of nine 
RRMS patients (6 female, mean age: 42 ± 
12.1 years; mean disease duration: 3.5 ± 6.5 years) 
was studied every 3 months for 12 months (five 
consecutive time points) with the same protocol 
mentioned above. The goal of this analysis was to 
gain more detailed information on network alter-
ations over short-term intervals and substantiate 
our results from the main analysis.

Data acquisition
MRI was performed on two identical 3 T MRI 
scanners (Magnetom Tim Trio, Siemens, 
Germany) with a 32-channel receive-only head 
coil in HCs (scanner 1) and RRMS patients (scan-
ner 2). In all patients, imaging was performed 
using sagittal 3D T1-weighted magnetization-pre-
pared rapid gradient echo (MP-RAGE) sequence 
[TE/TI/TR = 2.52/900/1900 ms, flip angle = 9°, 
field of view (FOV) = 256 × 256 mm2, matrix size 
= 256 × 256, slab thickness = 192 mm, voxel size 
= 1 × 1 × 1 mm3] and sagittal 3D T2-weighted 
fluid-attenuated inversion recovery (FLAIR) 
sequence (TE/TI/TR = 388/1800/5000 ms, echo-
train length = 848, FOV = 256 × 256 mm2, 
matrix size = 256 × 256, slab thickness = 192 mm, 
voxel size = 1 × 1 × 1 mm3). The healthy control 
cohort was scanned with a slightly different scan-
ning protocol using sagittal 3D T1-weighted 
MP-RAGE sequence (TE/TI/TR = 2.52/900/1900 
ms, flip angle = 9°, FOV = 256 × 256 mm2, 
matrix size = 256 × 256, slab thickness = 176 mm, 

voxel size = 1 × 1 × 1 mm3). Major anatomical 
abnormalities were excluded by a neuroradiologist 
based on the subject’s T1-weighted and FLAIR 
images of the whole brain.

GM analysis
Two established measurement techniques 
(FreeSurfer and SIENA) were applied to quantify 
GM and brain atrophy, respectively. The construc-
tion of the cortical surface was based on 3D T1 
images using the semiautomated stream of 
FreeSurfer (version 5.3.0). The detailed procedure 
for surface reconstruction and quantification has 
been described and validated in previous studies.22 
Longitudinal reconstruction was performed to 
reduce the confounding effects of inter-individual 
morphological variability, as described previously.23

Furthermore, we estimated the percentage brain 
volume change (PBVC), estimated as the shift of 
the brain parenchyma to the cerebrospinal fluid 
interface between two time points, based on 3D 
T1 images using the SIENA package24 embedded 
in the FSL toolbox (version 5.0.8).25

GM network reconstruction
Individual cortical thickness values were obtained 
for each region of interest of the AAL Atlas to con-
struct (N × N) connectivity matrices, where N is 
the number of regions of interest.26 The co-regis-
tration from Desikan–Killiany atlas (FreeSurfer 
output) to AAL atlas was performed by mapping 
the AAL ROIs [in Montreal Neurological Institute 
(MNI) 152 space] to the surface and registering 
each individual subject to it in order to obtain the 

Figure 1.  Study analysis design. Left: Classification of the study population. Right: Flow chart for cortical 
thickness and brain volume measurements and for graph network measures estimation analyses.
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values in each ROI. The structural correlation 
matrices (90 × 90) for the group of patients (at 
each time point) contained the Pearson’s correla-
tion coefficient between the cortical thicknesses of 
each pair of regions.

To describe the topological organization of the 
derived structural networks, network measures 
were obtained using weighted matrices in the 
BCT toolbox.27

Connectivity measures
Modularity.  Brain networks can be separated 
into modules: groups of regions that have more 
connections to one another than expected in a 
randomly sampled group of regions. Thus, mod-
ules are densely interconnected regions that 
have only sparse connections to other regions.28 
Higher modularity (Q) reflects an improved 
capacity of the network to divide itself into com-
munities and thus represents a more efficient 
network structure. Modularity was defined as 
the relationship between intra- and inter-mod-
ule connections and calculated using the New-
man algorithm:28–30

Q
m

A P g gij ij
ij

i j= −  ( )∑1
2

δ ,

where Aij is the actual number of edges falling 
between a particular pair of vertices i and j; Pij is 
the probability that an edge falls between every 
pair of vertices i, j; gi is the community to which 
vertex i belongs; m is the number of edges in the 
network; and δ(r, s) = 1 if r = s and 0 otherwise.30

Clustering coefficient. The clustering coefficient (C) is 
a measure of local organization reflecting the num-
ber of connections between directly neighboring 
regions (the topological motif of a triangle), with 
sparsely interconnected regions showing lower val-
ues.31 The clustering coefficient was calculated, 
reflecting the number of connections between the 
neighbor’s nodes, using the following algorithm:32

C
t

k ki
i

i i
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−

2
1( )

,

where ki is the degree of node i and ti is the num-
ber of triangles attached to the node.

Local efficiency. The efficiency of a network primar-
ily reflects how information is exchanged between 

regions. Local efficiency (Eloc) quantifies a network’s 
resistance to failure and is defined as the inverse of 
the shortest path length computed only for the 
neighborhood of the region.33 The local efficiency is 
calculated using the Dijkstra’s algorithm:32,33

E G
N
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i G

i( ) ( )=
∈
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Transitivity. The transitivity (T) of the network is a 
measure of the probability that two regions neigh-
bor each other. The transitivity of a graph is based 
on the relative number of triangles in the graph, 
compared with the total number of connected 
triples of regions,34 and represents a cost-efficient 
organization principle. The transitivity of a net-
work was defined as34

T
t
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−
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∑
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,

where ti  is the number of triangles around the 
node i , N  is set of all nodes in the network, and 
ki is the degree of the node i .

For the above-described network measures, 21 
density intervals (range 0.1–0.6) were applied to 
threshold the connection matrix with an incre-
mental interval of 0.025. The density range was 
chosen in such a way that the network was fully 
connected at the minimum value and fully discon-
nected at the maximum value.35 Thresholding the 
constructed association matrices at a minimum 
network density of both groups (none of the net-
works are fragmented) and at a range of network 
densities for comparing the network topologies 
across that range provides a robust strategy to 
conduct legitimate statistical inference on the data 
and to minimize the number of spurious links in 
each network.13,36,37 An absolute threshold would 
influence the network measures and reduce inter-
pretation of between group results.38 Finally, the 
topological organization of the resultant matrices 
at each density level was examined for each study 
group. Creating matrices for each density interval 
(individual values) allowed us to compare the 
mean of the groups by employing the following 
statistical approaches.

Statistical analysis
Statistical evaluation was performed with SPSS 
software (version 22.0; IBM). Clinical and demo-
graphic data of patients with NEDA and EDA 
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were compared using a Student’s t test for con-
tinuous variables and Pearson’s chi-squared test 
for categorical variables. Paired sample t tests 
were used to compare EDSS values between 
baseline and 12 months. Unless otherwise indi-
cated, data are expressed as mean ± SD (stand-
ard deviation).

For all network measures (clustering coefficient, 
modularity, local efficiency and transitivity) of the 
patients and HCs, the Shapiro–Wilk normality 
test showed that the data were normally distrib-
uted between the time points. For the compari-
son of the network measures between the groups, 
repeated measures analysis of variance (ANOVA) 
was used. Mauchly’s test of sphericity, used to 
validate the repeated measures ANOVA, indi-
cated that the assumption of sphericity had not 
been violated. Furthermore, applying posterior 
predictive distribution (Bayesian statistics) we were 
able to assess model fit and also found with this 
statistical approach that the observed data are 
normally distributed (please refer to Supplement 
Figure 1).

The network measures at baseline and follow up 
were compared as follows. First, the baseline 
connectivity value and the connectivity value 
after 12 months (t2) were compared with a one-
way analysis of variance (ANOVA) for all MS 
patients and for HCs, separately, as each group 
was scanned with a different scanning protocol. 
Next, the longitudinal within-group comparison 

between MS patients with and without disease 
activity (EDA versus NEDA) was performed 
with a two-way ANOVA (all patients were 
scanned with the same scanning protocol). 
Here, we not only aimed to assess the main 
effect of the two independent variables (factor 
‘group’ [NEDA versus EDA] and factor ‘time’ 
[baseline versus 12 months]) but also the inter-
action between them (‘group’ and ‘time’ inter-
action). Finally, a one-way ANOVA was 
performed to assess longitudinal differences for 
the individual topological measurements over 
the five time points in our additional analysis. In 
cases of a significant F value, we performed post 
hoc t tests Bonferroni-corrected for multiple 
comparisons (p < 0.05).

For the topological analyses and the representa-
tion of clusters, we used the network measures 
clustering coefficient and only show nodes that were 
above the 95th percentile of the maximum value 
to depict areas of maximum cluster formation.

Results
In the main analysis, 92 RRMS patients and 101 
HCs were followed-up over 1 year with a median 
follow up of 12.0 (10.0–14.0) months and 11.5 
(10.0–16.0) months, respectively (p = 0.655). Of 
the MS patients, 56 had NEDA during the study 
period, while 36 had disease activity (EDA group) 
(Figure 2). Demographic and clinical data of all 
MS patients combined and after division into 

Figure 2.  (A) Disease activity distribution. Distribution of 92 patients into patients with disease activity (EDA) 
and those without disease activity (NEDA). (B) Disease activity composition. Composition of the 36 patients with 
disease activity (clinical relapse, Expanded Disability Status Scale (EDSS) worsening, or magnetic resonance 
imaging (MRI) activity) during the 12 month follow-up period.
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NEDA and EDA groups is presented in Table 1 
and Supplementary Tables 1, 2a, and 2b.

Overall, the longitudinal cortical network analysis 
revealed an increase in local and modular connec-
tions over 12 months in patients with MS. These 
longitudinal changes were attested both in 
patients with NEDA and in patients with EDA, 
indicating continuous cortical reorganization 
independent of disease activity. This local and 
modular cortical reorganization was not detected 
in HCs over the same period of time. Similar net-
work alterations were seen even at shorter periods 
of follow up already at a timespan of less than 
12 months in an independent patient cohort.

Longitudinal network changes
In the case of the local network measures, we 
found that modularity, clustering coefficient, local 
efficiency, and transitivity characterizing local con-
nectivity properties (based on 20 density values 
per group per time point) increased over 1 year in 
patients (Figure 3).

Modularity increased between baseline and 
12 months in patients (F(1,38) = 8.472, p < 0.001; 
[post hoc: p < 0.001]), but no significant differences 
were detected in HCs (F(1,38) = 1.685, p > 0.05). 
This longitudinal increase suggests cortical reorgan-
ization towards a structure with stronger intramod-
ular connections and increased local homogeneity, 

Table 1.  Demographics of the MS patients. Clinical data of MS patients at baseline (0 months) and after division into NEDA and EDA 
groups (after 12 months).

MS patients 
(n = 92)

HC
(n = 101)

NEDA
(n = 56)

EDA
(n = 36)

p value
(NEDA versus 
EDA)

p value
(MS versus HC)

Sex
(female/male)

65/27 59/42 39/17 26/10 p = 0.791a p = 0.076a

Mean (± SD) age at MRI
(years)

32.9 ± 9.9 19.7 ± 0.9 34.6 ± 9.0 30.4 ± 10.8 p = 0.052b p < 0.001b

Mean (± SD) age at 
diagnosis
(years)

31.9 ± 9.8 - 33.2 ± 9.1 29.9 ± 10.7 p = 0.115b –

Mean (± SD) disease 
duration (months)

12.1 ± 14.5 - 15.1 ± 15.7 7.4 ± 10.9 p = 0.006b –

Median (range) follow-up
(months)

12.0
(10.0–14.0)

11.5
(10.0–16.0)

12.0
(10.0–14.0)

12.0
(10.0–14.0)

p = 0.163c p = 0.655c

Median (range) EDSS
(at baseline)

1.0 (0–4.0) – 1.0 (0–4.0) 1.5 (0–3.5) p = 0.637c –

Median (range) EDSS
(after 12 months)

1.0 (0–4.0) – 1.0 (0–4.0) 1.0 (0–4.0) p = 0.268c –

Median (range) LV at 
baseline
(ml)

1.9
(0.02–33.0)

– 2.3
(0.1–33.0)

1.6
(0.02–24.2)

p = 0.115c –

DMDd

(no/yes)
30/62 – 14/42 16/20 p = 0.052a –

DMD, disease-modifying drug; EDA, evidence of disease activity; EDSS, Expanded Disability Status Scale; HC, healthy control; LV, lesion volume; 
MS, multiple sclerosis; NEDA, no evidence of disease activity; SD, standard deviation.
ap value derived from Pearson’s chi-squared test (sex and disease-modifying treatment).
bp value derived from Student’s t test (age at MRI, age at diagnosis, and disease duration).
cp value derived from Mann–Whitney U test (follow-up time, EDSS at baseline, EDSS at follow up, and lesion volume).
dA detailed list of each DMD (at baseline and at follow up) and the corresponding statistics between NEDA and EDA patients is provided in the 
Supplementary Tables 2a and 2b.
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indicated by more connections within a module 
than expected by chance.

For the network measure clustering coefficient, 
ANOVA revealed an increase in patients over 
time (F(1,38) = 6.475, p < 0.001; [post hoc: p < 
0.001]), whereas there was no difference in HCs 
(F(1,8) = 1.378, p > 0.05). Increased clustering 
coefficient indicates local pathology spreading 
and homogenization in neighboring regions. 
This increase in local clusters was seen in the 
temporal (middle temporal gyrus and hippocam-
pus), occipital (cuneus and calcarine cortex), 
and parietal (precuneus) lobes. Clusters with the 
highest increase in clustering coefficient (above 
the 95th percentile) are shown in Figure 4 and 
Table 2.

The network measures transitivity also increased 
in patients (F(1,38) = 5.982, p < 0.001; [post 
hoc: p < 0.001]), and showed no significant 

differences in HCs (F(1,38) = 1.637, p > 0.05). 
In addition to clustering coefficient, the increased 
network measure transitivity indicates the pres-
ence of a greater number of triangles in a brain 
network. It is another representation of proxim-
ity as well as a measure of the facilitation of 
information exchange between network anatom-
ical regions.

Moreover, we detected a longitudinal increase of 
local efficiency over 12 months in patients (F(1,38) 
= 6.268, p < 0.001; [post hoc: p < 0.001]) com-
pared with HCs (F(1,38) = 1.743, p > 0.05). 
Higher values of local efficiency are associated 
with strengthened short-range connections 
between neighboring regions that are involved in 
local information processing. Thus, in addition 
to enhanced local connectivity patterns, the net-
work capacity for local information transfer 
between neighboring anatomical regions was 
strengthened.

Figure 3.  Longitudinal network measures of multiple sclerosis (MS) patients and healthy controls.
The plots show the estimated mean and standard deviation values at the two time points for the measures clustering 
coefficient, modularity, local efficiency, and transitivity for the cortical thickness analyses (**p < 0.001).
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Similar cortical reorganization in patients with 
NEDA and EDA
Comparing patients with NEDA and EDA, we 
observed that changes in network measures  
were in accordance with the results of the com-
plete patient cohort. Specifically, modularity, clus- 
tering coefficient, local efficiency, and transitivity 

increased significantly over 1 year in both groups 
(Figure 5).

Precisely, the two-way ANOVA for modularity 
was not significant for the factor ‘group’ 
(F(1,78) = 1.245, p > 0.05), but significant for 
the factor ‘time’ (F(1,78) = 3.547, p < 0.01), 

Table 2.  Brain regions of restructured clusters. Results of the comparison of clustering coefficient between 
baseline (0 months) and 12 months from the complete multiple sclerosis patient cohort (eight brain regions 
with the corresponding p value). Only the cortical regions above the 95% confidence interval of clustering 
coefficient are shown. The Montreal Neurological Institute (MNI) coordinates (x, y, and z) and p values are given.

Lobe Brain region Side x y z p value

Frontal Olfactory cortex (OLF) L −9 15 −12 0.0002

Central Precentral gyrus (PRE) R 40 −8 52 0.0004

Parietal Precuneus (PRC) L −8 −56 48 0.0003

Precuneus (PRC) R 9 −56 44 0.0006

Occipital Cuneus (CUN) L −7 −80 27 0.0001

Calcarine cortex (CAL) R 15 −73 9 0.0005

Temporal Middle temporal gyrus (TEM) L −37 15 −34 0.0004

Hippocampus (HIP) R 28 −20 −10 0.003

Figure 4.  Topological representation of restructured clusters.
Topological representation of clustering coefficient changes between baseline (0 months) and the last time point (12 months). 
Regions with the highest clustering coefficient changes over time (only clusters above the 95% confidence interval are shown) 
as a marker of local reorganization.
CUNL, cuneus (left); OLFL, olfactory cortex (left); TEML, middle temporal gyrus (left); CALR, calcarine cortex (right); HIPR, 
hippocampus (right); PRCL, precuneus (left); PRCR, precuneus (right); PRER, precentral gyrus (right).

https://journals.sagepub.com/home/tan


V Fleischer, N Koirala et al.

journals.sagepub.com/home/tan	 9

and post hoc tests revealed an increase over time 
for both NEDA (p < 0.01) and EDA patients  
(p < 0.01).

For clustering coefficient, the ANOVA was not 
significant for the factor ‘group’ (F(1,78) = 
1.213, p > 0.05), but significant for the factor 
‘time’ (F(1,78) = 3.647, p < 0.01). Post  
hoc tests showed an increase over time for 
NEDA (p < 0.01) as well as for EDA patients  
(p < 0.01).

For transitivity (factor ‘group’ (F(1,78) = 1.317, 
p > 0.05) and factor ‘time’ (F(1,78) = 4.214,  
p < 0.01)) our results also demonstrated an 
increase over time for NEDA (p < 0.01) and 
EDA patients (p < 0.01) in post hoc testing.

Finally, ANOVA for local efficiency was not signifi-
cant for factor ‘group’ (F(1,78) = 1.145, p > 0.05), 

but significant for factor ‘time’ (F(1,78) = 3.854,  
p < 0.01). The post hoc results of local efficiency 
showed an increase over time for NEDA (p < 0.01) 
and EDA patients (p < 0.01).

For all measures, the interaction (‘group’ × 
‘time’) was not significant.

Short-term cortical network reorganization in 
MS
In our short-term analysis with quarterly MRI 
scans (all with NEDA) we could replicate the lon-
gitudinal cortical reorganization at the local level. 
Over five consecutive time points we found that 
modularity (F(4,95) = 2.612, p < 0.01), clustering 
coefficient (F(4,95) = 3.547, p < 0.001), local effi-
ciency (F(4,95) = 3.0874, p < 0.01), and transi-
tivity (F(4,95) = 3.214, p < 0.01) all increased 
significantly (Figure 6).

Figure 5.  Longitudinal network measures of multiple sclerosis (MS) patients without and with disease activity 
(NEDA versus EDA).
The plots show the estimated mean and standard deviation values at the two time points for the measures clustering 
coefficient, modularity, local efficiency, and transitivity for the cortical thickness analyses (*p < 0.01).
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For clustering coefficient (C) and modularity (Q), post 
hoc tests revealed a significant increase between 
baseline (0 months) and 9 months (p < 0.001 for C 
and p < 0.01 for Q) and between baseline and 
12 months (p < 0.0001 for C and p < 0.01 for Q). 
Furthermore, transitivity showed a similar dynamic 
with an increase over time, suggesting a higher 
connection probability of neighboring nodes. Post 
hoc tests revealed significantly higher values 
between baseline and 6 months (p < 0.001), 
between baseline and 9 months (p < 0.001), and 
between baseline and 12 months (p < 0.0001). 
Moreover, post hoc tests were significant between 
the values at 3 and 9 months (p < 0.01). Post hoc 
tests for local efficiency revealed significant differ-
ences between the values at baseline and at 
12 months (p < 0.0001). Finally, post hoc testing 
was significantly different between 3 months and 
9 months (p < 0.001) and 12 months (p < 0.001).

No change in cortical thickness and brain 
volume
Both established methods for investigating whole-
brain atrophy and regional changes in cortical 
integrity (SIENA and FreeSurfer) revealed no 

longitudinal differences in our early disease cohort 
over 12 months.

At the examined statistical threshold (p < 0.05 
false discovery rate corrected and p < 0.001 
uncorrected), there were no significant changes 
over time in cortical thickness and no significant 
difference between patients divided according to 
their inflammatory activity (NEDA versus EDA). 
Moreover, no regions with longitudinal atrophy 
over 12 months were attested in HCs.

Likewise, PBVC evaluated using SIENA showed 
no significant results. The mean PBVC estimate 
from the 92 MS subjects did not differ significantly 
from zero (family-wise error correction was applied 
for multiple comparisons). In addition, there were 
no significant differences (p > 0.05, family-wise 
error-corrected) in longitudinal brain volumes of 
the patients in the NEDA and EDA groups.

Discussion
By assessing the cortical architecture in a patient 
cohort with not yet measurable GM atrophy, we 
provide evidence for early structural reorganization 

Figure 6.  Longitudinal short-term network measures of multiple sclerosis (MS) patients scanned every 
3 months.
The plots show the estimated mean and standard deviation values at the five time points for the measures clustering coefficient, 
modularity, local efficiency, and transitivity for the cortical thickness analyses. (*p < 0.01; **p < 0.001; ***p < 0.0001).
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towards increased local and modular connectivity. 
These patterns were detected in the cerebral net-
works, reconstructed from cortical thickness meas-
urements applying graph theoretical analyses, in 
both patients with and without disease activity, but 
were absent in HCs.

Our analysis algorithm depicted cortical reorgani-
zation proceeding beyond established measures of 
brain or cortical atrophy and revealed cortical net-
work changes at even shorter intervals of merely 
6 months in a frequently followed-up subanalysis. 
Increased local connectivity and modularization 
generally represent an optimized network organi-
zation principle of biological systems in response 
to changing environment reported during brain 
development and maturation in humans.39,40 In 
contrast to this evolutionary modularization, the 
modular structure is decreased later in life with 
healthy aging.41,42 As modular evolution is pre-
dominantly detectable in the early lifespan and in 
maturation,40 it is conceivable that the increase in 
network modularity in this very early RRMS 
cohort might not depict the mere consequence of 
damage, but rather an evolving reorganization pro-
cess in the cortex in order to deal with widespread 
focal tissue damage.

The applied network approach of depicting the 
structural connectome of MS patients highlights 
cortical regions with similar microstructural prop-
erties, which is most notably not depicted in cor-
tical thickness measurements alone.12,43 The 
observed increase in network measures on the 
local and community level imply that adjacent 
cortical regions in particular develop a higher 
probability to show structural covariance with 
each other, albeit these anatomical connectivity 
patterns represent only an indirect degree of 
inter-regional interactions. Nevertheless, struc-
tural covariance networks are replicable, herita-
ble, and representative of disease-related changes 
in topology.44 In addition, several attempts have 
highlighted a convergence of cortical thickness 
covariance networks with diffusion MRI connec-
tions45 as well as functional connectivity,46 sug-
gesting that the applied network approach also 
contains information about correlated intrinsic 
functional activity. The previously reported par-
tial congruence between cortical thickness recon-
structed networks and diffusion MRI as well as 
functional MRI-derived networks also suggest 
cellular mechanisms behind structural covari-
ance, e.g. synaptic physiology.47 Hence, our data 

infer that MS disease manifestation seems to 
induce an increasingly synchronized structural 
connectivity of cortical near-neighbor regions.

Moreover, we found that while local and modular 
connectivity increased over 12 months in our 
cohort, the network connectivity measures did 
not change in HCs. This not only underscores the 
methodological reliability of the introduced struc-
tural measurements in the test–retest manner, but 
also demonstrates that no similar cortical reor-
ganization occurs over the same period of time in 
healthy people. One limitation of this comparison 
is that HCs and MS patients were not age-
matched in our study, however we used age as a 
covariate in our statistical model considering that 
cortical thickness covariance networks can be 
altered across lifespan, at least between young 
and older adults.42

Recent studies demonstrated long-range discon-
nection in MS patients.17,48 This global disrup-
tion of structural networks correlated with 
increased lesion volume15 and disease duration.18 
Our findings demonstrate increasing local and 
modular connectivity in early MS over time. 
Modularization and local connectivity were 
reported to maintain function and network effec-
tiveness and therefore indicate an organization 
concept allowing for rapid adaptation.49 Thus, in 
the concept of network science, the role of local 
connectivity is to efficiently enhance the fault-
tolerance ability and to thereby resist external 
attacks (e.g. neuroinflammatory activity).33

In line with this, the network reorganization 
observed here occurred independently of disease 
activity indicating that continuous strengthening of 
local connectivity is not hampered by acute inflam-
matory attacks. More than 80% of our patients 
with EDA (see Figure 2) had MRI activity, mean-
ing that new or enlarging T2-hyperintensive lesions 
have appeared on the follow-up MRI. Despite this 
MRI-visible tissue damage, patients with and with-
out disease activity both experienced cortical net-
work reorganization. This suggests that both active 
and stable patients underwent continuous micro-
scopic changes within the cortex which were cap-
tured by structural covariance networks but not by 
cortical thickness measurements alone. The simul-
taneous homogenization of near-neighbor cortical 
regions (within NEDA and EDA patients) might 
originate either from direct microscopic rearrange-
ments within in the cortex or from ‘conventional 
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MR-invisible’ changes within the normal-appear-
ing WM,50 which might impact the cortical struc-
ture through apparently unaffected WM tracts. 
Taken together, the evidence of network reorgani-
zation even in patients with NEDA supports the 
view that cortical restructuring occurs beyond 
detectable atrophy and regardless of observable dis-
ease activity, even though the sensitivity to detect 
MS disease activity is already higher when applying 
a composite such as NEDA rather than single com-
ponent measures. Owing to the low proportion of 
patients with EDSS worsening within the EDA 
cohort (sustained progression within the NEDA 
composite measure is a characteristic hallmark of 
the later stages of the disease), we cannot exclude 
that the observed local network reorganization 
probably abates when persistent clinical worsening 
occurs.

We could recently show that the connectivity of 
WM reconstructed from diffusion MRI with 
probabilistic tractography is characterized by 
increased modular and local processing in patients 
1 year after disease onset in a cross-sectional 
approach.18 These patterns were detectable even 
in patients with CIS who displayed network 
measures between those of MS patients and 
HCs.19 This suggests that local network reorgani-
zation has already emerged at this stage. However, 
these processes of network reorganization faded 
out in patients with longer disease duration.18 
Moreover, it was recently demonstrated that the 
disruption of structural networks is associated 
with impaired cognition, especially involving 
attention and executive functions.51 In this study 
of structural networks reconstructed through 
probabilistic tractography, a decline in structural 
connectivity was depicted by decreased global 
efficiency and nodal strength in a mixed group of 
RRMS and secondary progressive MS patients.

Our analyses of atrophy and brain volume loss 
revealed no longitudinal differences in our early 
disease patient cohort over 12 months. Several 
algorithms exist to capture atrophy; the two most 
robust and established (SIENA and FreeSurfer) 
have been applied here. However, the short dis-
ease duration (less than 5 years), the minor clini-
cal disability of our patients (median EDSS = 1) 
and the high proportion of patients on disease-
modifying drugs (>67%) as well as inter- and 
intra-subject variations in longitudinal measure-
ments of brain volume20,52 render these morpho-
metric measurements not sensitive enough to be 

picked up in our cohort. In contrast, the applied 
network algorithms revealed quantifiable changes 
within the cortex architecture during the study 
period.

In our study, several brain regions more strongly 
showed increased local connectivity and 
increased clustering. Cluster formation within 
the cortex was depicted in the precuneus, 
cuneus and calcarine cortex, and the hippocam-
pus. These areas are intensively interconnected 
with widespread cortical regions and are directly 
involved in higher-order cognitive functions.53 
The bilateral anatomical representation with 
cluster formation in the precuneus underlines 
the importance of this area for compensation 
and adaptation for brain function maintenance 
with disease progression.54

In our additional analysis at shorter periods, we 
found a similar increase in local and modular 
connectivity patterns. A more in-depth analysis of 
time intervals shorter than 1 year underlines that 
the observed cortical processes do not fluctuate 
over 12 months but rather evolve continuously. 
The applied algorithms show quantifiable changes 
in brain architecture at periods of 6 months (local 
efficiency and transitivity) and 9 months (modular-
ity and clustering coefficient), whereas the morpho-
metric variables (brain and cortical atrophy) 
remained insensitive.

It should be taken into account that brain or cor-
tical atrophy may prove to be valuable markers to 
be added to the composite measure of NEDA, 
which is heavily weighted towards focal inflam-
matory disease activity and to a lesser extent to 
neurodegeneration.55 However, there is not yet 
consensus on an MRI-derived atrophy threshold 
on an individual basis to reliably classify subjects 
into patients versus HCs.7 In addition, our applied 
algorithms are used to distinguish between groups 
and are not directly applicable for prediction at 
the individual level. Recent methodological 
approaches try to solve this limitation by develop-
ing techniques that describe an individual cortex 
as a network.56,57 This single-subject GM net-
work approach was lately applied in MS patients 
and showed that these graphs captured informa-
tion that is associated with individual cognitive 
impairment.58 However, in our study our ultimate 
focus was not on individual subjects, but rather 
on the pathological substrates of disease evolution 
in the initial phase of the disease.
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Conclusion
In conclusion, our findings provide evidence that 
structural network reorganization processes 
emerge cortically in the absence of measurable 
atrophy in the initial phase of MS. Restructuring 
of the cortical architecture subsequent to clinical 
disease manifestation suggests a primordial 
response of the cortex evolving from the onset of 
the disease, with relevance for the clinical out-
come of MS patients. Hence, future studies 
should evaluate the impact of increased local and 
modular network properties within the cortex on 
the long-term disease progression and functional 
impairment, including cognitive performance. 
Finally, it is important to determine whether 
changes in graph theoretical metrics in RRMS are 
consistent over time compared with other stages 
of the disease (CIS, secondary or primary pro-
gressive MS). How local and modular architec-
ture progresses in patients with initial RRMS 
before passing over to the progressive form of the 
disease will be of particular interest.
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