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Abstract

We report that HCl•DMPU induces the formation of (thiomethyl)methyl carbenium ion from 

DMSO under mild conditions. Homoallylic amines react with this electrophile to generate 4-

chloropiperidines in good yields. The method applies to both aromatic and aliphatic amines. The 

use of HCl•DMPU as both non-nucleophilic base and chloride source constitutes an 

environmentally benign alternative for piperidine formation. The reaction has a broad substrate 

scope, and the conditions offer good chemical yields with high functional group tolerance and 

scalability.

Graphical Abstract

Introduction

Functionalized piperidines are ubiquitous in natural products1 and pharmaceuticals (Figure 

1).2 Despite an extensive literature on piperidine syntheses,3 there are still demands for more 

efficient syntheses. The common strategies for the synthesis of piperidine skeletons involve 

intra-4, and intermolecular5 cyclization reactions, ring expansion processes6 and reduction of 

pyridines.7 Cycloaddition is the more effective approach, achieved either by a nucleophilic 

substitution process (Scheme 1a),3c, 8 transition metal catalysis (Scheme 1b),3a, b, 9 or an 
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electrophile-or radical-induced cyclization (Scheme 1c).10 The use of designed or protected 

substrates and expensive transition metals limit the application of some of these methods. 

Another important method for obtaining 4-substituted piperidines is through the aza-Prins 

cyclization method (Scheme 1e).5a, 11 This method usually requires transition metal or 

Lewis acid catalysis.

In our search for applications of the newly formulated HCl•DMPU,12 a highly concentrated, 

bench stable, readily prepared and easily dispensable anhydrous source of HCl, we observed 

the activation of DMSO. Activation of dimethyl sulfoxide by electrophiles13 has been 

widely reported and has led to the application of DMSO as a viable synthon,14 as noted by 

the increased use of DMSO as a one carbon source in the recent literature (Scheme 1d).15 

We describe herein application of our HCl•DMPU-mediated DMSO activation to prepare 4-

chloropiperidines.

Despite the tremendous progress made in alkene amino cyclization reactions,4, 11i, 16 there 

are still limitations in the substrate scope for intramolecular construction of piperidines. We 

wanted to avoid the use of toxic formaldehyde as a one carbon synthon. To address these 

limitations, we surmised one possible solution would be to exploit the formation of 

(thiomethyl)methyl carbenium ion from DMSO17 will be trapped by homoallylic amines 

(Scheme 1f).18 The thiocarbenium ion generation could arise from a Pummerer 

fragmentation through the interaction of the sulfoxide with an electrophile. Such activations 

are common in activated high-molecular weight sulfoxides.19 However, protic acid 

activation of DMSO is rare.20 We envisioned that reaction of the thiocarbenium ion with a 

homoallylic amine might initiate an intramolecular cyclization to form a piperidine ring. 

Specifically, tandem electrophilic capture of the DMSO-derived (thiomethyl)methyl 

carbenium ion by the homoallylic amine followed by intramolecular reaction of the pendant 

vinyl system with subsequent counterion trapping of the resulting electrophilic center could 

afford access to 4-substituted piperidines. Such an approach would provide a nice 

compliment to current halo-piperidation techniques.5a, 11a, 21

Results and Discussion

We began our investigation using the homoallylic amine 1a, HCl•DMPU (2.4 equiv) and 

DMSO (2.4 equiv) in DCE at 65 °C (Table 1). We were pleased to obtain the desired 

cyclized product 2a in decent yield. A solvent screening indicated a better conversion in 

ethyl acetate (Table 1, entries 1–5). Reaction concentration played an essential role in 

improving conversion and limiting side product of methylthiolation. (Table 1, entries 6 and 

7).

We also investigated other HCl sources. As expected, the lower concentration sources were 

sluggish (Table 1, entries 8, and 10) while the more concentrated sources gave appreciable 

conversions with lower desired product ratios thwarted by thiolated side products (Table 1, 

entries 9 and 11). Use of aqueous HCl gave a dismal outcome; however, the conversions 

with in situ generated HCl Table 1, entries 13 and 14) proceeded with comparable selectivity 

to the ready-made HCl•DMPU reagent. Encouraged by these results, we examined the 
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substrate scope of this new cyclization reaction with the optimum condition in hand (Table 

2).

We first examined the scope of homoallylic anilines. The study revealed that there was broad 

tolerance of substituents with various electronic properties on all positions on the aromatic 

ring giving good to excellent yields. An array of para-substituted anilines containing groups 

such as methyl (2b), halo (2d, 2e, 2f), trifluoromethyl (2j), methoxy (2k), cyano (2l), 
trifluoromethoxy (2m), nitro (2n), phenyl (2r) and acetyl (2t) all proceeded in excellent 

yields. Single crystal X-ray structure of the 4-nitrophenyl derivative (2n), was obtained 

showing the chlorine atom locked in the axial position (Figure 3). The inclusion of similar 

substituents at the ortho (2i, 2o, 2s) and meta (2c, 2g, 2h, 2q) positions did not affect the 

yields. The method displayed good functional group tolerance to groups like nitrile (2l), 
ester (2w), ethers (2k, 2m, 2v) and ketones (2t, 2u). Interestingly, homoallylic sulfonamides 

(2aa, 2ab, 2ac) transformed excellent yields. Heteroaromatic amines that contain 

benzodioxole (2v), thiophene (2w), pyridine (2x, 2y) and pyrazine (2z) moieties also gave 

desired cyclization products in good yields. While meta-polysubstitution (2p) was highly 

selective resulting in a yield of 90%, the trisubstituted substrate (2ai) gave an inseparable 3:2 

mixture of piperidine and pyrrolidine respectively. Unfortunately, the method was 

unsuccessful with the hydrazide (2aj), hydroxylamine (2ak) and indole (2al) substrates 

likely due to substrate intolerance and product instability (Figure 2). We also examined 

aliphatic amines too. Though strongly basic, we were delighted to observe satisfactory 

product yields of 51-64%. The reaction conditions tolerated benzyl (2ag, 2ah) and longer 

aliphatic chain (2ad, 2ae, 2af) substrates.

Next, we investigated the scope of the alkene chain. Both terminal and internal substituted 

alkenes afforded desired products (Table 3). The disubstituted alkenes (3a, 3b, 3c, 3d) 

furnished the desired cyclized products (4a, 4b, 4c, 4d) in good yields of 81%, 84%, 53% 

and 65% respectively. The major diastereomer, 4d, exhibited an anti-stereochemistry. The 

sterically hindered homoallylic amine derivative of nopol (3c) underwent the cyclization in a 

modest 53% yield. Due to steric demands, the 1,1,2-trisubstituted alkene substrate (3e) failed 

to achieve the desired outcomes. Rather it formed the kinetically favored pyrrolidine product 

in 64% yield. The mass obtained by GCMS was consistent with that of the pyrrolidine 

product. Also, the cyclic alkene substrate (3f) was unsuccessful probably due to ring strain 

barrier associated with its formation.

To demonstrate the practicality of the method, we conducted a ten mmol reaction (Scheme 2, 

eq 1) of 1a without any further modifications and obtained the desired product 2a in high 

yield. To probe the mechanism of the reaction, we carried a deuterium labeling experiment 

using deuterated DMSO. We observed high deuterium incorporation of over 99% for the 

resulting piperidine (Scheme 2, eq 2). This result indicates that the extra carbon arises from 

DMSO. During the preparation of this manuscript, Zhong and co-workers22 reported that 

DMSO could serve as a formaldehyde surrogate. Using paraformaldehyde in place of 

DMSO under similar reaction conditions as ours also yielded the 4-chloropiperidine product 

(Scheme 2, eq 4). It is, however, inconclusive if that is the only operating mechanism 

because as earlier referenced, DMSO can equally serve as a one-carbon source. Given the 

abundance of chloride ion during the reaction, the in-situ generation of chloromethyl methyl 
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sulfide (IIb) as an intermediate is possible. Indeed, the reaction of the starting amine with 

commercially available chloromethyl methyl sulfide led to the formation of 2a in 64% yield 

(Scheme 2, eq 3). Finally, to seek insight as to the intermediary of an iminium ion before 

cyclization, we performed the reaction with tertiary amine 7 and observed no cyclization to 

give 2a. Instead, the reaction gave the chlorothiolated product 823 was formed in 67% 

(Scheme 2, eq 4).

Based on the above results, a plausible mechanism is proposed (Scheme 3). Electrophilic 

activation of DMSO by HCl generates sulfonium salt I, which undergoes base-assisted 

elimination of water to produce (thiomethyl)methyl carbenium ion IIa. Interchangeable 

formation of chloromethyl methyl sulfide (IIb) may also be operative. IIa/b reacts with the 

starting amine to ultimately generate iminium ion V from ammonium salt IV via proton 

transfer (P.T.) and elimination of methyl mercaptan. A 6-endo-trig cyclization24 followed by 

nucleophilic addition of chloride ion gives the desired product.

Conclusion

In summary, we have developed a convenient protic acid-catalyzed formation of 

(thiomethyl)methyl carbenium ion from DMSO under mild conditions. In the presence of 

homoallylic amines, the in situ-generated species reacts in aza-Pummerer fashion to 

generate an iminium ion intermediate that cyclizes to form 4-chloropiperidines in good 

yield. The method applies to both aromatic and aliphatic amines. The use of HCl•DMPU as 

protic acid, non-nucleophilic base and chloride source provides an environmentally benign 

process for piperidine formation. The reaction has a broad substrate scope and is scalable.

Experimental Section

1. General—1H and 13C (1H) decoupled NMR spectra were recorded either at 400 MHz 

or 500 MHz, and 101 MHz using CDCl3 or CD2Cl2 as a solvent. The chemical shifts are 

reported in δ (ppm) values (1H and 13C NMR relative to CHCl3, δ 7.26 ppm for 1H NMR 

and δ 77.0 ppm for 13C NMR, multiplicities are indicated by s (singlet), d (doublet), t 

(triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants 

(J), are reported in Hertz (Hz). The HRMS data was obtained from an Agilent Technologies 

QTOF spectrometer. All reagents and solvents were employed without further purification. 

The products were purified using a commercial flash chromatography system. TLC was 

developed on silica gel 60 F254 aluminum sheets.

2. General procedures

2.1 Procedure for generation of HCl/DMPU: The reagent HCl•DMPU was prepared as 

reported in the literature.12a, b

2.2 General procedure for the preparation of homoallylic amines, 1 and 325.: To a 

round-bottomed flask equipped with a stirring bar was charged with aryl or alkylamine 1 or 
3 (1.2 mmol, 1.2 equiv), K2CO3 (2 mmol, 2 equiv) and dry DMF (3 mL). Homoallyl 

bromide (1 mmol, 1 equiv) was slowly added to the mixture and heated to 110 °C. We 

monitored the progress of the reaction by GC-MS or TLC. Upon completion, the reaction 
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mixture was cooled to room temperature and water (10 mL) and extracted with ethyl acetate 

(3 X 10 mL). The combined organic layers were then dried over anhydrous Na2SO4, filtered, 

concentrated and eventually purified silica gel column chromatography with hexanes/ethyl 

acetate (typically 70/30) or petroleum ether/ethyl acetate (80/20 for 1v, 1x, 1y, 1af, 1ag, and 

3c) as eluent.

N-(but-3-en-1-yl)aniline (1a) Light yellow oil, 89.8 mg, 61% yield. 1H NMR (400 MHz, 
CDCl3) δ 7.19 (t, J = 7.9 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.8 Hz, 2H), 5.85– 

5.79 (m, 1H), 5.21 – 5.07 (m, 2H), 3.63 (s, 1H), 3.20 (t, J = 6.7 Hz, 2H), 2.40 (q, J = 6.7 Hz, 

2H). 13C NMR (100 MHz, CDCl3) δ 148.4, 136.0, 129.4, 117.6, 117.3, 113.1, 43.0, 33.8.

N-(but-3-en-1-yl)-4-methylaniline (1b) Colorless oil, 103.2 mg, 64% yield. 1H NMR (400 
MHz, CDCl3) δ 7.00 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 5.87– 5.78 (m, 1H), 5.17 

– 5.10 (m, 2H), 3.52 (s, 1H), 3.17 (t, J = 6.7 Hz, 2H), 2.38 (q, J = 6.7 Hz, 2H), 2.25 (s, 3H). 
13C NMR (100 MHz, CDCl3) δ = 146.1, 136.0, 129.8, 126.7, 117.1, 113.2, 43.3, 33.8, 

20.5.

N-(but-3-en-1-yl)-3-methylaniline (1c) Colorless oil, 109.8 mg, 68% yield. 1H NMR (400 
MHz, CDCl3) δ 7.07 (t, J = 7.9 Hz, 1H), 6.53 (d, J = 7.6 Hz, 1H), 6.43 (d, J = 7.7 Hz, 2H), 

5.86 – 5.78 (m, 1H), 5.17 – 5.10 (m, 2H), 3.60 (s, 1H), 3.18 (t, J = 6.7 Hz, 2H), 2.42 – 2.32 

(m, 2H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3 ) δ 148.2, 138.9, 135.7, 129.0, 118.2, 

116.9, 113.6, 109.9, 42.7, 33.6, 21.5.

N-(but-3-en-1-yl)-4-fluoroaniline (1d) Colorless oil, 94.1 mg, 57% yield. 1H NMR (400 
MHz, CDCl3) δ 6.88 (t, J = 8.8 Hz, 2H), 6.54 (dd, J = 9.0, 4.4 Hz, 2H), 5.85 – 5.76 (m, 

1H), 5.17 – 5.10 (m, 2H), 3.54 (s, 1H), 3.14 (t, J = 6.7 Hz, 2H), 2.37 (q, J = 6.7 Hz, 2H). 13C 
NMR (126 MHz, CDCl3) δ 156.8, 144.6, 135.7, 117.2, 115.7, 115.6, 113.7, 43.5, 33.6. 19F 
NMR (376 MHz, CDCl3) δ −128.35.

N-(but-3-en-1-yl)-4-chloroaniline (1e) Colorless oil, 116.2 mg, 63% yield. 1H NMR (500 
MHz, CDCl3) δ 7.11(d, J = 7.8, 2H), 6.53 (d, J = 7.9, 2H), 5.81 – 5.77 (m, 1H), 5.15 – 5.10 

(m, 2H), 3.66 (s, 1H), 3.14 (t, J = 6.4 Hz, 2H), 2.37 (q, J = 6.7, 2H). 13C NMR (126 MHz, 
CDCl3) δ 146.8, 135.5, 129.0, 121.9, 117.3, 113.9, 42.9, 33.5.

4-bromo-N-(but-3-en-1-yl)aniline (1f) Colorless oil, 146.9 mg, 65% yield. 1H NMR (400 
MHz, CDCl3) δ 7.36 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 8.8 Hz, 2H), 5.97 – 5.88 (m, 1H), 5.29 

– 5.23 (m, 2H), 3.80 (s, 1H), 3.27 (t, J = 6.7 Hz, 2H), 2.50 (q, J = 6.7 Hz, 2H). 13C NMR 
(100 MHz, CDCl3) δ 147.3, 135.6, 132.0, 117.4, 114.5, 108.9, 42.9, 33.5.

N-(but-3-en-1-yl)-3-iodoaniline (1g) Colorless oil, 128.2 mg, 47% yield. 1H NMR (500 
MHz, CDCl3) δ 7.02 (d, J = 7.7 Hz, 1H), 6.99 – 6.92 (m, 1H), 6.88 (t, J = 8.0 Hz, 1H), 6.56 

(dd, J = 8.2, 2.2 Hz, 1H), 5.82 (ddt, J = 17.0, 10.1, 6.8 Hz, 1H), 5.29 – 4.97 (m, 2H), 3.69 (s, 

1H), 3.16 (dd, J = 11.9, 6.4 Hz, 2H), 2.39 (dt, J = 7.9, 6.1 Hz, 2H). 13C NMR (126 MHz, 
CDCl3) δ 149.4, 135.4, 130.6, 126.1, 121.3, 117.4, 112.2, 95.3, 42.5, 33.4.

3-bromo-N-(but-3-en-1-yl)aniline (1h) Colorless oil, 115.3 mg, 51% yield. 1H NMR (500 
MHz, CDCl3) δ 7.02 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 7.1 Hz, 1H), 6.75 (d, J = 1.7 Hz, 1H), 
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6.52 (dd, J = 8.2, 2.1 Hz, 1H), 5.75–5.63 (m, 1H), 5.15 (t, J = 13.2 Hz, 2H), 3.74 (s, 1H), 

3.17 (dd, J = 12.2, 6.4 Hz, 2H), 2.39 (q, J = 6.7 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 
149.5, 135.4, 130.5, 123.3, 120.0, 117.4, 115.3, 111.6, 42.6, 33.4.

N-(but-3-en-1-yl)-2-iodo-4-methylaniline (1i) Colorless oil, 206.7 mg, 72 % yield. 1H NMR 
(400 MHz, CDCl3) δ 7.50 (d, J = 1.7 Hz, 1H), 7.02 (dd, J = 8.2, 1.7 Hz, 1H), 6.48 (d, J = 

8.2 Hz, 1H), 5.85 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.23 – 5.10 (m, 2H), 4.05 (s, 1H), 3.20 (t, 

J = 6.7 Hz, 2H), 2.43 (q, J = 6.8 Hz, 2H), 2.21 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 
144.9, 139.1, 135.3, 129.8, 127.8, 117.3, 110.5, 85.3, 43.3, 33.3, 19.6.

N-(but-3-en-1-yl)-4-(trifluoromethyl)aniline (1j) Colorless oil, 124.7 mg, 58% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.45 - 7.30 (m, 2H), 6.68 (d, J = 8.3 Hz, 2H), 6.59 (d, J = 8.5 

Hz, 2H), 5.81 (dd, J = 17.1, 10.2 Hz, 2H), 5.14 (dd, J = 12.7, 11.0 Hz, 3H), 3.97 (s, 3H), 

3.21 (t, J = 6.7 Hz, 3H), 2.39 (d, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 150.4, 

135.2, 126.6, 126.5, 117.4, 112.0, 42.4, 33.3. 19F NMR (376 MHz, CDCl3) δ −61.02.

N-(but-3-en-1-yl)-4-methoxyaniline (1k) Colorless oil, 108.1 mg, 61% yield. 1H NMR (400 
MHz, CDCl3) δ 6.80 (d, J = 8.9 Hz, 2H), 6.60 (d, J = 8.9 Hz, 2H), 5.87 – 5.80 (m, 1H), 5.19 

– 5.07 (m, 2H), 3.75 (s, 3H), 3.32 (s, 1H), 3.15 (t, J = 6.7 Hz, 2H), 2.38 (q, J = 6.7 Hz, 2H). 
13C NMR (100 MHz, CDCl3) δ 152.2, 142.6, 136.0, 117.1, 115.0, 114.3, 55.8, 43.9, 33.8.

4-(but-3-en-1-ylamino)benzonitrile (1l) Colorless oil, 86 mg, 50% yield. 1H NMR (400 
MHz, CDCl3) δ 7.41 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.8 Hz, 2H), 5.80 (ddt, J = 17.1, 10.2, 

6.8 Hz, 1H), 5.20 – 5.08 (m, 2H), 4.24 (s, 1H), 3.22 (t, J = 6.7 Hz, 2H), 2.39 (q, J = 6.7, 2H). 

13C NMR (100 MHz, CDCl3) δ 151.2, 135.0, 133.7, 120.5, 117.7, 112.2, 98.6, 42.0, 33.2.

N-(but-3-en-1-yl)-4-(trifluoromethoxy)aniline (1m) Colorless oil, 111 mg, 48% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.03 (d, J = 8.9 Hz, 2H), 6.60 (d, J = 9.0 Hz, 2H), 5.87 – 5.78 

(m, 1H), 5.25 – 5.14 (m, 2H), 3.78 (s, 1H), 3.21 (t, J = 6.7 Hz, 2H), 2.43 (q, J = 6.7 Hz, 2H). 
13C NMR (100 MHz, CDCl3) δ 146.9, 140.3, 135.4, 124.5, 122.3, 121.9, 120.7 (q, J = 257 

Hz), 119.4, 117.2, 116.8, 112.9, 42.8, 33.4. 19F NMR (376 MHz, CDCl3) δ −58.31.

N-(but-3-en-1-yl)-4-nitroaniline (1n) Yellow solid, 38.4 mg, 20% yield. 1H NMR (400 
MHz, CDCl3) δ 8.09 (d, J = 9.2 Hz, 2H), 6.53 (d, J = 9.2 Hz, 2H), 5.87– 5.77 (m, 1H), 5.26 

–5.11 (m, 2H), 4.50 (s, 1H), 3.29 (dd, J = 12.1, 6.6 Hz, 2H), 2.43 (q, J = 6.7 Hz, 2H). 13C 
NMR (100 MHz, CDCl3) δ 153.3, 138.2, 134.9, 126.6, 118.2, 111.2, 42.3, 33.3.

N-(but-3-en-1-yl)-2-(trifluoromethyl)aniline (1o) Colorless oil, 131.3 mg, 61% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.79 - 7.19 (m, 2H), 6.95 – 6.62 (m, 2H), 5.92–5.80 (m, 1H), 

5.69 – 5.02 (m, 2H), 4.55 (s, 1H), 3.39 (t, J = 6.4 Hz, 2H), 2.59 (ddd, J = 6.7, 6.2, 1.2 Hz, 

2H). 13C NMR (100 MHz, CDCl3) δ 145.8, 135.2, 133.2, 126.8, 126.7, 124.0, 117.7, 

115.9, 111.9, 42.5, 33.4. 19F NMR (376 MHz, CDCl3) δ −62.44.

N-(but-3-en-1-yl)-3,5-bis(trifluoromethyl)aniline (1p) Colorless oil, 113.3 mg, 40% yield. 
1H NMR (400 MHz, CDCl3) δ 7.04 (s, 1H), 6.83 (s, 2H), 5.72 (td, J = 16.8, 6.6 Hz, 1H), 

5.16 - 5.03 (m, 2H), 4.01 (s, 1H), 3.14 (dd, J = 12.1, 6.3 Hz, 2H), 2.33 (q, J = 6.7 Hz, 2H), 
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1.45 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 148.3, 134.5, 124.5, 121.8, 117.5, 111.4, 

109.7, 41.9, 32.8. 19F NMR (376 MHz, CDCl3) δ −63.54.

N-(but-3-en-1-yl)-3-(trifluoromethyl)aniline (1q) Colorless oil, 116.2 mg, 54% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 9.2, 6.6 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.84 (s, 

1H), 6.78 (d, J = 8.2 Hz, 1H), 5.87 (ddt, J = 17.0, 10.1, 6.8 Hz, 1H), 5.44 – 4.88 (m, 2H), 

3.91 (s, 1H), 3.26 (s, 2H), 2.57 – 2.29 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 148.4, 

135.4, 131.7, 131.4, 129.6, 125.7, 123.0, 117.5, 115.8, 113.7, 113.7, 108.9, 108.9, 42.5, 

33.4. 19F NMR (376 MHz, CDCl3) δ −62.90.

N-(but-3-en-1-yl)-[1,1’-biphenyl]-4-amine (1r) Colorless oil, 160.8 mg, 72% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 

7.4 Hz, 2H), 7.20 – 7.10 (m, 1H), 6.56 (d, J = 8.4 Hz, 2H), 5.86 – 5.61 (m, 1H), 5.03 (t, J = 

14.5 Hz, 2H), 3.63 (s, 1H), 3.11 (t, J = 6.7 Hz, 2H), 2.29 (q, J = 6.6 Hz, 2H). 13C NMR (100 
MHz, CDCl3) δ 147.5, 141.1, 135.6, 130.1, 128.5, 127.8, 126.1, 125.9, 117.0, 113.0, 42.7, 

33.5.

N-(but-3-en-1-yl)-[1,1’-biphenyl]-2-amine (1s) Colorless oil , 133.9 mg, 60% yield. 1H 
NMR (500 MHz, CDCl3) δ 7.48 – 7.31 (m, 5H), 7.28 – 7.21 (m, 1H), 7.10 (d, J = 7.4 Hz, 

1H), 6.77 (t, J = 7.4 Hz, 1H), 6.73 – 6.68 (m, 1H), 5.94 – 5.50 (m, 1H), 5.00 (dd, J = 8.6, 6.5 

Hz, 2H), 3.99 (s, 1H), 3.18 (dd, J = 11.8, 6.4 Hz, 2H), 2.32 (q, J = 6.7 Hz, 2H). 13C NMR 
(126 MHz, CDCl3) δ 145.0, 139.4, 135.6, 130.1, 129.4, 128.8, 128.7, 127.7, 127.1, 117.0, 

116.8, 110.4, 42.8, 33.5.

1-(4-(but-3-en-1-ylamino)phenyl)ethanone (1t) Colourless oil, 125.1 mg, 66% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.9 Hz, 2H), 6.52 (d, J = 8.8 Hz, 2H), 5.78 (ddt, J = 

17.1, 10.2, 6.8 Hz, 1H), 5.20 – 5.02 (m, 2H), 4.19 (s, 1H), 3.22 (t, J = 6.7 Hz, 2H), 2.46 (s, 

3H), 2.37 (dtd, J = 6.8, 5.5, 1.3 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 196.1, 151.8, 

134.9, 130.6, 126.5, 117.4, 111.2, 41.9, 33.1, 25.8.

(3-(but-3-en-1-ylamino)phenyl)(phenyl)methanone (1u) Light yellow solid, 158.3 mg, 63% 

yield. 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.7 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 

(t, J = 7.5 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.06 (d, J = 6.5 Hz, 2H), 6.82 (d, J = 8.3 Hz, 1H), 

5.77–5.66 (m, 1H), 5.14 (t, J = 13.2 Hz, 2H), 3.81 (s, 1H), 3.22 (t, J = 6.7 Hz, 2H), 2.46 - 

2.31 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 197.2, 148.2, 138.6, 137.9, 135.5, 132.2, 

130.0, 128.9, 128.1, 119.6, 117.4, 116.9, 113.5, 42.7, 33.5.

N-(but-3-en-1-yl)benzo[d][1,3]dioxol-5-amine (1v) Colorless oil, 86.0 mg, 45% yield. 1H 
NMR (500 MHz, CDCl3) δ 6.67 (d, J = 8.3 Hz, 1H), 6.26 (s, 1H), 6.07 (d, J = 8.3 Hz, 1H), 

5.97 – 5.74 (m, 3H), 5.10–5.01 (m, 2H), 3.45 (s, 1H), 3.13 (td, J = 6.7, 1.4 Hz, 2H), 2.44 - 

2.31 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 148.3, 144.1, 139.6, 135.7, 117.1, 108.6, 

104.5, 100.5, 96.1, 43.8, 33.6.

methyl 3-(but-3-en-1-ylamino)thiophene-2-carboxylate (1w) colorless liquid, 109.8 mg, 

52% yield. 1H NMR (500 MHz, CDCl3) δ 7.33 (d, J = 5.5 Hz, 1H), 6.76 (s, 1H), 6.63 (d, J 
= 5.5 Hz, 1H), 5.86 –5.79 (m, 1H), 5.18 – 5.11 (m, 2H), 3.81 (s, 3H), 3.34 (d, J = 2.7 Hz, 
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2H), 2.50 – 2.28 (m, 2H).. 13C NMR (100 MHz, CDCl3) δ 165.4, 156.1, 135.1, 132.2, 

117.4, 116.2, 98.5, 51.1, 44.4, 34.3.

N-(but-3-en-1-yl)-6-chloropyridin-3-amine (1x) Colorless oil, 98.6 mg, 44% yield. 1H NMR 
(500 MHz, CDCl3) δ 7.77 (s, 1H), 7.09 (d, J = 8.6 Hz, 1H), 6.87 (d, J = 8.6, 1H), 5.76–5.64 

(m, 1H), 5.16 (dd, J = 13.3, 6.3 Hz, 2H), 3.74 (s, 1H), 3.18 (dd, J = 12.5, 6.4 Hz, 2H), 2.40 

(q, J = 6.7 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 143.2, 139.0, 135.0, 134.5, 124.0, 

122.2, 117.7, 42.5, 33.3.

N-(but-3-en-1-yl)-4-chloropyridin-2-amine (1y) Colorless oil, 122.2 mg, 67% yield. 1H 
NMR (500 MHz, CDCl3) δ 8.03 (s, 1H), 7.36 (d, J = 8.8, 1H), 6.33 (d, J = 8.9 Hz, 1H), 

5.93 – 5.69 (m, 1H), 5.34 – 4.99 (m, 2H), 4.53 (s, 1H), 3.41 – 3.27 (m, 2H), 2.38 (dt, J = 6.6, 

5.5 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 143.4, 138.8, 135.1, 134.5, 124.1, 122.3, 

117.7, 42.6, 33.4.

N-(but-3-en-1-yl)-5-chloropyrazin-2-amine (1z) Colorless oil, 117.4 mg, 64% yield. 1H 
NMR (500 MHz, CDCl3) δ 8.00 (d, J = 1.2 Hz, 1H), 7.64 (d, J = 1.2 Hz, 1H), 5.76–5.65 

(m, 1H), 5.32 – 4.98 (m, 2H), 4.68 (s, 1H), 3.40 (dd, J = 12.4, 6.6 Hz, 2H), 2.40 (q, J = 6.7 

Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 153.3, 141.2, 136.0, 135.0, 129.9, 117.7, 40.7, 

33.4.

N-(but-3-en-1-yl)-4-methylbenzenesulfonamide (1aa) white solid, 168.8 mg, 75% yield. 1H 
NMR (500 MHz, CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.62 (ddt, J = 

17.1, 10.3, 6.8 Hz, 1H), 5.04 (t, J = 12.6 Hz, 2H), 4.61 (bs, 1H), 3.00 (q, J = 6.5 Hz, 2H), 

2.42 (s, 3H), 2.19 (q, J = 6.8 Hz, 2H).13C NMR (126 MHz, CDCl3) δ 143.2, 136.7, 134.0, 

129.5, 126.9, 117.9, 77.1, 76.8, 76.5, 41.9, 33.4, 21.3.

N-(but-3-en-1-yl)-4-methoxybenzenesulfonamide (1ab) white solid, 173.6 mg, 72% yield. 
1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 5.72 - 

5.39 (m, 1H), 5.13 – 4.78 (m, 2H), 4.65 (d, J = 6.0 Hz, 1H), 3.80 (d, J = 0.6 Hz, 3H), 3.07 – 

2.71 (m, 2H), 2.13 (q, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 162.8, 134.1, 131.4, 

129.1, 117.9, 114.2, 55.6, 42.0, 33.5.

4-bromo-N-(but-3-en-1-yl)benzenesulfonamide (1ac) white solid , 220.4 mg, 76% yield. 1H 
NMR (500 MHz, CDCl3) δ 7.77 – 7.69 (m, 2H), 7.68 – 7.62 (m, 2H), 5.58–5.46 (m, 1H), 

5.16 - 4.95 (m, 2H), 4.90 (s, 1H), 3.03 (dd, J = 12.9, 6.7 Hz, 2H), 2.22 (qt, J = 6.8, 1.3 Hz, 

2H). 13C NMR (100 MHz, CDCl3) δ 139.0, 133.9, 132.3, 128.6, 127.5, 118.2, 42.1, 33.6.

N-(but-3-en-1-yl)-2-ethylhexan-1-amine (1ad) light yellow oil, 69.6 mg, 38% yield. 1H 
NMR (400 MHz, CDCl3) δ 5.78 (m, J = 13.7, 10.2, 5.1 Hz, 1H), 5.18 - 4.93 (m, 2H), 2.66 

(t, J = 6.9 Hz, 2H), 2.49 (d, J = 6.2 Hz, 2H), 2.32 - 2.13 (m, 2H), 1.52 – 1.36 (m, 1H), 1.35 - 

1.20 (m, 7H), 0.88 (m, 6H). 13C NMR (100 MHz, CDCl3) δ 136.6, 116.1, 53.1, 49.2, 39.4, 

34.3, 31.4, 29.0, 24.5, 23.1, 14.1, 10.8.

N-phenethylbut-3-en-1-amine (1ae) light yellow oil, 105.2 mg, 60% yield. 1H NMR (400 
MHz, CDCl3) δ 7.56 – 7.33 (m, 5H), 5.99 – 5.90 (m, 1H), 5.30 – 5.15 (m, 2H), 3.13 – 3.05 

(m, 2H), 3.03 – 2.97 (m, 2H), 2.90 (t, J = 6.9 Hz, 2H), 2.44 (q, J = 6.9 Hz, 2H), 1.31 (s, 1H).. 
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13C NMR (100 MHz, CDCl3) δ 140.2, 136.5, 128.8, 128.5, 126.2, 116.4, 51.2, 48.9, 36.5, 

34.4.

N-(4-methoxyphenethyl)but-3-en-1-amine (1af) light yellow oil, 127.2 mg, 62% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.21 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 5.79 – 5.67 

(m, 1H), 5.25 – 4.97 (m, 2H), 3.87 (s, 2H), 2.98 – 2.90 (m, 2H), 2.86 – 2.74 (m, 2H), 2.32 

(q, J = 6.9 Hz, 2H), 1.83 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 158.1, 136.4, 132.1, 

129.7, 116.4, 113.9, 55.3, 51.3, 48.8, 35.5, 34.3.

N-benzylbut-3-en-1-amine (1ag) light yellow oil, 107.9 mg, 67% yield. 1H NMR (400 
MHz, CDCl3) δ = 7.39 – 7.19 (m, 5H), 5.84 – 5.74 (m, 1H), 5.16 – 4.98 (m, 2H), 3.79 (s, 

2H), 2.70 (t, J=6.8, 2H), 2.28 (dt, J=6.9, 6.2, 2H), 1.29 (s, 1H). 13C NMR (100 MHz, 
CDCl3) δ 140.4, 136.5, 128.4, 128.1, 126.9, 116.3, 53.9, 48.3, 34.3.

(R)-N-(1-phenylethyl)but-3-en-1-amine (1ah) light yellow oil, 129.6 mg, 74% yield. 1H 
NMR (400 MHz, CDCl3) δ 8.15 – 6.33 (m, 5H), 5.69 – 5.58 (m, 1H), 5.31 – 4.69 (m, 2H), 

3.76 (q, J = 6.6 Hz, 1H), 2.72 – 2.36 (m, 2H), 2.29 – 2.07 (m, 2H), 1.34 (d, J = 6.6 Hz, 3H), 

1.27 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 145.7, 136.5, 128.4, 126.8, 126.5, 116.2, 

58.2, 46.5, 34.3, 24.3.

N-(3-methylbut-3-en-1-yl)aniline (3a) light yellow oil, 106.4 mg, 66% yield. 1H NMR (400 
MHz, CDCl3) δ 7.19 (t, J = 7.6 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.2 Hz, 2H), 

4.87 (s, 1H), 4.81 (s, 1H), 3.65 (s, 1H), 3.23 (t, J = 6.7 Hz, 2H), 2.36 (t, J = 6.6 Hz, 2H), 1.77 

(s, 3H). 13C NMR (100 MHz, CDCl3) δ 148.3, 142.9, 129.2, 117.3, 112.8, 112.3, 41.3, 

37.4, 21.9.

N-(3-bromobut-3-en-1-yl)aniline (3b) light yellow oil, 144.6 mg, 64% yield. 1H NMR (500 
MHz, CDCl3) δ 7.26 – 7.17 (m, 2H), 6.75 (td, J = 7.4, 1.0 Hz, 1H), 6.71 - 6.58 (m, 2H), 

5.75 – 5.63 (m, 1H), 5.55 (d, J = 1.6 Hz, 1H), 3.77 (s, 1H), 3.41 (t, J = 6.5 Hz, 2H), 2.74 (t, J 
= 6.5 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 147.6, 131.3, 129.3, 118.9, 117.7, 113.0, 

41.6, 40.9.

N-(2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl)aniline (3c) colorless liquid, 139.9 

mg, 58% yield. 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.11 (m, 2H), 6.72 (tt, J = 7.4, 1.0 

Hz, 1H), 6.65 – 6.55 (m, 2H), 5.37 (dt, J = 4.2, 1.3 Hz, 1H), 3.66 (s, 1H), 3.27 – 2.93 (m, 

2H), 2.41 (dt, J = 8.6, 5.6 Hz, 1H), 2.36 – 2.24 (m, 4H), 2.17 – 1.99 (m, 2H), 1.41 – 1.22 (m, 

5H), 0.93 – 0.81 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 148.4, 145.6, 129.2, 118.7, 

117.2, 112.9, 45.4, 41.2, 40.8, 38.0, 36.5, 31.8, 31.4, 26.3, 22.7, 21.2, 14.2.

(E)-N-(pent-3-en-1-yl)aniline (3d) light yellow liquid, 111.2 mg, 69% yield. 1H NMR (400 
MHz, CDCl3) δ 7.18 (t, J = 7.9 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.1 Hz, 2H), 

5.54–5.44 (m, 1H), 5.50 – 5.37 (m, 1H), 3.65 (s, 1H), 3.13 (t, J = 6.7 Hz, 2H), 2.31 (q, J = 

6.7 Hz, 2H), 1.70 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 148.4, 129.2, 128.2, 

127.7, 117.2, 112.8, 43.3, 32.4, 18.0.

N-(4-methylpent-3-en-1-yl)aniline (3e) light yellow oil, 114 mg, 65% yield. 1H NMR (400 
MHz, CDCl3) δ 7.30 (t, J = 7.7 Hz, 2H), 6.82 (t, J = 7.3 Hz, 1H), 6.74 (d, J = 8.0 Hz, 2H), 
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5.28 (t, J = 7.2 Hz, 1H), 3.76 (s, 1H), 3.24 (t, J = 6.9 Hz, 2H), 2.44 (d, J = 7.0 Hz, 2H), 1.86 

(s, 3H), 1.77 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 148.5, 134.4, 129.3, 121.4, 117.3, 

113.0, 43.9, 28.2, 25.9, 18.0.

2.3 Procedure for the synthesis of 4-chloropiperidines, 2 and 4.: A glass vial equipped 

with a screw cap and a stirring bar was charged with alkene 1 (0.5 mmol). Then ethyl acetate 

was added (2.5 mL) followed by DMSO (2.4 mmol) and HCl/DMPU (102 μL, 2.4 mmol). 

We stirred the reaction mixture at 65 °C and monitored the progress of the reaction by GC-

MS or TLC. Upon completion, the reaction mixture was quenched with water and extracted 

with DCM. The combined organic layers were then dried over anhydrous Na2SO4, filtered, 

and the solvent evaporated. We purified the crude product by silica gel column 

chromatography (hexanes/ethyl acetate typically 97/3).

4-chloro-1-phenylpiperidine (2a) Colorless oil, 92.6 mg, 95% yield. 1H NMR (400 MHz, 
CDCl3) δ 7.23 (t, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.82 (t, J = 7.3 Hz, 1H), 4.25 – 

4.14 (m, 1H), 3.54 – 3.45 (m, 2H), 3.07 – 2.97 (m, 2H), 2.25 – 2.15 (m, 2H), 2.03 – 1.92 (m, 

2H). 13C NMR (100 MHz, CDCl3) δ 151.1, 129.2, 119.8, 116.6, 57.2, 47.5, 35.1. HRMS 
(EI+) calcd. for [C11H14NCl] (MH+) 196.1044; found 196.1041.

4-chloro-1-(p-tolyl)piperidine (2b) Colorless oil, 89.1 mg, 85% yield. 1H NMR (400 MHz, 
CDCl3) δ = 7.05 (d, J=7.7, 2H), 6.83 (d, J=7.5, 2H), 4.16 (bs, 1H), 3.42 – 3.44 (m, 2H), 

2.99 – 2.95 (m, 2H), 2.29 – 2.12 (m, 5H), 2.00 – 1.98 (m, 2H). 13C NMR (100 MHz, 
CDCl3) δ 149.0, 129.6, 129.3, 116.9, 57.1, 48.1, 35.2, 20.4. HRMS (EI+) calcd. for [C H 

NCl] (MH+) 210.1044; found 210.1042.

4-chloro-1-(m-tolyl)piperidine (2c) Colorless oil, 97.5 mg, 93% yield. 1H NMR (400 MHz, 
CDCl3) δ 7.16 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 7.4 Hz, 1H), 4.23 – 

4.17 (m, 1H), 3.55 – 3.47 (m, 2H), 3.09 – 2.99 (m, 2H), 2.32 (s, 3H), 2.26 – 2.17 (m, 2H), 

2.06 – 1.95 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 151.1, 138.9, 129.0, 120.8, 117.5, 

113.7, 57.2, 47.7, 35.1, 21.8. HRMS (EI+) calcd. for [C12H17NCl] (MH+) 210.1044; found 

210.1042.

4-chloro-1-(4-fluorophenyl)piperidine (2d) Colorless oil, 89.5 mg, 84% yield. 1H NMR 
(400 MHz, CDCl3) δ 7.01 – 6.84 (m, 4H), 4.19 (tt, J = 8.0, 3.9 Hz, 1H), 3.45 – 3.31 (m, 

2H), 3.02 – 2.93 (m, 2H), 2.22 (dtd, J = 10.4, 7.0, 3.6 Hz, 2H), 2.09 – 1.95 (m, 2H). 13C 
NMR (100 MHz, CDCl3) δ 158.3, 155.9, 147.7, 118.4, 115.5, 115.3, 56.7, 48.3, 35.0. 19F 
NMR (376 MHz, CDCl3) δ −124.31 (s, 1H). HRMS (EI+) calcd. for [C11H13ClFN] (M+) 

213.0719; found 213.0714.

4-chloro-1-(4-chlorophenyl)piperidine (2e) Colorless oil, 104.7 mg, 91 % yield. 1H NMR 
(400 MHz, CDCl3) δ 7.20 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.21 (tt, J = 7.6, 3.7 

Hz, 1H), 3.52 – 3.35 (m, 2H), 3.13 – 2.97 (m, 2H), 2.27 – 2.11 (m, 2H), 2.06 – 1.92 (m, 2H). 
13C NMR (100 MHz, CDCl3) δ 149.6, 129.0, 124.6, 117.7, 56.8, 47.4, 34.8. HRMS (EI+) 
calcd. for [C11H14NCl2] (MH+) 230.0498; found 230.0496.
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1-(4-bromophenyl)-4-chloropiperidine (2f) Colorless oil, 109.9 mg, 80% yield. 1H NMR 
(400 MHz, CDCl3) δ 7.33 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 9.0 Hz, 2H), 4.21 (tt, J = 7.8, 3.9 

Hz, 1H), 3.51 – 3.39 (m, 2H), 3.12 – 2.94 (m, 2H), 2.20 (dtd, J = 10.5, 7.0, 3.6 Hz, 2H), 2.06 

– 1.94 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 150.0, 131.9, 129.1, 118.1, 56.8, 47.2, 

34.7. HRMS (EI+) calcd. for [C11H14NBrCl] (MH+) 273.9993; found 273.9989.

4-chloro-1-(3-iodophenyl)piperidine (2g) Colorless oil, 112.3 mg, 70% yield. 1H NMR (400 
MHz, CDCl3) δ 7.25 – 7.23 (m, 1H), 7.18 – 7.13 (m, 1H), 6.98 – 6.93 (m, 1H), 6.87 (ddd, J 
= 8.4, 2.4, 0.8 Hz, 1H), 4.21 (tt, J = 7.8, 3.8 Hz, 1H), 3.53 – 3.44 (m, 2H), 3.12 – 3.01 (m, 

2H), 2.18 (ddd, J = 13.1, 6.8, 3.3 Hz, 2H), 2.03 – 1.92 (m, 2H). 13C NMR (100 MHz, 
CDCl3 δ 152.1, 130.5, 128.4, 125.2, 115.6, 95.2, 56.8, 46.9, 34.7. HRMS (EI+) calcd. for 

[C11H13ClIN] (M+) 320.9781; found 320.9775.

1-(3-bromophenyl)-4-chloropiperidine (2h) Colorless oil, 137 mg, 86% yield. 1H NMR 
(400 MHz, CDCl3) δ 7.11 (t, J=8.1, 1H), 7.05 (t, J=2.1, 1H), 6.96 (ddd, J=7.8, 1.8, 0.8, 1H), 

6.87 – 6.81 (m, 1H), 4.22 (tt, J=7.8, 3.8, 1H), 3.57 – 3.45 (m, 2H), 3.15 – 3.04 (m, 2H), 2.25 

– 2.15 (m, 2H), 2.05 – 1.93 (m,2H). 13C NMR (100 MHz CDCl3) δ 152.2, 130.4, 123.2, 

122.2, 119.1, 114.8, 56.8, 46.8, 34.6. HRMS (EI+) calcd. For [C8H14NBrClF2] (MH+) 

275.9970; found 275.9969.

4-chloro-1-(2-iodo-4-methylphenyl)piperidine (2i) Colorless oil, 106.5 mg, 81% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.28 – 4.28 

(m, 1H), 3.64 – 3.53 (m, 2H), 3.25 – 3.15 (m, 2H), 2.23 – 2.17 (m, 2H), 2.04 – 1.91 (m, 2H). 
13C NMR (100 MHz, CDCl3) δ = 152.7, 129.0, 126.4, 125.9, 125.6, 123.2, 120.5, 114.8, 

58.6, 45.9, 34.3. 19F NMR (376 MHz, CDCl3) δ −61.35. HRMS (EI+) calcd. for [C H ClF 

N] (M+) 263.0691; found 263.0686.

4-chloro-1-(4-(trifluoromethyl)phenyl)piperidine (2j) Colorless oil, 106.5 mg, 81% yield. 
1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.28 – 

4.28 (m, 1H), 3.64 – 3.53 (m, 2H), 3.25 – 3.15 (m, 2H), 2.23 – 2.17 (m, 2H), 2.04 – 1.91 (m, 

2H). 13C NMR (100 MHz, CDCl3) δ = 152.7, 129.0, 126.4, 125.9, 125.6, 123.2, 120.5, 

114.8, 58.6, 45.9, 34.3. 19F NMR (376 MHz, CDCl3) δ −61.35. HRMS (EI+) calcd. for 

[C12H13ClF3N] (M+) 263.0691; found 263.0686.

4-chloro-1-(4-methoxyphenyl)piperidine (2k) Colorless oil, 101.5 mg, 90% yield. 1H NMR 
(400 MHz, CDCl3) δ = 6.93 (d, J=9.0, 2H), 6.85 (d, J=8.9, 2H), 4.24 – 4.12 (m, 1H), 3.79 

(s, 3H), 3.46 – 3.34 (m, 2H), 3.00 – 2.90 (m, 2H), 2.22 (s, 2H), 2.12 – 2.00 (m, 2H). 13C 
NMR (100 MHz, CDCl3) δ 153.9, 145.6, 118.8, 114.4, 57.1, 55.5, 49.1, 35.4. HRMS (EI
+) calcd. for [C12H17ONCl] (MH+) 226.0993; found 226.0990.

4-(4-chloropiperidin-1-yl)benzonitrile (2l) Colorless oil, 79.4 mg, 72% yield. 1H NMR (400 
MHz, CDCl3) δ 7.49 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 4.31 – 4.26 (m, 1H), 3.69 

– 3.57 (m, 2H), 3.32 – 3.26 (m, 2H), 2.21 – 2.14 (m, 2H), 2.00 – 1.92 (m, 2H). 13C NMR 
(100 MHz, CDCl3) δ 152.7, 133.4, 119.8, 114.3, 100.0, 56.3, 44.9, 34.1. HRMS (EI+) 
calcd. for [C12H14N2Cl] (MH+) 221.0840; found 221.0837.
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4-chloro-1-(4-(trifluoromethoxy)phenyl)piperidine (2m) Colorless oil, 126 mg, 90 % yield. 
1H NMR (400 MHz, CDCl3) δ = 7.11 (d, J=8.7, 2H), 6.90 (d, J=8.9, 2H), 4.22 (dt, J=11.7, 

3.8, 1H), 3.53 – 3.44 (m, 2H), 3.13 – 3.03 (m, 2H), 2.21 (dd, J=14.6, 11.6, 2H), 2.06 – 1.96 

(m, 2H). 13C NMR (100 MHz, CDCl3) δ 149.7, 141.9, 124.2, 121.8, 121.6, 119.2, 117.1, 

116.8, 114.4, 56.6, 47.3, 34.7. 19F NMR (376 MHz, CDCl3) δ = −58.32. HRMS (EI+) 
calcd. for [C12H14ONClF3] (MH+) 280.0711; found 280.0708.

4-chloro-1-(4-nitrophenyl)piperidine (2n) Yellow solid, 72.0 mg, 60% yield. 1H NMR (400 
MHz, CDCl3) δ 8.10 (d, J = 9.4 Hz, 2H), 6.82 (d, J = 9.4 Hz, 2H), 4.32 (dq, J = 10.8, 3.7 

Hz, 1H), 3.78 – 3.65 (m, 2H), 3.40 (ddd, J = 11.5, 7.3, 3.6 Hz, 2H), 2.26 – 2.11 (m, 2H), 

2.01 – 1.93 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 154.4, 138.4, 126.1, 112.9, 56.3, 44.9, 

34.3. HRMS (EI+) calcd. for [C11H13ClN2 O2] (M+) 240.0669; found 240.0664.

4-chloro-1-(2-(trifluoromethyl)phenyl)piperidine (2o) Colorless oil, 105.4 mg, 80% yield. 
1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.37 (d, J 
= 8.1 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 4.23 (bs, 1H), 3.21 – 3.02 (m, 2H), 2.81 (ddd, J = 

11.2, 7.7, 3.2 Hz, 2H), 2.21 (ddd, J = 13.5, 6.9, 3.4 Hz, 2H), 2.09 – 1.97 (m, 2H). 13C NMR 
(100 MHz, CDCl3) δ 152.8, 132.9, 128.2, 127.3, 125.5, 125.0, 124.2, 122.8, 120.1, 57.4, 

51.4, 35.9. 19F NMR (376 MHz, CDCl3) δ −60.5, −62.21 (side product). HRMS (EI+) 
calcd. for [C12H14NClF3] (MH+) 264.0761; found 264.0758.

1-(3,5-bis(trifluoromethyl)phenyl)-4-chloropiperidine (2p) Colorless oil, 149.2 mg, 90% 

yield. 1H NMR (400 MHz, CDCl3) δ 7.32 –7.21 (m, 3H), 4.28 (tt, J=7.4, 3.7, 1H), 3.64 – 

3.55 (m, 2H), 3.29 – 3.19 (m, 2H), 2.22 (ddt, J=14.3, 7.4, 3.6, 2H), 2.06 – 1.96 (m, 2H). 13C 
NMR (100 MHz, CDCl3) δ 151.3, 132.8, 132.5, 132.2, 131.8, 127.5, 124.8, 122.1, 119.4, 

115.0, 112.0, 56.0, 46.0, 34.3. 19F NMR (376 MHz, CDCl3) δ = - 63.10. HRMS (EI+) 
calcd. for [C13H13NClF6] (MH+) 332.0635; found 332.0632.

4-chloro-1-(3-(trifluoromethyl)phenyl)piperidine (2q) Colorless oil, 95 mg, 72% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.35 (t, J = 8.0 Hz, 1H), 7.12 (s, 1H), 7.08 (d, J = 8.2 Hz, 2H), 

4.24 (tt, J = 7.8, 3.8 Hz, 1H), 3.60 – 3.48 (m, 2H), 3.20 – 3.08 (m, 2H), 2.29 – 2.15 (m, 2H), 

2.07 – 1.94 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 151.1, 131.9, 131.6, 131.3, 131.0, 

130.0, 125.6, 122.9, 119.2, 115.8, 112.6, 56.6, 46.8, 34.7. 19F NMR (376 MHz, CDCl3) δ 
−62.83. HRMS (EI+) calcd. for [C12H14NClF3] (MH+) 264.0761; found 264.0760.

1-([1,1’-biphenyl]-4-yl)-4-chloropiperidine (2r) White solid, 111.4 mg, 82% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.47 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.32 (t, J = 

7.6 Hz, 2H), 7.19 (dd, J = 14.7, 7.2 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 4.16 – 4.10 (m, 1H), 

3.51 – 3.43 (m, 2H), 3.08 – 2.97 (m, 2H), 2.19 – 2.08 (m, 2H), 1.99 – 1.87 (m, 2H). 13C 
NMR (100 MHz, CDCl3) δ 150.1, 140.7, 132.2, 128.6, 127.7, 126.4, 126.4, 116.5, 57.0, 

47.3, 34.8. HRMS (EI+) calcd. for [C17H19NCl] (MH+) 272.1201; found 272.1200.

1-([1,1’-biphenyl]-2-yl)-4-chloropiperidine (2s) Colorless oil, 114.1 mg, 84% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.65 – 7.60 (m, 2H), 7.42 (dd, J=10.5, 4.7, 2H), 7.34 – 7.24 (m, 

3H), 7.08 (ddd, J=11.9, 9.2, 4.6, 2H), 4.13 – 3.97 (m, 1H), 3.18 – 3.07 (m, 2H), 2.70 (ddd, 

J=11.8, 8.8, 2.9, 2H), 2.01 – 1.93 (m, 2H), 1.86 – 1.71 (m, 2H). 13C NMR (100 MHz, 
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CDCl3) δ 150.2, 141.0, 135.1, 131.3, 128.6, 128.1, 126.7, 122.7, 118.5, 57.3, 49.4, 35.6. 

HRMS (EI+) calcd. for [C17H19NCl] (MH+) 272.1201; found 272.1199.

1-(4-(4-chloropiperidin-1-yl)phenyl)ethanone (2t) Colorless oil, 97.4 mg, 82% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.87 (d, J=9.0, 2H), 6.87 (d, J=9.0, 2H), 4.28 (tt, J=7.6, 3.8, 

1H), 3.68 (ddd, J=12.8, 7.3, 3.6, 2H), 3.29 (ddd, J=13.2, 7.8, 3.5, 2H), 2.52 (s, 3H), 

2.05-1.95 (m, 2H), 1.96 (dtd, J=11.3, 7.7, 3.6, 2H). 13C NMR (100 MHz, CDCl3) δ 196.4, 

153.6, 130.4, 127.5, 113.6, 56.7, 45.3, 34.4, 26.1. HRMS (EI+) calcd. For [C13H17ONCl] 

(MH+) 238.0993; found 238.0991.

(3-(4-chloropiperidin-1-yl)phenyl)(phenyl)methanone (2u) Colorless liquid, 111 mg, 74 % 

yield. 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 

(t, J = 7.6 Hz, 2H), 7.39 (s, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.18 (dd, J = 14.1, 7.7 Hz, 2H), 

4.23 (tt, J = 7.8, 3.8 Hz, 1H), 3.61 – 3.51 (m, 2H), 3.19 – 3.09 (m, 2H), 2.21 (bs, 2H), 2.07 – 

1.96 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 196.9, 150.8, 138.4, 137.6, 132.3, 130.0, 

128.8, 128.1, 121.7, 120.4, 117.1, 56.7, 47.0, 34.7. HRMS (EI+) calcd. for [C18H19ONCl] 

(MH+) 300.1150; found 300.1150.

1-(benzo[d][1,3]dioxol-5-yl)-4-chloropiperidine (2v) Yellow liquid, 81.3 mg, 68 % yield. 1H 
NMR (400 MHz, CDCl3) δ 6.71 (d, J = 8.4 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 6.37 (dd, J = 

8.4, 2.4 Hz, 1H), 5.90 (s, 2H), 4.17 (td, J = 8.0, 4.0 Hz, 1H), 3.40 – 3.27 (m, 2H), 2.92 (ddd, 

J = 12.0, 8.4, 3.4 Hz, 2H), 2.20 (dd, J = 16.4, 3.5 Hz, 2H), 2.08 – 1.94 (m, 2H). 13C NMR 
(100 MHz, CDCl3) δ 110.0, 109.7, 108.1, 100.9, 100.5, 84.4, 57.0, 49.2, 35.3. HRMS (EI
+) calcd. for [C12H14O2NCl] (MH+) 239.0713; found 239.0707.

methyl 3-(4-chloropiperidin-1-yl)thiophene-2-carboxylate (2w) Pale yellow oil, 80.3 mg, 

62 % yield. 1H NMR (500 MHz, CDCl3) δ 7.38 (d, J = 5.4 Hz, 1H), 6.84 (d, J = 5.4 Hz, 

1H), 4.37 – 4.19 (m, 1H), 3.84 (s, 3H), 3.57 – 3.45 (m, 2H), 3.23 – 3.11 (m, 2H), 2.28 (ddd, 

J = 13.9, 7.4, 3.9 Hz, 2H), 2.12 – 1.98 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 162.1, 

157.6, 156.7, 131.1, 121.0, 56.9, 51.6, 49.8, 35.2. HRMS (EI+) calcd. for [C11H14O2NClS] 

(M+) 259.0434; found 259.0430.

2-chloro-5-(4-chloropiperidin-1-yl)pyridine (2x) Yellow liquid, 91.3 mg, 79 % yield. 1H 
NMR (400 MHz, CDCl3) δ 8.15 – 8.03 (m, 1H), 7.41 (dd, J = 9.0, 2.7 Hz, 1H), 6.61 (d, J = 

9.0 Hz, 1H), 4.27 (tt, J = 7.8, 3.8 Hz, 1H), 3.87 (ddd, J = 13.0, 7.1, 3.7 Hz, 2H), 3.41 (ddd, J 
= 13.3, 8.1, 3.5 Hz, 2H), 2.20 – 2.08 (m, 2H), 1.96 – 1.82 (m, 2H). 13C NMR (100 MHz, 
CDCl3) δ 157.3, 146.3, 137.2, 120.0, 107.8, 57.2, 43.2, 34.4. HRMS (EI+) calcd. for 

[C10H13N2Cl2] (MH+) 231.0450; found 231.0447.

4-chloro-2-(4-chloropiperidin-1-yl)pyridine (2y) Colorless oil, 87.4 mg, 76% yield. 1H 
NMR (400 MHz, CDCl3) δ 8.07 (d, J=1.5, 1H), 7.31 (s, 1H), 7.25 – 7.19 (m, 1H), 4.29 (tt, 

J=7.5, 3.8, 1H), 3.58 – 3.47 (m, 2H), 3.23 – 3.12 (m, 2H), 2.26 (ddt, J=14.2, 7.3, 3.6, 2H), 

2.11 – 2.00 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 146.0, 141.3, 137.9, 126.2, 124.0, 

56.2, 46.5, 34.4. HRMS (EI+) calcd. for [C10 H12Cl2N2] (M+) 230.0382; found 230.0378.

2-chloro-5-(4-chloropiperidin-1-yl)pyrazine (2z) Brown oil, 91.7 mg, 79% yield. 1H NMR 
(400 MHz, CDCl3) δ 8.06 (s, 1H), 7.88 (s, 1H), 4.34 – 4.28 (m, 1H), 3.89 – 3.81 (m, 2H), 
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3.55 – 3.47 (m, 2H), 2.18 – 2.11 (m, 2H), 1.97 – 1.89 (m, 2H). 13C NMR (100 MHz, 
CDCl3) δ 153.4, 141.0, 136.0, 129.2, 56.6, 42.4, 34.2. HRMS (EI+) calcd. for 

[C9H12N3Cl2] (MH+) 232.0403; found 232.0400.

4-chloro-1-tosylpiperidine (2aa) White solid. 89.1 mg, 85% yield. 1H NMR (400 MHz, 
CDCl3) δ 7.64 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.16 – 4.09 (m, 1H), 3.21 – 

3.07 (m, 4H), 2.44 (s, 3H), 2.16 – 2.09 (m, 2H), 1.98 – 1.89 (m, 2H). 13C NMR (100 MHz, 
CDCl3) δ 143.5, 132.8, 129.6, 127.4, 55.2, 42.7, 33.8, 21.4. HRMS (EI+) calcd. for 

[C12H17O2NClS] (MH+) 274.0663; found 274.0660.

4-chloro-1-((4-methoxyphenyl)sulfonyl)piperidine (2ab) White solid, 113 mg, 78 % yield. 
1H NMR (400 MHz, (CDCl3) δ 7.60 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 4.07 – 

3.97 (m, 1H), 3.78 (s, 3H), 3.11 – 3.05 (m, 2H), 3.03 – 2.95 (m, 2H), 2.10 – 1.97 (m, 2H), 

1.88 – 1.80 (m, 2H). 13C NMR (100 MHz, (CDCl3) δ 162.9, 129.5, 127.6, 114.1, 55.5, 

55.2, 42.7, 33.9. HRMS (EI+) calcd. for [C12H17O3NClS] (MH+) 290.0612; found 

290.0610.

1-((4-bromophenyl)sulfonyl)-4-chloropiperidine (2ac) White solid, 120.2mg, 71 % yield. 1H 
NMR (400 MHz, CDCl3) 7.68 (d, J = 8.6, 2H), 7.62 (d, J = 8.6, 2H), 4.17 – 4.13 (m, 1H), 

3.15 (t, J = 5.4 Hz, 4H), 2.17 – 2.10 (m, 2H), 1.97 – 1.91 (m, 2H).13C NMR (100 MHz, 
CDCl3) δ 135.4, 132.6, 129.2, 128.2, 55.2, 42.9, 34.1. HRMS (EI+) calcd. for 

[C11H13O2NBrClNaS] (M+Na) 359.9431; found 359.9429.

4-chloro-1-(2-ethylhexyl)piperidine (2ad) Colorless oil, 64.4 mg, 54% yield. 1H NMR (500 
MHz, CDCl3) δ 4.01 (bs, 1H), 2.71 (bs, 2H), 2.13 (dd, J = 6.6, 4.4 Hz, 5H), 1.98 – 1.81 (m, 

3H), 1.44 (bs, 2H), 1.29 – 1.23 (m, 7H), 0.88 (dt, J = 14.9, 7.1 Hz, 7H). 13C NMR (126 
MHz, CDCl3) δ 62.7, 58.0, 52.2, 36.5, 35.8, 31.5, 28.9, 24.7, 23.1, 14.1, 10.8. HRMS (EI
+) calcd. for [C13H26ClN] (M+) 231.1756; found 231.1751.

4-chloro-1-(4-methoxyphenethyl)piperidine (2ae) Colorless oil, 56.9 mg, 51% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.32 – 7.10 (m, 5H), 4.01 (s, 1H), 2.78 – 2.72 (m, 4H), 2.54 

(dd, J=9.7, 6.5, 2H), 2.27 (bs, 2H), 2.07 (d, J=12.4, 2H), 1.94 – 1.80 (m, 2H). 13C NMR 
(100 MHz, CDCl3) δ 140.2, 128.6, 128.3, 125.9, 60.3, 57.3, 51.2, 35.5, 33.7. HRMS (EI+) 
calcd. for [C13H18ClN] (M+) 223.1232; found 223.1228.

4-chloro-1-(4-methoxyphenethyl)piperidine (2af) Colorless oil, 73.4 mg, 58% yield. 1H 
NMR (400 MHz, CDCl3) δ 7.11 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 4.12 – 4.00 

(m, 1H), 3.79 (s, 3H), 2.88 – 2.79 (m, 2H), 2.78 – 2.67 (m, 3H), 2.61 – 2.52 (m, 2H), 2.38 – 

2.25 (m, 2H), 2.18 – 2.08 (m, 2H), 2.00 – 1.86 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 
158.0, 132.3, 129.6, 113.8, 60.6, 57.4, 55.3, 51.3, 35.6, 32.9. HRMS (EI+) calcd. for 

[C14H20ClNO] (M+) 253.1232; found 253.1228.

1-benzyl-4-chloropiperidine (2ag) Colorless oil, 64 mg, 61% yield. 1H NMR (400 MHz, 
CDCl3) δ 7.43 – 7.12 (m, 5H), 4.03 (bs, 1H), 3.49 (bs, 2H), 2.80 – 2.67 (m, 2H), 2.23 (s, 

2H), 2.13 – 2.02 (m, 2H), 1.96 – 1.84 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 138.3, 

129.0, 128.2, 127.0, 62.8, 57.5, 51.3, 35.6. HRMS (EI+) calcd. for [C12H16ClN] (M+) 

209.0973; found 209.0967.
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4-chloro-1-(1-phenylethyl)piperidine (2ah) Colorless liquid, 72.7 mg, 65% yield. 1H NMR 
(400 MHz, CDCl3) δ 7.38 – 7.21 (m, 5H), 3.98 (bs, 1H), 3.44 (q, J=6.7, 1H), 2.86 (bs, 1H), 

2.78 – 2.66 (m, 1H), 2.29 – 2.12 (m, 2H), 2.14 – 1.99 (m, 2H), 1.97 – 1.80 (m, 2H), 1.37 (d, 

J=6.7, 3H). 13C NMR (100 MHz, CDCl3) δ 143.8, 128.2, 127.5, 126.9, 64.4, 57.8, 48.6, 

35.9, 19.4. HRMS (EI+) calcd. for [C13 H19NCl] (MH+) 224.1201; found 224.1197.

4-chloro-4-methyl-1-phenylpiperidine (4a) Colorless liquid, 84.9 mg, 81% yield.1H NMR 
(400 MHz, CDCl3) δ 7.32 – 7.22 (m, 2H), 6.96 (d, J = 8.6 Hz, 2H), 6.85 (t, J = 7.0 Hz, 1H), 

3.51 (d, J = 12.8 Hz, 2H), 3.25 – 3.12 (m, 2H), 1.95 (ddd, J = 22.6, 18.0, 8.3 Hz, 4H), 1.68 

(s, 3H). 13C NMR (100 MHz, CDCl3) δ 151.1, 129.1, 119.5, 116.4, 69.5, 46.0, 40.3, 33.2. 

HRMS (EI+) calcd. for [C12H17NCl] (MH+) 210.1044; found 210.1040.

4-bromo-4-chloro-1-phenylpiperidine (4b) Colorless liquid, 114.7 mg, 84% yield. 1H NMR 
(400 MHz, CDCl3) δ 7.28 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 7.9 Hz, 2H), 6.88 (t, J = 7.3 Hz, 

1H), 3.45 – 3.28 (m, 4H), 2.68 (ddd, J = 13.7, 7.1, 3.7 Hz, 2H), 2.55 (ddd, J = 13.7, 7.0, 3.7 

Hz, 2H). 13C NMR (100 MHz CDCl3) δ 150.2, 129.1, 120.0, 116.4, 78.9, 47.5, 46.4. 

HRMS (EI+) calcd. for [C11H13BrClN] (M+) 272.9917; found 272.9912.

4a-chloro-6,6-dimethyl-2-phenyldecahydro-5,7-methanoisoquinoline (4c) Colorless oil, 

76.62 mg, 53% yield. 1H NMR (500 MHz, CDCl3) δ 7.23 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 

8.1 Hz, 2H), 6.79 (t, J = 7.2 Hz, 1H), 3.70 – 3.60 (m, 3H), 2.79 (td, J = 12.6, 3.0 Hz, 1H), 

2.45 – 2.38 (m, 1H), 2.23 (td, J = 12.1, 6.4 Hz, 1H), 2.10 (td, J = 12.8, 4.5 Hz, 1H), 1.92 – 

1.84 (m, 2H), 1.79 (d, J = 10.7 Hz, 1H), 1.61 – 1.54 (m, 1H), 1.35 (d, J = 11.2 Hz, 1H), 1.08 

(s, 3H), 1.01 (s, 3H), 0.92 (dt, J = 13.0, 4.4 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 151.1, 

129.0, 118.9, 116.3, 77.7, 55.2, 51.8, 47.5, 47.3, 39.4, 34.8, 30.5, 30.4, 29.9, 27.7, 23.2. 

HRMS (EI+) calcd. for [C18H24ClN] (M+) 289.1595; found 289.1590.

4-chloro-3-methyl-1-phenylpiperidine (4d) Colorless oil, 68.1 mg, 65% yield. 1H NMR 
(400 MHz, CDCl3) Major (anti-) diastereomer: δ 7.31 – 7.22 (m, 2H), 6.96 – 6.90 (m, 2H), 

6.86 (t, J = 7.3 Hz, 1H), 3.73 – 3.57 (m, 3H), 2.80 (td, J = 12.5, 2.7 Hz, 1H), 2.50 (dd, J = 

12.9, 10.6 Hz, 1H), 2.31 – 2.21 (m, 1H), 2.14 – 1.95 (m, 2H), 1.14 (d, J = 6.6 Hz, 3H). 13C 
NMR (100 MHz, CDCl3) δ 150.7, 129.1, 119.7, 116.5, 64.7, 56.4, 49.4, 39.5, 35.8, 16.9. 

HRMS (EI+) calcd. for [C12H17NCl] (MH+) 210.1044; found 210.1042.
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Figure 1. 
Examples of piperidine-containing natural products and drug molecules.
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Figure 2. 
Failed substrates.
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Figure 3. 
ORTEP representation of (2n) with thermal ellipsoids shown at the 50% probability level.
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Scheme 1. 
Literature background.
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Scheme 2. 
Gram scale reaction and mechanistic study.

Ebule et al. Page 24

J Org Chem. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Proposed mechanism.
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Table 1.

Reaction optimization.
a

Entry Solvent HCl source Conc. Conv./%
a

1 DCE HCl•DMPU 1.0 64

2 CH3CN HCl•DMPU 1.0 22

3 CH3NO3 HCl•DMPU 1.0 30

4 EtOAc HCl•DMPU 1.0 90

5 DMSO HCl•DMPU 1.0 18

6 EtOAc HCl•DMPU 0.5 89

7 EtOAc HCl•DMPU 0.2 99

8 EtOAc HCl, Et2O 0.2
32 (98)

b

9 EtOAc HCl, 2-propanol 0.2
99

c

10 EtOAc HCl, dioxane 0.2
65 (94)

b

11 EtOAc HCl, AcOH 0.2
99

c

12 EtOAc HCl, H2O 0.2
29 (65)

b

13 EtOAc CH3COCl/EtOH 0.2 99

14 EtOAc TMSCl/MeOH 0.2 95

a
Determined by GC-MS with dodecane as the internal standard.

b
24 h

c
combined with thiolated side product.
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Table 2.

Substrate scope for the synthesis of 4-chloropiperidines.
a

a
1 (0.2 mmol), HCl•DMPU (2.4 equiv), DMSO (2.4 equiv), 65 °C, 9–24 h. All yields are isolated yields.
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Table 3.

Scope for the synthesis of 4-chloropiperidines.
a

a
3 (0.2 mmol), HCl DMPU (2.4 equiv), DMSO (2.4 equiv), 65 °C, 9–18 h, isolated yields, b 1H NMR with CH2Br2 as internal standard.
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