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Introduction
Phylogenetic is a field of biology that studies how organisms are 
related during evolution. The basic principle is that the members 
of an organism set that descend from the same ancestor share an 
evolutionary history. A problem in phylogenetic analysis is to 
determine similarities and differences between genetic material 
sequences. For example, the study of the degree of difference 
between two samples A and B of genetic material sequences. For 
this, the diversity measure UniFrac,1 weighted UniFrac and nor-
malized weighted UniFrac2 have been used.

The above diversity measures are used by several authors in 
microbiology field to compare genetic material samples. For 
example, Frank et al3 said the diversity measure UniFrac is used 
to check whether patients with inflammatory bowel disease 
present samples from different microbial communities to 
patients without the disease. According to Costello et al,4 the 
weighted UniFrac and normalized weighted UniFrac are used 
to better understand the structure of the microbial community 
in skin sites and other body habitats between different indi-
viduals and at different times, and it is suggested that these 
trends may reveal how changes in the microbial cause or pre-
vent diseases. Another application of these measures is given in 
Charlson et al,5 which are used to compare the population of 
bacteria in the lungs and their relationship with the population 
of bacteria of the upper respiratory tract, the former in healthy 
individuals. On the other hand, Ley et  al6 said the diversity 
measure was used to measure the difference between bacterial 
communities in mice intestines, in order to test the effects of 
kinship and genotype diversity.

Moreover, from the theoretical point of view, diversity 
measures UniFrac give rise to other measures, for example, 

Chang et al7 proposed a new weighting scheme assuming that 
the sequences are randomly distributed; this scheme is called 
weighted UniFrac adjusted variance (VAW-UniFrac) and it is 
proposed as an improvement of weighted UniFrac. Furthermore, 
the VAW-UniFrac measure is compared to the UniFrac and 
weighted UniFrac measures to determine which is more effi-
cient. Chen et al8 gave a generalization of the UniFrac diversity 
measures, this generalization is more usefulness to detect a set 
of biologically relevant changes than the UniFrac measure.

However, despite its practical application in the microbi-
ology field, in Schloss,9 it is mentioned that ‘A recent simu-
lation study concluded that UniFrac is unsuitable as a 
distance metric and should not be used for multivariate 
analysis’ that means, it is not appropriate to use diversity 
measures UniFrac as metrics and they should not be used in 
multivariate analysis.

Recently, in Evans and Matsen10 was mentioned that the 
weighted UniFrac measure is the classical Kantorovich-Rubinstein 
metric11–14 or Earth Mover Distance15 between the corresponding 
empirical distribution of samples of genetic material on a phyloge-
netic tree. The above, under assumption that the sample size is 
large enough. In this way, McClelland and Koslicki16 propose the 
earth mover distance UniFrac (EMDUniFrac) and an algorithm 
to compute it.

In this article, we proof that the original version of diversity 
measures UniFrac are not metrics but they are pseudosemimet-
rics. They satisfy the following definition.

Definition 1.  Let X  be a set, a function d X X: [0, )× → +∞  
is a pseudosemimetric in X  if for all x y X, ∈  the function d  
satisfies
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1.	 If x y= , then d x y( , ) = 0 .
2.	 d x y d y x( , ) = ( , ) .

The above justifies why UniFrac measures can behave 
unexpectedly for small samples in multivariate data analysis, 
but it is not the case when the sample size is large enough. 
Thus, when the sample size is very small, it is recommended to 
use EMDUniFrac metric.

The rest of the work is developed as follows. In section 
“Rooted phylogenetic trees,” the necessary concepts will be 
given to define diversity measures. In section “Diversity meas-
ures UniFrac,” the three versions are defined: UniFrac, weighted 
UniFrac, and normalized weighted UniFrac, and we will show 
that they are pseudo-parametric; in this way, we prove that they 
are not metrics and how they are susceptible to small samples. 
In section “EMDUniFrac,” the UniFrac measures are esti-
mated for some examples and they are compared with 
EMDUniFrac metric. Finally, some conclusions will be pre-
sented in section “Conclusions.”

Rooted Phylogenetic Trees
The diversity measures are calculated on a given phylogenetic 
tree. In this section, the concepts related to trees will be defined. 
They will be useful to address diversity measures UniFrac.

Basic definitions

Warnow17 defines a tree as a connected graph without cycles. A 
rooted tree T  is a tree in which a vertex r  is designated as root. 
The root in phylogenetic represents the common ancestor in 
the species represented in the tree T . The vertices represented 
the characteristics that allow to establish the similarities 
between different species. These characteristics are given by 
genetic material sequences.

The vertex w  is parent of v  and v  is a child of w , if w  and 
v  are vertices in the rooted tree T  such that v w→ . Moreover, 
a vertex l  is a leaf if l  does not have any children and T  is a 
binary tree if it has vertices with at most two children.

On the other hand, in a tree T , a path from vertex x  to 
vertex y  is the sequence of vertices in the graph such that 
there exist an edge between the vertex x  and the next one and 
so on until y , denoted by [ , ]x y . A branch i  is the vertices set 
and edges that belong to the path that goes from the leaf li  to 
the root r . We call leaf set of T  to the set S  built with differ-
ent labels that are assigned to tree leaves T  and denoted by 
L T( ). Additionally, a clade of T  is a subset A  in L T( )  that it 
contains the leaf set of a subtree T , with root in some vertex 
v T∈  and it is denoted by L Tv( )  and C T( )  is the clades set 
L Tv( )  such that v T∈ . The set C T( )  contains all the singu-
lar sets of leaves, a set that contains all the leaves and a clade for 
each remaining vertex of T .

Otherwise, Warnow17 associated the parameter p e( )  to the 
edge e T∈  where p e( )  denotes the probability of changing 

state where 0 < ( ) < 0.5p e . A model tree Cavender-Farris-
Neyman (CFN) is a pair ( , )T θ  where T  is a binary rooted 
tree with leaf set { ,..., }1 2l l  and θ  gives the p e( )  values for all 
edges e T∈ . Under the CFN model, the number of changes in 
an edge is modeled by a Poisson random variable with expected 
value λ( )e . Then, instead of using the probability substitution 
p e( )  in each edge, we will use λ( )e , with the condition that 
0 < ( )λ e  for all e .

Thus, the branch length i , denoted by d li( ) , is a positive 
number that represents the rate of change between the root r  
and the leaf li , it is

d l ei
e r li

( ) = ( )
[ , ]∈
∑ λ

Let λ[ ]ij  be the expected number of changes on the way 
[ , ]l li j  on the tree T , it follows that

λ λ[ ]
[ , ]

= ( )ij
e li l j

e
∈
∑

We can see by the definition that λ  is the matrix distance 
on the road in a tree, where the path distance between two 
leaves is the sum of branch length and all branch lengths are 
positive. The matrix λ  is an additive matrix, which is defined 
as follows.

Definition 2.  A matrix Mn n×  is additive if there is a three T  
with leaf set { ,..., }1l ln  and the lengths of the edges are non-
negative, that is branch length of [ , ]l li j  in T  is equal to 
M li l j[ , ] .

Phylogenetic tree construction

To construct a binary rooted phylogenetic tree using two sam-
ples A  and B , it is necessary to consider the partial order 
definition.

Definition 3.  A partial order is a binary relation R  in a set S  
such that for any a b c S, , ∈  satisfies

1.	 Transitivity: 〈 〉 ∈a b R,  and 〈 〉 ∈b c R,  imply that 
〈 〉 ∈a c R, .

2.	 Reflexivity: 〈 〉 ∈ ∀ ∈a a R a R, .
3.	 Antisymmetry: 〈 〉 ∈a b R,  and 〈 〉 ∈b a R,  imply that 

a b= .

Two elements a  and b  are compatible if 〈 〉 ∈a b R,  or 
〈 〉 ∈b a R, .

Hasse diagram is a graphic scheme of a partially ordered set. 
To construct the Hasse diagram of a set, a vertex is created for 
each element of S  and a directed edge x y→  if 〈 〉 ∈x y R,  
and x ≠ y. They are sorted from bottom to top, so the directed 
edges go up. The directed edges are removed x y→  if there is 
a third vertex z  such that 〈 〉 ∈x z R,  and 〈 〉 ∈z y R, .
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Let T  be a rooted phylogenetic tree and the clades set 
C T( ) . The sequences A  and B  of genetic material are in 
relation, if 〈 〉 ∈A B R,  if and only if A B⊂ . We can see that 
the relation R  is partial order.

Now, we will construct the Hasse diagram by C T( )  set. A 
graph is made assigning a vertex for each element in the set 
C T( )  and a directed edge from vertex A  to different vertex 
B  if A B⊂ . The smallest subset B  must be found, and if 
A B⊂ , we put a directed edge from A  to B . As containment 

is transitive, if A B⊂  and B C⊂ , so A C⊂ . Therefore, if 
there are directed edges from A  to B  and from B  to C  so 
there are edges from A  to C , and we can remove the directed 
edge from A  to C  without losing information.

The next theorem say that a binary rooted tree T  is iso-
morphic to the Hasse diagram built by C T( ) . It is proven by 
Warnow.17

Theorem 1.  Let T  be a rooted tree in which each internal node 
has two children. Then the Hasse diagram built by C T( )  is 
isomorphic to T . In this way, we can get the binary rooted tree 
T  from Hasse diagram built using the set C T( ) .

In the next section, the diversity measures are addressed in 
their three versions, UniFrac, weighted UniFrac, and normal-
ized weighted UniFrac. Also, we will show that they satisfy the 
pseudosemimetric definition and we will give examples where 
diversity measures do not satisfy the metric definition.

Diversity Measures UniFrac
To define the diversity measures UniFrac, it is considered a 
binary rooted phylogenetic tree T  for two samples A  and B  
of genetic material sequences, where sample A  has At  
sequences and sample B  has Bt  sequences, not necessarily 
different, that means that A B∩ ≠ ∅  may occur and in each 
sample could be two or more equal sequences; furthermore, 
each sample can contain the root or not (common ancestor 
between species A  and B ). Let T  be the tree with n  
branches and let d li( )  be the length for each branch, with 
i n= 1,..., , they coincide with the distance from the root ( r ) to 
the sequence ( li ) that is in the leaf on ith  branch.

Let Ai  be the number of vertices in A that are in branch i, 
analogously, Bi  the number of vertices in B  that are in branch 
i  We define

P A
A

P B
Bi

A i

t
i
B i

t
= =and

note that they are the proportions of descendant sequences in 
samples A  and B  in the i  branch, respectively.
Example 1.  Consider the rooted tree in Figure 1. It is constructed 
using samples A r a a a= { , , , }1 1 2  and B r b b= { , , }1 2 , where 
At = 4  and Bt = 3 . The first branch has the sequences r  and b1 , 

where r A∈  and { , }1r b B∈ , so the proportion of descendant 
sequences in samples A  and B  on branch 1 are

P PA B
1 1= 1

4
= 2
3

and 	 (1)

respectively. The second branch has the sequences r a b, ,1 2  
where { , , }1 1r a a A∈  and { , }2r b B∈ , in this way

P PA B
2 2= 3

4
= 2
3

and

analogously, the proportions of descendant sequences in third 
branch are

P PA B
3 3= 4

4
= 1
3

and

In later examples, the sequences in leaf on the ith  branch 
will be denoted by li  (see Figure 1) in order to follow the given 
notation. This is because to definite the diversity measures, we 
need the branch length ( d li( ) ) whose notation is given for 
sequences in the ith  leaf.

UniFrac

The diversity measure UniFrac was proposed by Lozupone and 
Knight1 and it is defined as

d A B
d l I P I P

d l
u i i

A
i
B

i

n

ii

n( , ) =
( )| ( > 0) ( > 0)|

( )
=1

=1

−∑
∑

	 (2)

where I ( )⋅  is the indicator function. We can see that the abso-
lute value is 0  or 1 . It is 1  when the ith  branch has sequences 
in samples A  or B  and it is 0  when has two samples.

Example 2.  Consider the raised tree in Example 1, with 
i = 1, 2,3. The proportion of descendant sequences in A  and 
B  are greater than 0 , see the expression (1), then

I P I Pi
A

i
B( > 0) = 1 ( > 0) = 1and

Figure 1.  (a) Tree for samples A  and B. (b) Tree for samples A  and B  

with the label leaves for li  with i = 1,2,3  ( b l b l a l1 1 2 2 2 3= , = , = ).
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thus,

| ( > 0) ( > 0)|= 0I P I Pi
A

i
B−

The diversity measure UniFrac version ignores the abun-
dant information about sequences, only consider its presence or 
absence in the branch.

Proposition 1.  The diversity measure UniFrac is a 
pseudosemimetric.

Proof.  We will prove that the diversity measure UniFrac satis-
fies Definition 1. Moreover, we will give an example where it 
does not satisfy the metric definition.

1.	 If A B= , it is A Bi i=  for all i  and A Bt t= , so

I P I Pi
A

i
B( > 0) = ( > 0)

for all i , thus,

| ( > 0) ( > 0)|= 0I P I Pi
A

i
B−

therefore,

d A Bu ( , ) = 0

2.	 To prove symmetry, we consider

d A B
d l I P I P

d l

d l I P

u i i
A

i
B

i

n

ii

n

i i

( , ) =
( )| ( > 0) ( > 0)|

( )

=
( )| (

=1

=1

−∑
∑

BB
i
A

i

n

ii

n

u

I P

d l
d B A

> 0) ( > 0)|

( )
= ( , )

=1

=1

−∑
∑

Then the diversity measure UniFrac satisfies Definition 1. 
Additionally, we will give an example that does not satisfy the 
metric definition.

1.	 Let TAB  be the tree built from two different samples:

A r l B r l= { , } = { , }1 2and

where r  is the root and the sequence l1 ≠ l2 (see Figure 2). The 
branch is the path from r  to l1  and the branch 2  the path 
from r  to l2 , we have to

d A B d l d l
d l d l

u ( , ) =
( )|1 1| ( )|1 1|

( ) ( )
= 01 2

1 2

− + −
+

however, we supposed that l1 ≠ l2. So that if d A Bu ( , ) = 0 , it 
does not imply that A B= .

2.	 We consider the samples

A r a B b C r c= { , }, = { } = { , }and

and the trees TAB , TAC , and TCB  built for samples A  and B , 
A  and C , and C  and B , respectively (see Figure 3), where

l l a l l b l l c1 1 2 2 2 1= = , = = = = and

Moreover, suppose that

d l d l( ) < ( )1 1 	 (3)

If we estimate d A Bu ( , ) , d A Cu ( , ) , and d C Bu ( , )  we have 
the following:

d A B d l d l
d l d l

d l
d l d l

u ( , ) =
( )|1 0| ( )|1 1|

( ) ( )

=
( )

( ) ( )

1 2

1 2
1

1 2

− + −
+

+

	 (4)

d A C d l d l
d l d l

d l d l

u ( , ) = ( )|1 1| ( )|1 1|
( ) ( )

= 0
( ) (

1 2

1 2

1 2

 

 

 

− + −

+

+ ))
= 0

	 (5)

d C B d l d l
d l d l

d l
d l d l

u ( , ) =
( )|1 0| ( )|1 1|

( ) ( )

=
( )

( ) ( )

1 2

1 2

1

1 2

− + −
+

+

	 (6)

Figure 2.  Tree for samples A  and B.

Figure 3.  (a) Tree for samples A  and B. (b) Tree for samples A  and C. 

(c) Tree for samples C  and B.
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If the triangle inequality is satisfied and we considered 
expressions (4) to (6), we have that

d l
d l d l

d l
d l d l

( )
( ) ( )

0
( )

( ) ( )
1

1 2

1

1 2+
≤ +

+

where not necessary

d l d l( ) ( )1 1<_

It contradicts assumption (3). Then, triangle inequality is 
not satisfied.

Weighted UniFrac

The weighted UniFrac was proposed by Lozupone et al2 and is 
denoted by

d A B d l P Pw

i

n

i i
A

i
B( , ) = ( )| |

=1
∑ − 	 (7)

It uses information about the abundance of the genetic 
material sequences. If the branch has large length, it means a 
fast evolution, and it could influence more than other in 
d A Bw ( , ) .

Proposition 2.  The weighted UniFrac is a pseudosemimetric.

Proof.  We will prove that the weighted UniFrac satisfies Defi-
nition 1.

1.	 If we suppose that A B= , we have A Bi i=  for all i  and 
A Bt t= , so

P P ii
A

i
B= , for all

thus,

| |= 0,P P ii
A

i
B− for all

Therefore,

d A Bw ( , ) = 0

2.	 To prove symmetry, we consider

d A B d l P P

d l P P

d B A

w

i

n

i i
A

i
B

i

n

i i
B

i
A

w

( , ) = ( )| |

= ( )| |

= ( , )

=1

=1

∑

∑

−

−

Then, the weighted UniFrac satisfies Definition 1, but it 
does not satisfy the metric definition. We show some examples

1.	 Consider the different samples

A r a l B r b l= { , , } = { , , }1 2and

and the tree TAB  built for samples A  and B  (see Figure 4) 
that satisfied the next conditions:

A B A B A Bt t= = 3 = = = = 21 1 2 2and

Therefore,

d A B d l d lw ( , ) = ( ) 2
3

2
3

( ) 2
3

2
3

= 0
1 2− + −

with A ≠ B.

2.	 Consider the samples

A r a a B r b b b b
C r r c c c c c c c

= { , , }, = { , , , , }
= { , , , , , , , ,
1 2 1 2 2 2

1 1 1 1 1 1and 22 2, }c

and the trees TAB , TAC , and TCB  built for samples A  and 
B , A  and C , and C  and B , respectively (see Figure 5), 
where

l l a l l a l l b l b l c2 2 1 3 3 2 1 1 2 2 1 1 1= = , = = , = = = =  , and   (8)

and also, we assume

d l d l( ) = ( )2 3 	 (9)

Figure 4.  Tree for samples A  and B.

Figure 5.  (a) Tree for samples A  and B. (b) Tree for samples A  and C. 

(c) Tree for samples C  and B.
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d l d l( )> ( )1 1
 	 (10)

From equations (8) and (9), we have that

d l d l d l d l( ) = ( ) = ( ) = ( )2 3 2 3
 

If we estimate d A Bw ( , ) , d A Cw ( , ) , and d C Bw ( , ) , we 
have the following:

d A B d l d l

d l

d l d l

w ( , ) = ( ) 1
3

4
5

( ) 2
3

2
5

( ) 2
3

2
5

= ( ) 7
15

( ) 8
15

1 2

3

1 2

− + −

+ −

+

	 (11)

d A C d l d l

d l

d l d l

w ( , ) = ( ) 1
3

4
5

( ) 2
3

2
5

( ) 2
3

2
5

= ( ) 7
15

(

1 2

3

1

 



 

− + −

+ −

+ 22 ) 8
15

	 (12)

d C B d l

d l

w ( , ) = ( ) 4
5

4
5

( ) 2
5

2
5

= 0

1

2

−

+ −
	 (13)

If the triangle inequality is satisfied, using equalities (11) to 
(13), we have

d l d l d l d l( ) 7
15

( ) 8
15

( ) 7
15

( ) 8
15

01 2 1 2+ ≤ + + 

where we can get

d l d l( )1 1<_ ( )

this contradicts the supposition (10), so the weighted UniFrac 
does not comply with the triangle inequality.

We proved that weighted UniFrac satisfies Definition 1; 
however, it is not a metric.

Normalized weighted UniFrac

The normalized weighted UniFrac was proposed by Lozupone 
et al2 and it is given by

d A B
d l P P

Dn
w i i

A
i
B

i

n

( , ) =
( )| |

=1
−∑ 	 (14)

where the normalizing factor is

D d j Q Q
j

m

j
A

j
B= ( )

=1
∑ +( ) 	 (15)

with m  the number of different sequences in A B∪  and d j( )  
the distance from the root to the sequence j A B∈ ∪( ) ; 
furthermore,

Q
A

Q
Bj

A j

t
j
B j

t
= =
α β

and 	 (16)

where α j  and β j  are the number of times that the sequence 
j  is observed in samples A  and B , respectively.

Example 3.  In Example 1, A B a a b b∪ = { , , , }1 2 1 2 , where the 
sequences proportions in sample A  are

Q Q Q Qa
A

a
A

b
A

b
A

1 2 1 2
= 2

4
, = 1

4
, = 0, = 0

and the sequences proportions in sample B  are

Q Q Q Qa
B

a
B

b
A

b
B

1 2 1 2
= 0, = 0, = 1

3
, = 1

3

The normalized weighted UniFrac is less sensitive to 
branches with a long length and is determined by branches 
with different proportions.

Proposition 3.  The normalized weighted UniFrac is a 
pseudosemimetric.

Proof.  We will prove that the normalized weighted diversity 
measure UniFrac satisfies Definition 1.

1.	 Analogous to 2. of Proposition 2, we have

d A Bn
w ( , ) = 0

2.	 To prove symmetry, we consider

d A B
d l P P

d j Q Q

d l P P

n
w i i

A
i
B

i

n

j
A

j
B

j

m

i i
B

( , ) =
( )| |

( )( )

=
( )|

=1

=1

−

+

−

∑
∑

ii
A

i

n

j
B

j
A

j

m

n
w

d j Q Q
d B A

|

( )( )
= ( , )

=1

=1

∑
∑ +

Thus, the normalized weighted diversity measure UniFrac 
satisfies with Definition 1. Now, examples where it does not 
satisfy:

1.	 We consider the example in item (1) from Proposition 2. 
Therefore,

d A Bn
w ( , ) = 0

2.	 Consider the samples

A r a a B r b b b b
C r r c c c c c c c

= { , , }, = { , , , , }
= { , , , , , , , ,
1 2 1 1 1 2

1 1 1 1 1 1and 22 2, }c
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and the trees TAB , TAC , and TCB built for samples A  and B , 
A  and C , and C  and B , respectively (see Figure 6), where

l b l l a l l a l l c l c1 1 2 2 1 3 3 2 1 1 1 2 2= , = = , = = , = = , =   and   (17)

and additionally assume

d l d l( ) = ( )3 2 	 (18)

d l d b( ) = ( )1 2

d l d l( ) = ( )2 1

d l d l( ) < ( )1 1


	 (19)

Note that equations (17) and (18) imply that

d l d l d l d l( ) = ( ) = ( ) = ( )3 2 2 3
 

Thus,

d A B

d l d l d l

d l d b

n
w ( , )

=
( )| 1

3
4
5

| ( ) ( )| 2
3

2
5

|| 2
3

2
5

|

( ) 3
5

(

1 2 3

1 2

− + − −

+ )) 1
5

( ) 1
3

( ) 1
3

=
( ) 7

15
( ) 8

15

( ) 4
5

( ) 2
3

3 2

1 2

1 2

+ +

+

+

d l d l

d l d l

d l d l

	 (20)

d A C

d l d l d l

d c

n
w ( , )

=
( )| 1

3
4
5

| ( )| 2
3

2
5

| ( )| 2
3

2
5

|

( ) 1
5

1 2 3

2

  − + − + −

+ dd l d l d l

d l d l

d l d

( ) 3
5

( ) 1
3

( ) 1
3

=
( ) 7

15
( ) 8

15

( ) 4
5

(

1 2 3

1 2

1

  

 



+ +

+

+ ll2 ) 2
3

	 (21)

d C B

d l d l

D

n
w ( , )

=
( )| 4

5
4
5

| ( )| 2
5

2
5

|
= 0

1 2− + −



	 (22)

with D  the respective normalizing factor. As the triangle 
inequality is satisfied using the equalities (20)-(22), we have

d l d l

d l d l

d l d l

d l

( ) 7
15

( ) 8
15

( ) 4
5

( ) 2
3

( ) 7
15

( ) 8
15

( )

1 2

1 2

1 2

1

+

+
≤

+ 



44
5

( ) 2
3

0
2+

+
d l

from we can get

d l d l( ) ( )1 1
 <_

it contradict the supposition (10). Therefore, the normalized 
weighted diversity measure UniFrac does not satisfy the trian-
gle inequality.

We proved that normalized weighted diversity measure 
UniFrac is a pseudosemimetric. Next, we will give examples 
where we calculated the diversity measures UniFrac on a tree 
illustrate by McClelland and Koslicki16 and we will compare 
with EMDUniFrac.

EMDUniFrac

Based on Evans and Matsen,10 the EMDUniFrac is proposed 
in McClelland and Koslicki,16 Given two samples A  and B  
of genetic material and their associated abundances, we can 
estimate two probability distributions P  and Q  on their phy-
logenetic tree T  that represent the fraction of a given sample 
that appears at each node in T . Let D  be the matrix of all 
pairwise distances between nodes in T  and Γ( , )P Q  describe 
the space of all ways in which one community can be trans-
formed into the other. The ( , )i j th  entry of M P Q∈Γ( , )  
indicates the total abundance of Mi j,  has been moved from 
node i  in sample P  to node j  in sample Q . In this way, the 
EMDUniFrac is given by

EMDUniFrac P Q D M
M P Q i j T

i j i j( , ) =
( , ) ,

, ,
∈ ∈

∑
Γ

min

it represents the minimum amount of ‘work’ required to 
transform the distribution P  into the distribution Q  
along the phylogenetic tree. It has been previously show 
that EMDUniFrac(P, Q) is equivalent to weighted UniFrac 
distance when the sample size is large enough.10 However, 
we will give examples where the EMDUniFrac distance 
and the diversity measures UniFrac are different between 
them.

Considerate the tree T  as in Figure 1(b) in McClelland and 
Koslicki16 where EMDUniFrac(P, Q) is 0.2333 . We calculate 
the diversity measure UniFrac on T :

Figure 6.  (a) Tree by samples A  and B. (b) Tree by samples A  and C. 

(c) Tree by samples C  and B.
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d A B d l d l d l d lu ( , ) =
( )(1) ( )(1) ( )(0) ( )(1)

6
5

=

3
10

(3)

6
5

= 3
4

=

1 2 3 4+ + +

00.75

Thus,

EMDUniFrac P Q d A Bu( , ) ( , )=/

both under T .
It is important to mention the samples size is very small.
The weighted diversity measure UniFrac (see expression 7) 

on the tree T  is

d A B d l P P d l P P
d l P P d l

w A B A B

A B

( , ) = ( )| | ( )| |
( )| | ( )

1 1 1 2 2 2

3 3 3 4

− + −

+ − + || |

= 3
10

|0 1
3

| 3
10

| 1
2

0| 3
10

| 1
2

1
3

|
3

10
|0 2

3
|

= 3
10

1
3

4 4P PA B−

− + − + −

+ −

+
11
2

1
6

2
3

= 1
2

= 0.5+ +










thus, can see that

EMDUniFrac P Q d A Bw( , ) ( , )=/

Now, we obtain the normalized weighted UniFrac value as

d A B

d d d d d d

n
w ( , )

=

1
2

(1) 1
3

(2) 1
2

(3) 1
2

(4) 1
3

(5)(0) (6) 1
3

=

1
2

3
1

+ + + + +

00
1
3

3
10

1
2

3
10

1
2

3
10

1
3

1
5

(0) 1
5

1
3

=

1
2

1
10

3
20

3
20

1
10

1
15

=

1
2

+ + + + +

+ + + +
11
2

1
15

= 15
17

= 0.8823
+

Thus,

EMDUniFrac P Q d A Bn
w( , ) ( , )=/

Therefore, the diversity measures UniFrac and EMDUniFrac 
are different between them. Then, we can say the diversity 
measures UniFrac are not equal to EMDUniFrac(P, Q) if the 
samples size is not large enough.

On the other hand, considerate the tree T  as the Figure 
1(b) in McClelland and Koslicki,16 it is built for the different 

samples A = {3,4,5,7}  and B = {1, 2,6,7} , we calculate the 
weighted UniFrac measure as T :

d A B d l P P d l P P
d l P P d l

w A B A B

A B

( , ) = ( )| | ( )| |
( )| | ( )

1 1 1 2 2 2

3 3 3 4

− + −

+ − + || |

= 3
10

| 2
4

2
4

| 3
10

| 2
4

2
4

| 3
10

| 2
4

2
4

|
3

10
| 2

4
2
4

|

= 3
10

4 4P PA B−

− + − + −

+ −

((0) = 0

however, samples A  and B  are different. So that if A B=/ , 
it does not imply that d A Bw ( , ) 0=/ .

Conclusions
In this article, we prove that diversity measures UniFrac, weighted 
UniFrac, normalized weighted UniFrac satisfy the positive prop-
erty, symmetry property, and the implication that if the samples 
are equal then the diversity measures are zero. On the other hand, 
examples were presented where the diversity measures mentioned 
do not comply the metric definition. We prove that diversity 
measures comply the pseudosemimetric definition.

Although measures UniFrac are used in microbiology as a tool 
to measure the proximity between samples of genetic material 
large enough and showing a good performance, as mentioned in 
the literature,3–7 when the sample size is small, no it is appropriate 
to use it in that sense. The previous thing due to the lack of  
the properties previously amended, as Schloss said. In section 
“EMDUniFrac,” we could see examples where the diversity meas-
ures UniFrac and EMDUniFrac are different between them; in 
this way, we can say the diversity measures UniFrac are not equiva-
lent to EMDUniFrac if the samples size is not large enough. 
Furthermore, if we calculate the weighted UniFrac for two differ-
ent small samples, it does not imply that weighted UniFrac is zero. 
Then an alternative for diversity measures UniFrac is the 
Kantorovich-Rubinstein metric10 or EMDUniFrac metric.18–20
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