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Abstract

Predictive modeling based on machine learning with medical data has great potential to improve 

healthcare and reduce costs. However, two hurdles, among others, impede its widespread adoption 

in hdealthcare. First, medical data are by nature longitudinal. Pre-processing them, particularly for 

feature engineering, is labor intensive and often takes 50–80% of the model building effort. 

Predictive temporal features are the basis of building accurate models, but are difficult to identify. 

This is problematic. Healthcare systems have limited resources for model building, while 

inaccurate models produce sub-optimal outcomes and are often useless. Second, most machine 

learning models provide no explanation of their prediction results. However, offering such 

explanations is essential for a model to be used in usual clinical practice. To address these two 

hurdles, this paper outlines: 1) a data-driven method for semi-automatically extracting predictive 

and clinically meaningful temporal features from medical data for predictive modeling; and 2) a 

method of using these features to automatically explain machine learning prediction results and 

suggest tailored interventions. This provides a roadmap for future research.
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1. Introduction

Machine learning studies computer algorithms that learn from data [1] and has won most 

data science competitions [2]. Examples of machine learning algorithms include deep neural 

network (a.k.a. deep learning) [3], support vector machine, random forest, and decision tree. 

By enabling tasks like identifying high-risk patients for preventive interventions, predictive 
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modeling based on machine learning with medical data holds great potential to improve 

health-care and lower costs. Trials showed using machine learning helped: 1) reduce patient 

no-show rate by 19% and boost appointment rescheduling or cancel rate by 17% in 

outpatients at high risk of no-shows [4]; 2) cut 30-day mortality rate (odds ratio = 0.53) in 

emergency department patients with community-acquired pneumonia [5]; 3) trim cost by 

$1500 and ventilator use by 5.2 days per patient at a hospital respiratory care center [6]; 4) 

boost on- target hemoglobin values by 8.5–17% and reduce hospitalization days by 15%, 

cardiovascular events by 15%, hemoglobin fluctuation by 13%, expensive darbepoetin 

consumption by 25%, and blood transfusion events by 40–60% in end-stage renal disease 

patients on dialysis [7–10]; and 5) cut healthcare cost in Medicare patients’ last half year of 

life by 4.5% [11].

Despite its potential for many clinical activities, machine learning-based predictive modeling 

is used by only 15% of hospitals for limited purposes [12]. Two hurdles, among others, 

impede the widespread adoption of machine learning in healthcare.

1.1. Hurdle 1: predictive temporal features are essential for building accurate predictive 
models, but are difficult to identify

Most attributes in medical data are longitudinal. It is labor intensive and often takes 50–80% 

of the model building effort to pre-process medical data, particularly for feature engineering 

[13–15]. Predictive temporal features are the basis of building accurate predictive models, 

but are difficult to identify, even with many human resources. This is problematic. 

Healthcare systems have limited resources for model building, while inaccurate models 

produce suboptimal outcomes and are often useless.

At present, clinical predictive models are usually created in the following way. Given a 

modeling task and a long list of attributes in the medical data like those stored in the 

electronic health record, a clinician uses his/her judgment to choose from the long list a 

short list of attributes that are potentially relevant to the task. For each longitudinal attribute 

in the short list, the clinician uses his/her judgment to specify how to aggregate the 

attribute’s values over time into a temporal feature, e.g., by taking their average or 

maximum. Then a data scientist uses the features (a.k.a. independent variables) to build a 

model. If model accuracy is unsatisfactory, which is frequently the case, the process is 

repeated. From what we have seen at three institutions, it often takes the clinician several 

months and multiple iterations to finish the manual attribute and feature specification for 

each modeling task.

Besides being labor intensive, the above model building approach has two other drawbacks. 

First, many attributes could be useful for the modeling task, but are missing in the short list 

of attributes chosen by the clinician. Second, many temporal features could have additional 

predictive power, but are not included in those specified by the clinician [16]. Both 

drawbacks result from our limited understanding of diseases and lead to degraded model 

accuracy. Moreover, although the data mining community has done much work on mining 

and constructing temporal [17,18] and sequence features [19], often many temporal features 

useful for the modeling task are still waiting to be discovered.
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As evidence of all of these issues, Google recently reported using all attributes in the 

electronic health record and long short-term memory (LSTM) [20,21], a type of deep neural 

network, to automatically learn temporal features from medical data [22]. For predicting 

each of three outcomes: in-hospital mortality, unexpected read-missions within 30 days, and 

long hospital stay, this resulted in a boost of the area under the receiver operating 

characteristic curve accuracy measure by almost 10% [22]. Several other studies [23–25] 

also showed that for various clinical prediction tasks and compared to using temporal 

features specified by experts, using LSTM to automatically learn temporal features from 

medical data improved prediction accuracy. This is consistent with what has happened in 

several areas like speech recognition, natural language processing, and video classification, 

where temporal features automatically learned from data by LSTM outperform those 

specified by experts or mined by other methods [3]. It is common that many temporal 

features have additional predictive power, but have not been identified before.

Without prelimiting to a small number of longitudinal attributes and possibly missing many 

other useful ones, LSTM can examine many attributes and automatically learn temporal 

features from irregularly sampled medical data of varying lengths in a data-driven way. 

However, the learned features are suboptimal and unsuitable for direct clinical use. When 

learning temporal features, the standard LSTM does not restrict the number of longitudinal 

attributes used in each feature. Consequently, a learned feature often involves lots of 

attributes, many of which have little or no relationship with each other. This results in three 

problems.

Problem 1.—The learned features tend to overfit the training data’s peculiarities and 

become less generalizable, leading to suboptimal model accuracy. As evidence of this, for 

several modeling tasks engaging longitudinal attributes that can be naturally partitioned into 

a small number (e.g., three) of modalities at a coarse granularity, researchers have improved 

LSTM model accuracy using multimodal LSTM [26,27]. A multimodal LSTM network 

includes several constituent LSTM networks, one per modality. Each feature learned by a 

constituent network involves only those attributes in the modality linking to the constituent 

network. Usually, the medical data set contains a lot of longitudinal attributes, many of 

which could be useful for the modeling task. If we could partition longitudinal attributes 

meaningfully at a finer granularity and let multimodal LSTM take advantage of this aspect, 

we would expect the learned features’ quality and consequently model accuracy to improve 

further. Intuitively, a clinically meaningful temporal feature should typically involve no more 

than a few attributes.

Problem 2.—Differing healthcare systems collect overlapping yet different attributes. The 

more attributes a feature involves, the less likely a predictive model built with the feature 

will be used by other healthcare systems beyond the one that originally developed the model.

Problem 3.—A feature involving many longitudinal attributes is difficult to understand. As 

reviewed in Section 2, in LSTM, each memory cell vector element depicts some learned 

feature(s). Karpathy et al. [28] showed that only ~10% of these elements could be 

interpreted [29]. In clinical practice, clinicians usually refuse to use what they do not 

understand.
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1.2. Hurdle 2: most machine learning models are black boxes, but clinical practice 
requires transparency of model prediction results

This hurdle is related to Problem 3 mentioned above. Most machine learning models 

including LSTM provide no explanation of their prediction results. Yet, offering such 

explanations is essential for a model to be used in usual clinical practice. When lives are at 

risk, clinicians need to know the reasons to trust a model’s prediction results. Understanding 

the reasons for poor outcomes can help clinicians select tailored interventions that typically 

work better than non-specific ones. Explanations for prediction results can provide hints to 

help discover new knowledge. In addition, if sued for malpractice, clinicians will need to use 

their understanding of the prediction results to justify their decisions in court.

Previously, for tabular data whose columns have easy-to-understand meanings, we 

developed a method that can automatically explain any machine learning model’s prediction 

results with no accuracy loss [30]. This method cannot handle longitudinal data directly. 

Using the temporal features automatically learned by LSTM, one could convert longitudinal 

medical data to tabular data and then build machine learning models on the tabular data. But, 

if the automatically learned features have no easy-to-understand meanings, we still cannot 

use this method to automatically explain the models prediction results.

1.3. Our contributions

To address the two hurdles, this paper makes two contributions, offering a roadmap for 

future research.

First, we outline a data-driven method for semi-automatically extracting predictive and 

clinically meaningful temporal features from medical data for predictive modeling. Using 

this method can reduce the effort needed to build useable predictive models for the current 

modeling task. Complementing expert-engineered features, the extracted features can be 

used to build machine learning, statistical, or rule-based predictive models, improve model 

accuracy [31] and generalizability, and identify data quality issues. In addition, as shown by 

Gupta et al. [32], many extracted features reflect general properties of the medical attributes 

involved in the features, and can be useful for other modeling tasks. Using the extracted 

features to form a temporal feature library to facilitate feature reuse, we can reduce the effort 

needed to build predictive models for other modeling tasks.

Second, we outline a method of using the extracted features to automatically explain 

machine learning prediction results and suggest tailored interventions. This can enable 

machine learning models to be used in clinical practice, and help transform health-care to be 

more proactive. At present, healthcare is often reactive. Existing clinical predictive models 

rarely use trend features [16]. When a health risk is identified, e.g., with existing models, it 

is often at a relatively late stage of persisting deterioration of health. At that point, resolving 

it tends to be difficult and costly, and the patient is at increased risk of a poor outcome. Our 

feature extraction method can find many temporal features reflecting trends. By using these 

features and our automatic explanation method to identify risky trends early, we can 

proactively apply preventive interventions to stop further deterioration of health. The 

automatically generated explanations can help us identify new interventions, warn clinicians 
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of risky patterns, and reduce the time clinicians need to review patient records to find the 

reasons why a specific patient is at high risk for a poor outcome. The automatically 

suggested interventions can reduce the likelihood of missing suitable interventions for a 

patient. All of these factors can help improve outcomes and cut costs.

1.4. Organization of the paper

The rest of the paper is organized as follows. Section 2 reviews the current approach of using 

LSTM to build predictive models with medical data. Section 3 sketches our data-driven 

method for semi-automatically extracting predictive and clinically meaningful temporal 

features from medical data for predictive modeling. Section 4 outlines our method of using 

the extracted features to automatically explain machine learning prediction results and 

suggest tailored interventions. Section 5 discusses related work. We conclude in Section 6.

In this paper, we refer to both clinical and administrative data as medical data. We focus on 

predicting one outcome per data instance (e.g., per patient) rather than per data instance per 

time step (e.g., per patient per day). When a data instance has one outcome per time step, 

one way to extract temporal features is to focus on the outcome at the last time step of each 

data instance.

2. The current approach of using LSTM to build predictive models with 

medical data

In this section, we review the current standard approach of using LSTM to build predictive 

models with medical data. In Section 3, we present our temporal feature extraction method 

based on this approach. Variations of this approach are used in many LSTM-based clinical 

predictive modeling papers [22–25,33–46]. With proper modifications, our temporal feature 

extraction method also applies to these variations.

A deep neural network is a neural network with many layers of computation. Ching et al. 

[47–50] reviewed existing work using deep neural networks on medical data. Deep neural 

networks have several types, such as recurrent neural network (RNN), convolutional neural 

network, and deep feedforward neural network. Among them, RNN handles irregularly 

sampled longitudinal medical data of varying lengths the most naturally. LSTM [20,21] is a 

specific kind of RNN that uses a gating mechanism to better model long-range 

dependencies. Much work has been done using LSTM to build predictive models with 

medical data [22–25,33–46]. Other kinds of RNN like gated recurrent unit have also been 

used for this purpose [32,51–63]. In this paper, we focus on LSTM having memory cells, 

from which we extract temporal features.

LSTM processes a sequence of input vectors from the same data instance, one input vector 

at a time. Each input vector xt  is indexed by a time step t. After processing the entire 

sequence, LSTM obtains results that are used to predict the data instance’s outcome. Often, 

each data instance refers to a distinct patient. Each input vector includes one patient visit’s 

information, such as diagnoses and vital signs. The sequence length can vary across data 

instances. This helps boost model accuracy, as LSTM can use as much of the information of 
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each patient as possible, without having to drop information to make each patient s history 

be of the same length. This also allows us to make predictions on new patients in a timely 

manner, without having to wait until each patient accumulates a certain length of history. 

With a single patient visit’s information available, LSTM can already start to make 

predictions on the patient.

As shown in Fig. 1, an LSTM network contains a sequence of units, one per time step. In 

Fig. 1, each rounded rectangle denotes a unit. ⊕ is the element-wise sum. ⊗ is the element-

wise multiplication. A unit has a memory cell ct, a hidden state ht, an input gate it, an output 

gate ot, and a forget gate ft. The memory cell keeps long-term memory and stores summary 

information from all previous inputs. It is known that LSTM can maintain memory over 

1000 time steps [20]. The input gate regulates the input flowing into the memory cell. The 

forget gate adjusts the forgetting of the memory cell. The output gate controls the output 

flowing from the memory cell.

For a sequence with m time steps, LSTM works based on the following formulas:

f t = σ W f xt + U f ht − 1 + b f (forget gate)

it = σ Wixt + Uiht − 1 + bi (input gate)

ot = σ Woxt + Uoht − 1 + bo (output gate)

ct = f t⊗ct − 1 + it ⊗ tanh Wcxt + Ucht − 1 + bc (memory cell)

ht = ot⊗tanh ct (hidden state)

Here, σ and tanh are the element-wise sigmoid and hyperbolic tangent functions, 

respectively. xt = xt, 1, xt, 2, …, xt, n  is the input vector at time step t (1 ≤ t ≤ m). Each xt  has 

the same dimensionality n. f t, it , and ot  are the forget, input, and output gates’ activation 

vectors, respectively. ct  is the memory cell vector. ht  is the hidden state vector. b f , bi , bo and 

bc are bias vectors. All vectors except for xt  have the same dimensionality. Wf, Wi, Wo, and 

Wc are the input vector weight matrices. Uf, Ui, Uo, and Uc are the hidden state vector 

weight matrices. The hidden state vector hm in the last time step summarizes the whole 

sequence. Along with the sequence, the data instance often contains some static attributes, 

such as gender and race. We concatenate hm with the static attributes, if any, into a vector. 
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We input the vector to a fully connected feedforward network and compute the data 

instance’s predicted outcome [26].

The input vector xt = xt, 1, xt, 2, …, xt, n  contains information of all longitudinal attributes at 

time step t. We can make xt, i(1 ≤ i ≤ n) the i-th longitudinal attribute’s value at t. 

Alternatively, we can embed each categorical attribute value, such as diagnosis or procedure 

code, into a vector representation and merge all embedded vectors at t into xt  [22]. In this 

case, each embedded xt,i becomes difficult to interpret.

In LSTM, each element of the memory cell vector ct  depicts some learned temporal 

feature(s). Karpathy et al. [28] showed that only ~10% of these elements could be 

interpreted [29]. Our goal is to modify LSTM so that it can be used to extract predictive and 

clinically meaningful temporal features from medical data for predictive modeling.

3. Semi-automatically extracting predictive and clinically meaningful 

temporal features from medical data

In this section, we sketch our data-driven method for semi-automatically extracting 

predictive and clinically meaningful temporal features from medical data for predictive 

modeling. Our method is semi-automatic because its last step requires a human to extract 

features via visualization. Since temporal feature is one form of phenotype, our method 

belongs to computational pheno-typing [64–66]. Our method has a different focus than most 

existing phenotyping algorithms, which use medical data to detect whether a patient has a 

specific disease.

The standard LSTM imposes no limit on how many input vector elements can link to each 

memory cell vector element. All input vector elements could be used in each element of the 

forget and input gates’ activation vectors, and subsequently link to each memory cell vector 

element. As a result, even if each input vector element links to a distinct longitudinal 

attribute, no limit is placed on the number of attributes used in each learned temporal 

feature. A feature involving many attributes is difficult to understand. Our key idea for semi-

automatically extracting temporal features from medical data is to restrict the number of 

longitudinal attributes linking to each memory cell vector element. In this way, more 

memory cell vector elements will represent clinically meaningful temporal features. The 

learned features are likely to be predictive, as LSTM frequently produces more accurate 

clinical predictive models than other machine learning algorithms [22–25].

The rest of Section 3 is organized as follows. Section 3.1 describes how to modify LSTM to 

limit the number of longitudinal attributes linking to each memory cell vector element. 

Section 3.2 shows how to visualize the memory cell vector elements in our trained LSTM 

network to extract predictive and clinically meaningful temporal features. Section 3.3 

mentions several ways of using the extracted features and lists our feature extraction 

method’s advantages. Section 3.4 sketches a method for efficiently automating LSTM model 

selection. Section 3.5 provides some additional details.
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3.1. Multi-component LSTM

To limit the number of longitudinal attributes linking to each memory cell vector element, 

we use a new type of LSTM termed multi-component LSTM (MCLSTM).

3.1.1. Overview—As shown in Fig. 2, an MCLSTM network contains multiple 

component LSTM networks. In a given component network and at any time step, each input 

vector element links to a distinct longitudinal attribute. Each component network uses only a 

subset of the longitudinal attributes rather than all of them. This is similar to the case of 

multimodal LSTM [26,27]. Yet, MCLSTM differs from multimodal LSTM in several ways. 

In multimodal LSTM, all longitudinal attributes are partitioned into a small number of sets, 

one per modality, based on existing knowledge of the modalities. A set can possibly contain 

many attributes. Each longitudinal attribute appears in exactly one of the sets. The 

multimodal LSTM model is trained after attribute partitioning is finalized. In comparison, in 

MCLSTM, we preselect an integer K that is not necessarily small. All longitudinal attributes 

are partitioned into K sets, one per component, in a data-driven way when the MCLSTM 

model is trained. Each set tends to contain one or a few attributes. The same attribute could 

appear in more than one set. Also, some longitudinal attributes may appear in none of the 

sets.

In Fig. 2, nq denotes the number of longitudinal attributes used in the q-th (1 ≤ q ≤ K) 

component network. For each element xq,t,j (1 ≤ j ≤ ni) of the input vector xq, t at time step t, 

the first, second, and third subscripts indicate the component number, time step, and element 

number in the component, respectively. For both the memory cell vector cq, t and the hidden 

state vector hq, t, the first and second subscripts indicate the component number and time 

step, respectively.

Consider a data instance containing a sequence with m time steps and perhaps some static 

attributes. The MCLSTM network includes K component networks. We concatenate all K 

hidden state vectors hq, m (1 ≤ q ≤ K) at the last time step, one from each component 

network, and the static attributes, if any, into a vector hm [26]. We input hm to a fully 

connected feedforward network to compute the data instance’s predicted outcome.

In MCLSTM, by controlling the number of longitudinal attributes used in each component 

network, we limit the number of attributes linking to each memory cell vector element, and 

subsequently the number of attributes involved in each learned temporal feature. This offers 

several advantages. First, a larger portion of learned features will be understandable and 

clinically meaningful. Clinicians are more willing to use these features than those they do 

not understand. Second, the learned features become more generalizable and less likely to 

overfit the training data’s peculiarities. This helps improve the accuracy of predictive models 

built using these features [67]. Third, MCLSTM naturally has feature selection capability. 

Often, some longitudinal attributes appear in none of the component networks, and are 

regarded as having no predictive power. Only the other longitudinal attributes appearing in 

the MCLSTM network are deemed relevant and need to be collected for the modeling task. 

This reduces the number of attributes involved in the predictive model built using the learned 
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features. Such a model is more likely to be used by other healthcare systems beyond the one 

that originally developed the model, as differing healthcare systems collect overlapping but 

different attributes.

3.1.2. Setting the network configuration hyper-parameters—Before training an 

MCLSTM network, we need to set a few hyper-parameters for its configuration. First, we 

need to select K, the number of component networks in it. Second, for each component 

network, we need to choose its memory cell vector dimensionality. Recall that except for the 

input vector, all vectors used in an LSTM unit have the same dimensionality. The memory 

cell vector is one of them.

We set the network configuration hyper-parameters based on two considerations. First, 

which component network uses which longitudinal attributes is generally determined in a 

data-driven way when the MCLSTM network is trained. Ideally, when training is completed, 

we want to achieve the effect that each component network uses one or a few attributes. That 

is, every nq (1 ≤ q ≤ K) is small. Each memory cell vector element of the component 

network represents some temporal feature(s) involving no more than these attributes. Such a 

feature is more likely to be understood and clinically meaningful than one involving many 

attributes. When the medical data set contains lots of longitudinal attributes, many of them 

could be useful for the modeling task. In this case, we use a large K to allow the useful 

attributes to appear in the MCLSTM network. Otherwise, when the medical data set contains 

only a few longitudinal attributes, we use a small K.

Second, for the one or a few longitudinal attributes used in a component network, intuitively 

no more than a few temporal features using these attributes would be clinically meaningful, 

predictive, and non-redundant for the modeling task. Hence, the memory cell vectors Cq, t (1 

≤ q ≤ K) used in each component network should have a low dimensionality. We can use the 

same low dimensionality for the memory cell vectors in each component network. 

Alternatively, we can partition all K component networks into multiple groups, and choose a 

different low dimensionality for the memory cell vectors in each group.

The optimal hyper-parameter values vary by the modeling task and data set. Finding the 

optimal hyper-parameter values belongs to machine learning model selection, for which 

much work has been done [68]. We conduct this search by maximizing the MCLSTM 

network’s prediction accuracy.

3.1.3. Exclusive group Lasso regularization—After setting the network 

configuration hyper-parameters, the MCLSTM network’s configuration is only partly in 

place. To complete it, we need to figure out which component network uses which 

longitudinal attributes. We do this in a data-driven way when the MCLSTM network is 

trained.

The MCLSTM network contains K component networks. We have n longitudinal attributes. 

Initially, not knowing which component network will use which attributes, we give all n 
attributes to each component network. At time step t, all component networks receive the 
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same input vector xt  = (xt,1, xt,2,…,xt,n), with xt,i (1 ≤ i ≤ n) being the i-th longitudinal 

attribute’s value.

We want the data to tell us which component network should use which longitudinal 

attributes. The i-th (1 ≤ i ≤ n) longitudinal attribute links to the i-th column of each input 

vector weight matrix in every component network. An attribute is unused by a component 

network if and only if all columns of the input vector weight matrices in the component 

network linking to the attribute are all zeros. After the MCLSTM network is trained, we 

want to achieve the effect that each component network uses only one or a few attributes. 

That is, most columns of the input vector weight matrices in the component network are all 

zeros. Lasso (least absolute shrinkage and selection operator) regularization is widely used 

to make most weights in a machine learning model zero. Existing Lasso regularization 

methods cannot achieve our desired effect, as the weights used in the MCLSTM network 

have a special structure [67]. We design a new Lasso regularization method tailored to this 

structure to serve our purpose.

Our regularization method performs one type of structured regularization. It is related to, but 

different from multimodal group regularization, the type of structured regularization 

conducted in Lenz et al. [67]. Our regularization method is designed for MCLSTM to handle 

longitudinal data. The goal is to limit the number of longitudinal attributes used in each 

component network. In comparison, the multimodal group regularization method was 

developed for a deep feedforward neural network handling static data. There, all attributes 

are partitioned into a small number of groups, one per modality, based on existing 

knowledge of the modalities. The goal is to limit the number of modalities that each neuron 

on the first layer of the network links to. Lenz et al. [67] showed that standard L1 

regularization cannot achieve this goal without degrading the quality of the features learned 

by the neurons on the first layer. Using multimodal group regularization improved both 

feature quality and model accuracy.

3.1.3.1. Notations.: Before describing our regularization method’s technical details, we 

first introduce a few notations. Consider the q-th (1 ≤ q ≤ K) component network. It works 

based on the following formulas at time step t:

f q, t = σ W f , qxt + U f , qhq, t − 1 + b f , q (forget gate)

iq, t = σ Wi, qxt + Ui, qhq, t − 1 + bi, q (input gate)

oq, t = σ Wo, qxt + Uo, qhq, t − 1 + bo, q (output gate)

cq, t = f q, t ⊗ cq, t − 1 + iq, t ⊗ tanh Wc, qxt + Uc, qhq, t − 1 + bc, q (memory cell)
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hq, t = oq, t⊗tanh cq, t (hidden state)

Compared to those listed in Section 2, each vector except for the input vector and each 

weight matrix have an added subscript: q. Let dq denote the q-th component network’s 

memory cell vector dimensionality. Wf,q, Wi,q, Wo,q, and Wc,q are the dq × n input vector 

weight matrices for the forget gate, input gate, output gate, and memory cell, respectively. 

Wf,q,s,r, Wi,q,s,r, Wo,q,s,r, and Wc,q,s,r denote the element in the s-th (1 ≤ s ≤ dq) row and r-th 

(1 ≤ r ≤ n) column of Wf,q, Wi,q, Wo,q, and Wc,q, respectively. Uf,q, Ui,q, Uo,q, and Uc,q are 

the dq × dq hidden state vector weight matrices for the forget gate, input gate, output gate, 

and memory cell, respectively. Uf,q,s,r, Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r denote the element in the 

s-th (1 ≤ s ≤ dq) row and r-th (1 ≤ r ≤ dq) column of Uf,q, Ui,q, Uo,q, and Uc,q, respectively.

3.1.4. Basic method—To obtain the desired effect that each component network uses 

only one or a few longitudinal attributes, our regularization method needs to achieve two 

goals simultaneously. First, in a component network, the n longitudinal attributes compete 

with each other. If one attribute is used, the other attributes are less likely to be used. In other 

words, if an input vector weight matrix element linking to an attribute is non-zero, the 

regularizer tends to assign zeros to the input vector weight matrix elements linking to the 

other attributes. Second, in a component network, all input vector weight matrix elements 

linking to the same attribute tend to be zero (or non-zero) concurrently. Non-zero means the 

component network uses this attribute.

We borrow ideas from exclusive Lasso [69,70] and group Lasso [71] to reach these two 

goals. Consider a set of weights wi,j (1 ≤ i ≤ G, 1 ≤ j ≤ gi) partitioned into G groups. The i-th 

group has gi weights. Exclusive Lasso [69,70] uses the regularizer ∑i = 1
G (∑ j = 1

gi wi, j )
2
 to 

make the weights in the same group compete with each other. If one weight in a group is 

non-zero, the regularizer tends to assign zeros to the other weights in the same group. This 

can be used to reach our first goal. In comparison, group Lasso [71] uses the regularizer 

∑i = 1
G ∑ j = 1

gi wi, j
2  to make all weights in the same group tend to be zero (or non-zero) 

concurrently. This can be used to reach our second goal.

Our regularization method combines exclusive Lasso and group Lasso, and is thus called 

exclusive group Lasso. In the q-th (1 ≤ q ≤ K) component network, the input vector weight 

matrix elements linking to the r-th (1 ≤ r ≤ n) longitudinal attribute are Wf,q,s,r, Wi,q,s,r, 

Wo,q,s,r, and Wc,q,s,r for each s between 1 and dq. We treat these elements as a group, and use 

their L2 norm Rq, r = ∑s = 1
dq W f , q, s, r

2 + W i, q, s, r
2 + Wo, q, s, r

2 + Wc, q, s, r
2  to make them tend to 

be zero (or non-zero) concurrently. If Rq,r = 0, all of them are zero. For each q (1 ≤ q ≤ K), 

the L2 norms linking to the n longitudinal attributes are Rq,r for every r between 1 and n. We 

treat these L2 norms as a group, and use the regularizer RW = ∑q = 1
K [∑r = 1

n Rq, r]2 to make 

them compete with each other for being non-zero. Putting everything together, we use the 

exclusive group Lasso regularizer
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RW = ∑
q = 1

K
∑

r = 1

n
∑

s = 1

dq
W f , q, s, r

2 + Wi, q, s, r
2 + Wo, q, s, r

2 + Wc, q, s, r
2

2

to reach our two goals simultaneously. RW is a convex function of all input vector weight 

matrix elements.

For the hidden state vector weight matrices Uf q, Ui,q, Uo,q, and Uc,q, we do not need to 

make most of their elements zero. Instead, we use the L2 regularizer

RU = ∑
q = 1

K
∑

r = 1

dq
∑

s = 1

dq
U f , q, s, r

2 + Ui, q, s, r
2 + Uo, q, s, r

2 + Uc, q, s, r
2

for their elements Uf,q,s,r, Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r. Let L denote the loss function 

measuring the discrepancy between the predicted and actual outcomes of the data instances. 

Rf denotes the L2 regularizer for the weights in the fully connected feedforward network 

used at the end of the MCLSTM network. To train the MCLSTM network, we use a standard 

subgradient optimization algorithm to minimize the overall loss function Lo = L+λ1RW

+λ2RU+λ3Rf [3]. λ1, λ2, λ3 are the parameters controlling the importance of the 

regularizers RW, RU, and Rf, respectively.

3.1.5. Extension of the basic method—Sometimes, based on medical intuition, we 

know which longitudinal attribute by itself or which several longitudinal attributes combined 

are likely to form predictive and clinically meaningful temporal features, even if we do not 

know the exact features. In this case, before training the MCLSTM network, for each subset 

of longitudinal attributes with this property, we specify a separate component network to 

receive in its input vectors the values of the attributes in this subset rather than all attributes’ 

values. This can ease model training and help make more learned features represented by the 

memory cell vector elements clinically meaningful. This also expedites model training by 

reducing the number of weights that need to be handled.

By default, all component networks in an MCLSTM network use the same set of time steps. 

Sometimes, all longitudinal attributes fall into several groups, each collected at a distinct 

frequency. For instance, one group of longitudinal attributes like diagnosis codes is collected 

per patient visit. Another group of longitudinal attributes, such as air quality measurements 

and vital signs that a patient self-monitors at home, is collected every day. In this case, for 

each group of longitudinal attributes, we can specify a different subset of component 

networks, whose input vectors include only these attributes’ values. Each subset uses a 

distinct set of time steps based on the frequency at which the corresponding group of 

longitudinal attributes is collected.

Sometimes, based on medical knowledge or our prior experience with other modeling tasks, 

we know some temporal features that are clinically meaningful, formed by some of the 

longitudinal attributes, and likely to be predictive for the current modeling task. In this case, 
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we compute these features, treat them as static attributes used near the end of the MCLSTM 

network, and can opt to not use the raw longitudinal attributes involved in them when 

training the network. This can ease model training and help the network form predictive and 

clinically meaningful temporal features from the other longitudinal attributes.

Section 3.2 outlines our method of visualizing the memory cell vector elements in a trained 

MCLSTM network to extract predictive and clinically meaningful temporal features. To 

increase the number of such extracted features, we can iteratively train the MCLSTM 

network and extract features in multiple rounds. After extracting some features via 

visualization in one round, we reduce the number of component networks in the MCLSTM 

network, compute these features, add them to the list of static attributes used near the end of 

the MCLSTM network, and no longer use the raw longitudinal attributes involved in them 

when training the MCLSTM network in the next round. This helps the MCLSTM network 

form predictive and clinically meaningful temporal features from the remaining longitudinal 

attributes.

Often, the input vector at each time step includes an element showing the elapsed time 

between the current and previous time steps [33,35,46,51]. For the first time step, the 

elapsed time is zero. Sometimes, a log transformation is applied to the elapsed time to 

reduce its skewed distribution [52]. The elapsed time attribute has a different property from 

the other longitudinal attributes. Intuitively, any other longitudinal attribute tends to be used 

by one or a few component networks in the MCLSTM network to form temporal features. In 

comparison, many component networks could use the elapsed time attribute to form 

temporal features. To reflect this difference, we use the L2 regularizer rather than the 

exclusive group Lasso regularizer for the input vector weight matrix elements linking to the 

elapsed time attribute in each component network.

The above discussion focuses on LSTM with one recurrent layer. Our method also applies to 

stacked LSTM with multiple recurrent hidden layers stacked on top of each other [72]. 

Having multiple recurrent hidden layers often helps an RNN learn better features [51]. Fig. 3 

illustrates a multi-component stacked LSTM network. It has multiple component networks, 

each of which is a stacked LSTM network using a subset of longitudinal attributes. In each 

component network and at each recurrent layer above the first, the input vector at time step t 
incorporates the hidden state vector elements outputted by the layer below at t. If nothing 

else is included in the input vector, we use the same method mentioned above to figure out 

which component network uses which longitudinal attributes. Otherwise, if the input vector 

at each recurrent layer above the first one at t also includes the input vector elements at the 

first layer at t, we first use an MCLSTM network with one recurrent layer and the method 

mentioned above to figure out which component network uses which longitudinal attributes. 

Then we use this information to form the multi-component stacked LSTM network and train 

it. In this way, we ensure that in each component network, every recurrent layer links to the 

same subset of longitudinal attributes.

In Fig. 3, nq denotes the number of longitudinal attributes used in the q-th (1 ≤ q ≤ K) 

component network. For each element xq,t,j (1 ≤ j ≤ ni) of the input vector xq, t, the first, 

second, and third subscripts indicate the component number, time step, and element number 
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in the component, respectively. For both the memory cell vector cq, l, t and the hidden state 

vector hq, l, t, the first, second, and third subscripts indicate the component number, layer 

number, and time step, respectively.

3.2. Visualizing the memory cell vector elements in a trained MCLSTM network to extract 
predictive and clinically meaningful temporal features

In LSTM, each memory cell vector element depicts some learned temporal feature(s). After 

using the training instances to train the MCLSTM network, we visualize its memory cell 

vector elements to extract clinically meaningful temporal features. These features are likely 

to be predictive, as LSTM frequently produces more accurate clinical predictive models than 

other machine learning algorithms [22–25].

We design the visualization method based on three observations. First, LSTM has been 

shown to use high positive and low negative values of its memory cell vector elements to 

express information [73]. Second, Kale et al. [31,74–76] showed one can use training 

instances with the highest activations of a neuron in a deep neural network to identify 

clinically meaningful features. A memory cell vector element is a neuron. Third, intuitively, 

an informative sequence of input vectors in a training instance contains one or more 

segments, each depicting a temporal feature.

Taking these observations as insights, we proceed in four steps to extract zero or more 

clinically meaningful temporal features from each memory cell vector element at the last 

time step of the MCLSTM network. In Step 1, we find the top and bottom few training 

instances with the highest positive and lowest negative values in the memory cell vector 

element, respectively. These training instances are likely to contain information of useful 

temporal features. In Step 2, we identify one or more so-called effective segments of the 

input vector sequence in each of these training instances. Each effective segment tends to 

reflect a useful temporal feature. In Step 3, we partition all identified effective segments into 

several clusters. In Step 4, we visualize each cluster of effective segments in a separate 

figure to extract zero or more clinically meaningful temporal features. By reducing the 

number of effective segments in each figure and making the effective segments in the same 

figure more homogeneous, clustering eases visualization and temporal feature extraction. 

The temporal features extracted from the MCLSTM network include all features extracted 

from every memory cell vector element at the last time step of the MCLSTM network.

In the rest of Section 3.2, we describe each of the four steps one by one. Our description 

focuses on a single memory cell vector element at the last time step of the MCLSTM 

network. For this element, we find the corresponding component network and the 

longitudinal attributes used in it. Each temporal feature depicted by this element involves no 

more than these attributes. When mentioning an input vector, we always refer to an input 

vector of the component network containing only the values of these attributes. The 

component network usually uses one or a few longitudinal attributes. This is crucial for 

making our visualization method effective in identifying features describing temporal 

relationships [77]. Psychology studies have shown that humans can correctly analyze the 
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relationship among up to four attributes [78]. The more complex the relationship among the 

attributes, the lower the upper limit on the number of attributes [79].

3.2.1. Step 1: finding the top and bottom few training instances with the 
highest positive and lowest negative values in the memory cell vector 
element, respectively—We preselect a number N as the maximum number of top/bottom 

training instances that will be obtained for each memory cell vector element at the last time 

step of the MCLSTM network. In Step 4, we conduct visualization to extract clinically 

meaningful temporal features. To avoid cluttering any given figure and creating difficulty 

with visualization, N should not be too large. To obtain enough signal for identifying 

clinically meaningful temporal features, N should not be too small. One possible good value 

of N is 50, as adopted in Che et al. [75].

Consider the given memory cell vector element at the last time step of the MCLSTM 

network. Let n+ denote the number of training instances with positive values in the element. 

n− denotes the number of training instances with negative values in the element. We sort all 

training instances in descending order of the element’s value. Multiple training instances 

with the same value in the element can be put in any order. We find the top N+ = min (N, n+) 

training instances with the highest positive values in the element [75], and record the lowest 

one τ+ of these values. In addition, we find the bottom N− = min (N, n−) training instances 

with the lowest negative values in the element [75], and record the highest one τ− of these 

values. In Step 2, we will use τ+ and τ− to identify the effective segments of the input vector 

sequences in the top N+ and bottom N− training instances, respectively.

Intuitively, the top N+ training instances include one set of temporal features. The bottom N− 

training instances include another set of temporal features. In Step 4, we will visualize the 

effective segments of the input vector sequences in the top N+ and bottom N- training 

instances to identify clinically meaningful features in the first and second sets, respectively.

Previously, for image data, researchers have used the activation maximization method to 

explain the meaning of each neuron in a deep neural network [80]. For each neuron in the 

network, that method creates a synthetic data instance maximizing the neuron’s output, and 

uses the data instance to explain the neuron’s meaning. That method does not serve our 

purpose of extracting temporal features from longitudinal data. For instance, consider a 

sequence of results of a specific lab test obtained over time. Suppose the actual temporal 

feature depicted by the memory cell vector element is whether the lab test result is above a 

fixed threshold value ≥40% of the time. The synthetic data instance maximizing the 

element’s value is a sequence of lab test results all above the threshold value. From this data 

instance, we cannot deduce the feature’s property of being ≥40% of the time. In comparison, 

training instances are real and usually do not push the element to have extreme values. After 

viewing multiple training instances satisfying this property in various ways, such as one 

being 40% of the time and another being 50% of the time, we are more likely to identify this 

property.
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3.2.2. Step 2: identifying one or more effective segments of the input vector 
sequence in each training instance found in Step 1—Consider the given memory 

cell vector element at the last time step of the MCLSTM network and a training instance 

found in Step1. The training instance has a sequence of input vectors containing the 

information of some useful temporal features. Often, the sequence has one or more 

uninformative segments, which are unrelated to these features and do not contribute to 

making the element’s value high positive or low negative. Displaying these segments during 

visualization will clutter the figure and make it harder to identify these features. To address 

this issue, for each training instance found in Step 1, we identify one or more effective 

segments of its input vector sequence. Each effective segment tends to reflect a useful 

temporal feature. During visualization in Step 4, we display only the effective segments 

rather than the whole input vector sequence.

In the following, we show how to identify the effective segments for a top training instance 

found in Step 1. The case with identifying the effective segments for a bottom training 

instance found in Step 1 can be handled similarly.

Recall that in Step 1, we find the top N+ training instances with the highest positive values in 

the memory cell vector element at the last time step of the component network, and record 

the lowest one τ+ of these values. As shown in Fig. 4, for each top training instance, the 

element’s value evolves over time and becomes ≥ τ+ at the last time step of the training 

instance’s input vector sequence. τ+ can be regarded as a threshold value found in a data-

driven way. When the element’s value becomes ≥ τ+ at a specific time step, it indicates with 

high likelihood that a useful temporal feature appears there. We use this information to find 

the effective segment at or around the time step. In Fig. 4, each dashed ellipse denotes an 

effective segment. The horizontal dotted line depicts τ+ .

Consider a given top training instance found in Step 1. We define a segment of its input 

vector sequence to be effective if the segment satisfies two properties simultaneously.

1) Property 1: If we input the segment into the component network, the memory 

cell vector element at the segment’s last time step will produce a value ≥ τ+ .

Typically, the segment and input vector sequence start at different time steps. If 

we input the segment vs. the input vector sequence into the component network, 

we get a different value in the memory cell vector element at the segment’s last 

time step.

2) Property 2: The segment is as short as possible. This eases identifying temporal 

features via visualization in Step 4. It is easier to recognize a temporal feature 

from a short segment than from a long segment.

Both properties combined make an effective segment the shortest segment that holds the 

signal of a useful temporal feature.

The top training instance’s input vector sequence contains one or more effective segments. 

Each segment is a section of the sequence between a starting time step tstart and an ending 
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time step tend. We use a sequential search algorithm to find the effective segments one by 

one. Our high-level idea is to start from the sequence’s last time step and keep going 

backwards. For each effective segment, we find first its ending and then its starting time 

step. Then we move on to pinpoint the next effective segment. To make our search algorithm 

easy to understand, we describe it using the case shown in Fig. 4 as an example.

We start from the last time step of the top training instance’s input vector sequence. Here, 

the memory cell vector element’s value is ≥ τ+ . We go backwards, one time step at a time. If 

the element’s value increases, we go back one more time step. We keep going backwards 

until the element’s value will decrease if we go back one more time step. This is the first 

effective segment’s ending time step tend, at which the element’s value reaches a local 

maximum ≥ τ+ . In Fig. 4, tend is t5. To avoid violating Property 2, the section between t5 and 

the last time step is excluded from the first effective segment. Then we continue to go 

backwards, one time step at a time. For each time step t that we reach, we check whether the 

segment between t and tend satisfies Property 1. If so, this segment also satisfies Property 2 

and is the first effective one, with t being its starting time step tstart. Otherwise, if this 

segment violates Property 1, we keep going backwards until we find a time step, at which 

Property 1 is satisfied. Such a time step must exist. In the worst case, we reach the first time 

step of the training instance’s input vector sequence. The segment between the first time step 

and tend always satisfies Property 1. In Fig. 4, tstart is t4. The segment between time steps t3 

and t5 satisfies Property 1, but not Property 2, and thus is not an effective one.

After finding the first effective segment’s starting time step, we go back one time step to 

start searching for the second effective segment. In Fig. 4, this refers to starting from time 

step t3. We keep going backwards until reaching a time step t’, at which the memory cell 

vector element’s value is ≥ τ+ . In Fig. 4, this time step is t2. If we keep going backwards and 

still cannot find t’ when reaching the first time step of the training instance’s input vector 

sequence, the second effective segment does not exist. Otherwise, if we can find t’, we 

repeat the procedure mentioned in the above paragraph to find first the ending and then the 

starting time step of the second effective segment. For the same reason explained in the 

above paragraph, these two time steps must exist. In Fig. 4, the second effective segment is 

the section between time steps t1 and t2. After finding the second effective segment, we 

move on to pinpoint the third effective segment, and so on. We keep iterating until reaching 

the first time step of the training instance’s input vector sequence. Our search process ends 

there.

3.2.3. Step 3: partitioning all identified effective segments into several 
clusters—Consider the given memory cell vector element at the last time step of the 

MCLSTM network. In Step 1, we find its top N+ and bottom N− training instances. After 

identifying all effective segments in these training instances, we partition the segments into 

multiple clusters to ease visualization in Step 4.

We preselect a number k to set the number of clusters. There are two groups of effective 

segments, one obtained from the top N+ training instances and the other from the bottom N− 

training instances. These two groups tend to reflect different temporal features. For either 
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group, we partition the effective segments in it into k clusters, hoping each will reflect a 

distinct set of temporal features. The memory cell vector element usually depicts no more 

than a few temporal features. Accordingly, k should be a small number like three. For each 

group of effective segments, we can test different k values to see which one works the best.

Many clustering algorithms for time series data exist [81]. Each relies on a distance measure 

for temporal sequences. In the following, we describe our distance measure first, and then 

present the clustering algorithm used to partition effective segments into clusters.

3.2.3.1. Distance measure for temporal sequences.: We use the multivariate dynamic 

time warping distance measure, which Kale et al. [82] proposed as an extension of the 

dynamic time warping technique [83]. Dynamic time warping is widely used for measuring 

similarity between two temporal sequences, which can be multi-dimensional and have 

different lengths and sampling intervals. As shown in Fig. 5, dynamic time warping allows 

time shifting and matches similar shapes even in the presence of a time-phase difference. In 

Fig. 5, each dash-dotted line links two aligned points, one from each temporal sequence.

Consider two temporal sequences Y = y1, y2, …, ym1
and Z = z1, z2, …, zm2

. We use a 

distance measure d yr , Zs , such as the Euclidean one, between each pair of elements 

yr 1 ≤ r ≤ m1  and ZS 1 ≤ S ≤ m2 ,, one from each sequence. A warping path 

p = r1, s1), r2, s2 , …, r|p|, S|p|  of length |p| aligns Y and Z via linking 

yr j
to zs j

(1 ≤ j ≤ | p | ) . It satisfies two conditions:

(1) r1 = s1 = 1, r|p| = m1, and s|p| = m2. This condition makes Y’s first element align 

with Z’s first element, and Y’s last element align with Z’s last element.

(2) For each j between 1 and |p | − 1, r j + 1 − r j, s j + 1 − s j  is (0,1), (1, 0), or (1, 1). 

Consequently, r j ≤ r j + 1 and s j ≤ s j + 1 . This condition makes each element of Y 

align with one element of Z, and vice versa. Also, only forward movements 

along Y and Z are allowed.

The total distance between Y and Z along p is the sum of the distance between each pair of 

elements aligned via p: dp(Y , Z = ∑ j = 1
|p| d yr j

, zs j
. The dynamic time warping distance 

between Y and Z is the minimum total distance across all possible warping paths P(Y, Z) 

between Y and Z: DTW(Y , Z) = min
p ∈ P(Y , Z)

dp(Y , Z) .

Other things being equal, the dynamic time warping distance increases as temporal 

sequences become longer. To make the distance comparable across sequences of different 

lengths, Kale et al. [82] proposed using the multivariate dynamic time warping distance. 

This distance between sequences Y and Z is computed as their dynamic time warping 

distance divided by their optimal warping path’s length: MDTW (Y, Z) = DTW (Y, Z)/|p*| = 

dp* (Y, Z)/|p*|. Here, |p*| is the length of p* = argminid
p ∈ P(Y , Z)

dp(Y , Z) .
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Dynamic time warping is designed for temporal sequences sampled at equidistant points in 

time [84]. Yet, this is often not the case with medical data. For medical data that violate this 

property, we can compute the multivariate dynamic time warping distance in one of several 

ways. One way is to ignore the equidistance constraint and do the computation as presented 

above. Another way is to use the weighting mechanism in Siirtola et al. [84] to prevent areas 

of high point density from dominating the distance computation. This mechanism gives 

smaller and larger weights to points with near and distant neighbors in the temporal 

sequence, respectively.

Differing longitudinal attributes’ values can be on different orders of magnitude. If this 

occurs, one attribute could dominate the distance computation for multi-dimensional 

temporal sequences. This is undesirable. To address this issue, before computing distances, 

we first normalize each attribute’s values so that the values of different attributes become 

comparable with each other. More specifically, for each attribute, we compute its mean and 

standard deviation across all of its values in all training instances. For each value of the 

attribute, we compute its normalized value by subtracting the mean and then dividing by the 

standard deviation. During visualization in Step 4, we show the original rather than 

normalized values to make the presented values easier to understand.

Our distance computation approach considers not only shape, but also amplitude that 

matters. For instance, for making predictions, a lab test result above its normal range often 

gives a different signal from one within its normal range. Thus, we do not use the value 

normalization approach that Paparrizos et al. [85] adopted for computing shape-based 

distances for temporal sequences. That approach ignores amplitude and computes one mean 

and one standard deviation per temporal sequence to normalize the values in it.

3.2.3.2. Clustering algorithm.: We use the k-medoids clustering algorithm [86] based on 

the multivariate dynamic time warping distance measure to partition each group of effective 

segments into k clusters. A medoid is a representative object of a cluster with the highest 

average similarity to all objects in the cluster. The k-medoids algorithm is inefficient for 

clustering many objects [86]. Yet, this is not an issue in our case. For the given memory cell 

vector element, we find a modest number of top and bottom training instances, and need to 

cluster only a moderate number of effective segments.

We do not use the k-means clustering algorithm that requires computing the average of 

multiple objects. For multiple effective segments of different lengths, it is difficult to 

compute their average properly. Besides the k-medoids algorithm, other clustering 

algorithms based on dynamic time warping also exist [87] and could be used for our 

clustering purpose.

3.2.4. Step 4: visualizing each cluster of effective segments in a separate 
figure to extract zero or more clinically meaningful temporal features—We 

visualize each cluster of effective segments obtained in Step 3 one by one. For each cluster, 

we show the effective segments in it in a figure to extract zero or more clinically meaningful 

temporal features. The figure includes one panel per longitudinal attribute used in the 
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cluster. All panels are aligned by time and stacked on top of each other, as shown in Fig. 6, 

with each rounded rectangle denoting a panel.

Each panel shows the value sequence of its linked longitudinal attribute in every effective 

segment in the cluster. An effective segment has one value sequence per longitudinal 

attribute used in the cluster. If the cluster uses more than one attribute, for each effective 

segment, we use a dash-dotted polyline to link the first element of each of the segment’s 

attribute value sequences across all panels. In this way, one can easily know that these 

sequences belong to the same segment. Each effective segment comes from a training 

instance. To ease visualization, we use different colors to mark differing training instances in 

the figure.

Usually, a clinician and a data scientist collaborate to build a clinical predictive model. They 

view the figure to identify zero or more clinically meaningful temporal features. Each 

feature involves one or more longitudinal attributes used in the cluster, and is reflected by 

one or more attribute value sequences in the figure. It is easier to recognize the feature by 

viewing the sequences than to think of it on one’s own. For each identified feature, the 

clinician and the data scientist use their domain knowledge to jointly arrive at an exact 

mathematical definition of an extracted feature. Often, the extracted feature reflects the trend 

more precisely and performs better than the raw one learned by the MCLSTM network.

Marlin et al. [88] proposed identifying temporal patterns by grouping numeric physiologic 

time series into clusters. All time series start and end at the same time steps. For every 

cluster, a distinct panel shows each longitudinal attribute’s mean and standard deviation over 

time. That approach does not serve our purpose. In our case, each effective segment can start 

and end at different time steps. Non-numeric attributes like categorical ones can be part of 

temporal features and need to be shown along with numeric ones. Also, the same feature can 

appear at different time steps in differing effective segments. If we show each numeric 

attribute’s mean and standard deviation over time instead of individual effective segments, 

we are likely to miss such features.

Wanget al. [89] proposed identifying temporal patterns by visualizing multiple patients’ 

longitudinal medical data in the same figure. The figure includes one panel per patient. All 

panels are aligned by time and stacked on top of each other. Each panel shows multiple 

value sequences of a patient, one for each longitudinal attribute. For the same attribute, 

different patients’ value sequences appear in differing panels. This makes it harder to 

identify temporal patterns, particularly if the number of patients is not small [90]. In 

comparison, for the same attribute, our visualization approach puts multiple patients’ value 

sequences in the same panel.

3.2.4.1. Handling categorical attributes: A neural network takes only numeric inputs. To 

use LSTM, one converts each categorical longitudinal attribute into one or more numeric 

attributes using one hot encoding. During visualization, we show the original categorical 

attribute values instead of the converted numeric ones to make the presentation more 

succinct and easier to understand. The figure includes a panel for each categorical attribute 

Luo Page 20

Glob Transit. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



linking to the cluster of effective segments. In the panel, each distinct value of the attribute 

appears on a separate row, as illustrated in Fig. 7.

3.2.4.2. Handling interval attributes: Medical data often include interval attributes, such 

as the medication use period and hospitalization period. A common way to use interval 

attributes in LSTM is to convert each interval into two attribute values: its starting time step 

and its duration. During visualization, we show the original interval instead of the converted 

attribute values to make the presentation easier to understand. Recall that if the cluster of 

effective segments uses more than one attribute, for each effective segment, we use a dash-

dotted polyline to link the first element of each of the segment’s attribute value sequences 

across all panels. For each interval attribute used in the segment, the dash-dotted polyline 

links to the starting point of the first interval in the attribute’s value sequence. To ease 

visualization, we put the intervals from distinct data instances on different and adjacent 

horizontal lines, with one line per data instance, as illustrated in Fig. 8.

3.2.4.3. Handling missing values: Neural network does not take any missing input value. 

To use LSTM, one needs to fill in every missing value first. One way to do this is as follows. 

Consider a value sequence of an attribute. If the value sequence is completely missing, we 

impute a clinically normal value defined by the clinician [23,31]. Otherwise, for each 

missing value before the first occurrence or after the last occurrence of a non-missing one, 

we fill in the missing value with the non-missing one [91]. For each missing value between 

two non-missing ones, we linearly interpolate them to fill in the missing value. Another way 

to handle missing values for an attribute is to use a binary indicator for whether a value of it 

is missing, compute the amount of time since its last observation, and decay its value over 

time toward its empirical mean value rather than use its last observed value [57,92].

During visualization, no filled-in value is shown. This makes the figure consistent with the 

raw data to help ensure genuine temporal features are identified.

3.2.4.4. Avoiding using an excessive number of longitudinal attributes: In LSTM, we 

sometimes embed each categorical attribute value into a vector representation to reduce the 

input vector dimensionality. This makes model training more efficient and effective [22]. In 

MCLSTM, no value embedding is used. Instead, each input vector element is a longitudinal 

attribute’s value. This is essential for making the identified temporal features easy to 

understand. To make model training efficient and effective, we need to avoid using an 

excessive number of longitudinal attributes. This requires handling two cases.

First, consider three longitudinal attributes: disease, procedure, and drug. Each attribute is 

categorical with many possible values. If no value embedding is used, by default the 

attribute is converted into many numeric attributes, one per possible value, using one hot 

encoding. This explodes the input vector dimensionality and is undesirable. To address this 

issue, we can proceed in one or more of the following ways:

(1) We use grouper models like the Diagnostic Cost Groups (DCG) system to group 

diseases, procedures, and drugs and reduce the numbers of their possible values 

[93,94].
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(2) For each of the three attributes, we use a few of its most common values and 

ignore the others.

(3) For each of the three attributes, we use a few values of it deemed most relevant 

to the modeling problem based on medical knowledge, and ignore the others.

(4) Rajkomar et al. [22] provided a method using LSTM with value embedding and 

an attribution mechanism to rank categorical attribute values. For each of the 

three attributes, we use the top few values ranked by this method in MCLSTM 

and ignore the others.

Second, many lab tests exist. We will have an excessive number of longitudinal attributes, if 

we use one for each lab test’s values. This is undesirable. To address this issue, we can 

proceed in one or more of the following ways:

(1) Pivovarov et al. [95] identified 70 common lab tests of interest to primary care 

and internal medicine. We use these lab tests and ignore the others.

(2) We use a few lab tests deemed most relevant to the modeling problem based on 

medical knowledge, and ignore the others.

(3) Rajkomar et al. [22] converted numeric attributes to categorical ones via 

discretization, and provided a method using LSTM with value embedding and 

an attribution mechanism to compute a weight for each categorical attribute 

value. For a categorical attribute with multiple possible values, we compute its 

weight as these values’ maximum weight reflecting its importance. We use the 

top few lab tests with the highest weights in MCLSTM and ignore the others. 

This is a form of feature selection for longitudinal attributes.

3.3. Several ways of using the extracted temporal features and our feature extraction 
method’s advantages

The extracted temporal features are clinically meaningful and tend to be predictive. We 

combine them with expert-engineered features to build machine learning, statistical, or rule-

based predictive models. For machine learning models, this can improve model accuracy 

[31], as many extracted features reflect trends more precisely and can perform better than 

the raw ones learned by the MCLSTM network. Also, we can use the method described in 

Section 4 to automatically explain the models’ prediction results.

Wang et al. [89] showed properly visualizing temporal sequences in medical data could help 

us spot data quality issues, such as an impossible order of events. When visualizing each 

cluster of effective segments, we could identify some temporal features that make no sense 

and reflect the underlying data quality issues. By fixing these issues and enhancing data 

quality, we can boost model accuracy and improve other applications using the same data 

set.

Using our feature extraction method can reduce the effort needed to build useable predictive 

models for the current modeling task. Moreover, Gupta et al. [32] showed that many features 

an RNN learns from a medical data set reflect general properties of the medical attributes 

involved in the features, and can be useful for other modeling tasks. Using the features 
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extracted by our method to form a temporal feature library to facilitate feature reuse, we can 

reduce the effort needed to build predictive models for other modeling tasks.

3.4. Efficiently automating MCLSTM model selection

Each machine learning algorithm has two types of parameters: normal parameters 

automatically tuned during model training, and hyper-parameters that must be set before 

model training. Before training a MCLSTM network, we need to set the values of multiple 

hyper-parameters, such as the number of component networks in it and the learning rate. 

These values can affect model accuracy greatly, e.g., by two or more times [96]. The optimal 

hyperparameter value combination is found via an iterative model selection process. In each 

iteration, we use a combination to train a model. Its accuracy is used to guide the selection 

of the combination that will be tested in the next iteration.

3.4.1. The need for and the state of the art of automatic machine learning 
model selection—Machine learning model selection, if done manually, is labor intensive 

and time-consuming. Frequently, several hundred to several thousand iterations are needed 

to find a good hyperparameter value combination [96,97]. On a data set of non-trivial size 

and particularly for deep neural network, testing a combination in one iteration often takes 

several hours or longer [98]. To cut the human labor needed for model selection, researchers 

have developed multiple automatic machine learning model selection methods [68]. For 

certain machine learning algorithms including deep neural network, some of these methods 

can find better hyper-parameter value combinations than manual search by human experts 

[68,99].

Recently, Google set up an automatic model selection service called Google Vizier [99]. It 

has become the de facto model selection engine within Google. Using it to conduct model 

selection, Google researchers [22] built clinical LSTM models that greatly improved 

prediction accuracy for three outcomes. The medical data set used there is of moderate size 

and has 216,221 data instances. As mentioned in the paper posted at https://arxiv.org/pdf/

1801.07860v1.pdf, using Google Vizier to perform automatic model selection on the data set 

consumed >201,000 GPU (graphics processing unit) hours. This is beyond the 

computational resources available to many healthcare systems and would exceed their 

budgets quickly. When standard techniques are used, the time needed for automatic model 

selection usually increases superlinearly with the data set size. On a medical data set larger 

than the above one, using Google Vizier to perform automatic model selection would 

consume more computational resources and a higher cost, and quickly reach a point that 

almost no healthcare system could afford. In fact, this could even become a problem for 

Google, which has a lot of resources. To run its business, Google regularly needs to build 

predictive models on large data sets. As mentioned in the Google Vizier paper [99], using 

Google Vizier to perform automatic model selection on a large data set often takes months 

or years. As a result, for some mission critical applications, Google has to deploy a model 

without fully tuning it, and then keep tuning it over several years. Using suboptimal models 

leads to degraded outcomes. In our case, the situation could become even worse, if we 

iteratively train the MCLSTM network and extract features in multiple rounds, as each 

round requires automatic MCLSTM model selection.
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3.4.2. Our prior work on efficiently automating machine learning model 
selection—To expedite automatic machine learning model selection, we recently 

developed a progressive sampling-based Bayesian optimization method for it. We showed 

that depending on the data set, our method can speed up the search process by one to two 

orders of magnitude [97,100,101 ]. Our idea is to conduct progressive sampling [102], 

filtering, and fine-tuning to quickly shrink the search space. We use a random sample of the 

data set termed the training sample to train models. We do fast trials on a small training 

sample to drop unpromising hyper-parameter value combinations early, keeping resources to 

fine-tune promising ones. We test multiple combinations. For each combination, we test it 

by training a model using it and the training sample. A combination is promising if the 

trained model reaches accuracy above an initial threshold. We then raise the threshold, 

expand the training sample, test and adjust combinations on it, and reduce the search space 

several times. In the last round, we use the full data set to find a good combination.

For several reasons described below, if we directly apply our progressive sampling-based 

Bayesian optimization method to automate MCLSTM model selection, we may not obtain 

the desired search efficiency and search result quality. Instead, for it to better automate 

MCLSTM model selection, we use four techniques to improve our method. The first 

technique is specific to deep neural network. The second technique is specific to LSTM. The 

third and fourth techniques apply to general machine learning algorithms.

3.4.3. Technique 1: performing early stopping when testing a 
hyperparameter value combination—To train a machine learning model, we often 

need to process each training instance multiple times. Our progressive sampling-based 

Bayesian optimization method is designed for the case that satisfies two conditions 

concurrently. First, it is fast to process a training instance once during model training. This 

ensures a hyper-parameter value combination can be tested on a small training sample 

quickly. Second, using a relatively small training sample, we can estimate a combination’s 

quality with reasonable accuracy. This reduces the likelihood that a high-quality 

combination is identified as unpromising and dropped at an early stage of the search process.

Neither condition is satisfied on deep neural network. When training a deep neural network, 

it often takes a non-trivial amount of time to process a training instance once. As a result, 

quite some time is needed to test a hyper-parameter value combination on even a small 

training sample. This degrades search efficiency. Moreover, deep neural network is data 

hungry. To reasonably estimate a combination’s quality for a deep neural network, a large 

training set is needed. If we start from using a small training sample to identify unpromising 

combinations, we are likely to drop many high-quality combinations erroneously in the first 

few rounds of the search process. This can degrade search result quality.

To address these issues, we adopt an early stopping technique for automating deep neural 

network model selection. Instead of starting from a small training sample, the search process 

starts from a relatively large training sample. A neural network is trained in epochs. As a 

model is trained for more epochs, its accuracy generally improves. In the first few rounds of 

the search process, when testing a hyper-parameter value combination, we train the model 

for a few rather than for the full number of epochs. In this way, without spending too much 
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time on the test, we can estimate the combination’s quality with reasonable accuracy. This 

type of early stopping technique has been used previously for expediting automatic machine 

learning model selection [98,99], but not in combination with progressive sampling.

3.4.4. Technique 2: tuning the learning rate hyper-parameter before tuning 
the other hyper-parameters in depth—Greff et al. [103] showed that LSTM’s learning 

rate hyperparameter has a special property. For each data set, there is a large interval, in 

which the learning rate offers good model accuracy with little variation. The LSTM model 

can be trained relatively quickly when the learning rate is at the high end of the interval. 

When searching for a good learning rate, we can start from a high value like one and keep 

dividing it by ten until model accuracy no longer improves.

Based on this insight, we expedite automatic LSTM model selection by tuning the learning 

rate before tuning the other hyperparameters in detail. We proceed in four steps. In step one, 

we use a relatively large training sample to test a few random hyperparameter combinations, 

and select the one reaching the highest model accuracy. Intuitively, this combination would 

have reasonable and neither optimal nor terrible performance. In step two, for all hyper-

parameters excluding the learning rate, we fix their values according to this combination and 

use the training sample to tune the learning rate. We start from a high learning rate like one 

and keep dividing it by ten until model accuracy no longer improves. In step three, we fix the 

learning rate at the value found in step two, and use our progressive sampling-based 

Bayesian optimization method to tune all of the other hyper-parameters. In step four, if 

desired, we perform some final fine-tuning of all hyperparameters simultaneously without 

significantly changing the value of any of them.

3.4.5. Technique 3: conducting stable Bayesian optimization—Machine 

learning model selection aims to find an optimal hyper-parameter value combination in the 

hyper-parameter space. As mentioned in Nguyen et al. [104], when the training or validation 

set is small, spurious peaks often appear on the performance surface defined over all 

possible combinations. These peaks are narrow and scattered randomly in low-performance 

regions. In this case, the search process of automatic machine learning model selection 

frequently stops at a spurious peak instead of a more stable one. The final model built there 

has suboptimal accuracy when deployed in the real world.

To prevent the search process from stopping at a spurious peak, Nguyen et al. [104] 

proposed a stable Bayesian optimization method for automating machine learning model 

selection.Bayesian optimization uses a regression model to predict a machine learning 

model’s accuracy based on the hyper-parameter value combination, and an acquisition 

function to select the combination to test in the next iteration. The regression model is 

usually a random forest [96] or a Gaussian process [104]. The former has been shown to 

outperform the latter for making this prediction [105].

The main idea of the stable Bayesian optimization method [104] is to measure a hyper-

parameter value combination’s performance stability and include the measure in the 

acquisition function. The method is designed for the case in which the regression model is a 

Gaussian process, and each step of the search process uses the whole data set. The technique 
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used in that method does not directly apply to our progressive sampling-based Bayesian 

optimization method [97], which uses a random forest as the regression model, and a 

gradually expanded training sample over rounds of the search process.

As our progressive sampling-based Bayesian optimization method starts from a moderate-

sized training sample, we could run into spurious peaks in the first few rounds of the search 

process and get stuck at one of these peaks. To prevent this undesirable situation, we include 

a performance stability measure for hyperparameter value combinations in the acquisition 

function.

More specifically, our progressive sampling-based Bayesian optimization method uses a 

random sample of the data set termed the validation sample to evaluate trained models. For 

each hyperparameter value combination chosen for testing, our original method [97] uses it 

to train a model and records the model’s accuracy on the validation sample as its accuracy 

measure without considering its performance stability. To measure a combination’s 

performance stability, we partition the validation sample into multiple subsets before the 

search process starts. For a large data set, we use a validation sample larger than that used in 

our paper [97] to ensure each subset is of reasonable size. For each combination chosen for 

testing, we record the trained model’s accuracy on each subset and compute the variance of 

these accuracies. A large variance indicates the combination has unstable performance. We 

include this variance as the combination’s performance stability measure in the acquisition 

function.

In our progressive sampling-based Bayesian optimization method, the training sample 

expands over rounds. To save time, in each round that is neither the first nor the last one, for 

each hyper-parameter value combination that looks unpromising in the previous round, we 

do not use it and the expanded training sample to train a model. Instead, we multiply its 

accuracy measure from the previous round by a computed factor as its estimated accuracy 

measure for the current round [97]. Our rationale is that in the search process, which new 

combinations are chosen for testing in each round tends to be impacted mostly by the 

promising combinations’ accuracy measures [105]. Using the same rationale, for each 

unpromising combination, we can handle its performance stability measure over rounds in a 

similar way.

3.4.6. Technique 4: normalizing the data before starting the search process
—Often, we can greatly improve a predictive model’s accuracy by normalizing the data 

before training the model. To do this, in each round of the search process, we could take a 

sample of the data set, normalize it, and use it to test and adjust hyper-parameter value 

combinations. Yet, for each attribute, its mean and standard deviation in the sample are 

different from those in the whole data set. This will lead to imprecise accuracy estimates of 

the trained models and subsequently degrade search result quality. To avoid this problem, 

before the search process starts, we normalize the entire data set that will be used for 

training and validation in any way. During the search process, we obtain training and 

validation samples from the normalized data set. Besides boosting search result quality, this 

also improves search efficiency, as data need to be normalized only once during the search 

process.
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3.5. Additional details

For each longitudinal attribute, one could train an LSTM network using only that attribute 

without the others, and then extract temporal features from the network’s memory cell 

vector elements. But, this is unlikely to produce high-quality features. A typical attribute has 

limited predictive power by itself. An LSTM network built using only this attribute without 

the others tends to have low prediction accuracy.

Once developed, chronic diseases rarely disappear and usually have a longer lasting impact 

on future visits than acute diseases. When each input vector includes one patient visit’s 

information, Bai et al. [46,62] improved LSTM prediction accuracy by learning different 

time decay factors for differing diseases to reflect this. We can make this more explicit to 

help LSTM remember long- span history and further boost prediction accuracy. For each 

common chronic disease, researchers have developed some phenotyping algorithms using 

medical data to detect whether a patient has this disease [64–66,106,107]. After spotting that 

a patient has a chronic disease at a specific time step, we add this disease’s diagnosis 

information into the input vector at each subsequent time step for the patient, regardless of 

whether this diagnosis is recorded at that time step.

For our temporal feature extraction method to work, we rely on three properties of LSTM. 

First, LSTM has memory cell vectors, whose elements depict the learned temporal features. 

Second, the memory cell vector ct  at time step t is a function of thejnput vector xt,ct − 1, and 

the hidden state vector ht‐1. Third, ht  is a function of xt , ct − 1, and ht−1 . Besides LSTM, 

several other types of RNN like those given in Zoph et al. [108] also have these three 

properties. These RNNs can outperform LSTM for certain modeling tasks. We can also 

apply our method to these RNNs to extract predictive and clinically meaningful temporal 

features from medical data for predictive modeling.

4. Automatically explaining machine learning prediction results

In this section, we outline a method of using the extracted temporal features to automatically 

explain machine learning prediction results and to suggest tailored interventions.

Each extracted temporal feature is clinically meaningful and has a precise mathematical 

definition. Using these temporal features, we convert the longitudinal medical data to an 

initial table, with one column per temporal feature. Then we add the static attributes to form 

the final table. Each column of it has an easy-to-understand meaning. Using a supervised 

machine learning algorithm that can maximize prediction accuracy, we build a predictive 

model on the final table. Then we use our previously developed method [30] to 

automatically explain the model’s prediction results and suggest tailored interventions.

4.1. Review of our prior automatic explanation method

For tabular data, our prior method [30] can automatically explain any machine learning 

model’s prediction results with no accuracy loss. It works in the following way. We use the 

final table to mine class-based association rules. Each rule contains a feature pattern linking 

to a value of the outcome variable and is of the form: e1 AND e2 AND ... AND eu → v. The 
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rule suggests that a patient’s outcome variable tends to take value v if the patient satisfies 

conditions e1, e2,..., and eu. Each condition is on a feature taking a specific value or a value 

in a given range. An example rule for predicting asthma patient outcome is: the patient’s 

body mass index kept rising over 12 months AND the patient had an emergency department 

visit for asthma last year → high risk.

After the association rules are mined, a clinician examines them and drops those that make 

little or no clinical sense. For each remaining rule with a poor outcome on its right hand 

side, the clinician pre-compiles zero or more interventions addressing the reason shown by 

the rule. One such intervention for the example rule mentioned above is to advise the patient 

to lose weight with a healthy diet and regular exercise. For each patient who is predicted by 

the machine learning model to have a poor outcome, our method lists zero or more rules. 

Each rule gives a reason why the patient is predicted to have the poor outcome. Moreover, 

our method suggests tailored interventions by listing the interventions linking to these rules.

4.2. Shortcomings of our prior automatic explanation method

Our prior automatic explanation method [30] has two shortcomings.

4.2.1. Shortcoming 1: using an association rule mining method suboptimal 
for imbalanced data—Consider an association rule R with value v on its right hand side. 

Among all data instances satisfying R’s left hand side, the percentage of data instances 

whose outcome variables have value v reflects R’s accuracy and is termed R’s confidence. 

The percentage of data instances satisfying R’s left hand side and whose outcome variables 

have value v reflects R’s coverage and is termed R’s support. Our prior automatic 

explanation method uses a standard approach to mine association rules, obtaining rules at a 

fixed level of minimum confidence (e.g., 50%) and support (e.g., 1%). Yet, this approach is 

suboptimal on imbalanced data.

Medical data are often imbalanced, with one value of the outcome variable occurring much 

more frequently than another. In this case, using the same minimum support for different 

values of the outcome variable is inadequate [109]. If the minimum support is high, we 

cannot find enough association rules for the rare values. As a result, for many patients whose 

outcome variables are predicted by the machine learning model to take these values, we 

cannot explain the model’s prediction results. On the other hand, if the minimum support is 

too low, the rule mining process will produce too many rules as intermediate results and 

generate many overfitted rules in the end. The former makes the rule mining process rather 

slow and the computer easily run out of memory. The latter makes it daunting, if not 

infeasible, for the clinician to examine the many mined rules.

4.2.2. Shortcoming 2: ignoring those interventions that target the conditions 
on the mined association rules’ left hand side linking to good outcomes—Our 

prior automatic explanation method uses only interventions linking to the association rules 

with poor outcomes on their right hand side. Consider a rule with a good outcome on its 

right hand side. An intervention helping patients fulfill the conditions on the rule’s left hand 

side could improve outcomes [53]. Yet, our prior method ignores such interventions and 

misses the related opportunities for improving outcomes.
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4.3. Improving our prior automatic explanation method

We use two techniques to address the two shortcomings mentioned above and to improve 

our prior automatic explanation method [30].

4.3.1. Technique 1: replacing support by commonality—To address the 

shortcoming mentioned in Section 4.2.1, we use the approach developed by Paul et al. [109], 

instead of the standard approach, to mine class-based association rules. There, we replace 

support by commonality, which is a value-specific support. Consider an association rule R 
with value v on its right hand side. R’s commonality is defined as the percentage of data 

instances satisfying R’s left hand side among all data instances whose outcome variables 

have value v. Intuitively, we want to keep R if the feature pattern on its left hand side is 

frequent for v, but rare for any other value of the outcome variable. Based on this insight, we 

mine rules at a fixed level of minimum confidence (e.g., 50%) and commonality (e.g., 10%). 

If several mined rules have the same left hand side, we keep only the rule with the highest 

confidence for the value on its right hand side [110].

Compared to using support, using commonality has three advantages. First, the rule mining 

process produces fewer association rules as intermediate results. This expedites the process, 

which is important for large data sets. Second, the rule mining process generates fewer 

overfitted rules in the end. This reduces the time the clinician needs to examine the mined 

rules. Third, we find more rules for the rare values of the outcome variable. As a result, we 

can explain the machine learning model’s prediction results for more patients whose 

outcome variables are predicted by the model to take one of these values.

In clinical applications, the rare values of the outcome variable usually denote poor 

outcomes and are of more interest to us than frequent values. The mined rules related to the 

rare values reflect common feature patterns linking to these values. Some patients have these 

values as their outcomes for uncommon reasons and are covered by none of these rules, no 

matter how we improve our association rule-based automatic explanation method. Yet, by 

improving our method, we reduce the number of patients for whom we are unable to explain 

the machine learning model’s prediction results.

4.3.2. Technique 2: adding interventions that target the conditions on the 
mined association rules’ left hand side linking to good outcomes—To address 

the shortcoming mentioned in Section 4.2.2, we add interventions beyond those used in our 

prior automatic explanation method [30]. For each kept association rule with a good 

outcome on its right hand side, the clinician pre-compiles zero or more interventions helping 

patients fulfill some or all of the conditions on its left hand side. For some patients at high 

risk for poor outcomes, using these interventions could improve outcomes [53]. We consider 

these interventions when suggesting tailored interventions.

The patients suitable for these interventions are not those satisfying the rule’s left hand side. 

This is different from the case of the interventions linking to the association rules with poor 

outcomes on their right hand side. Instead, for each of these interventions, the clinician pre-

compiles one or more sets of conditions, under each of which a patient is regarded suitable 

for the invention. For each patient who is predicted by the machine learning model to have a 
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poor outcome and satisfies one of these sets of conditions, we list the intervention as one of 

the suggested ones.

4.4. Advantages of and a potential use case for our automatic explanation method for 
machine learning prediction results on longitudinal medical data

As mentioned in the introduction, our automatic explanation method for machine learning 

prediction results on longitudinal medical data can enable machine learning models to be 

used in clinical practice, and help transform healthcare to be more proactive. At present, 

healthcare is often reactive, resulting in suboptimal outcomes and increased costs. Our 

feature extraction method can find many temporal features reflecting trends. By using these 

features and our automatic explanation method to identify risky trends early, we can 

proactively apply preventive interventions to stop further deterioration of health. The 

automatically generated explanations can help us identify new interventions, warn clinicians 

of risky patterns, and reduce the time clinicians need to review patient records to find the 

reasons why a specific patient is at high risk for a poor outcome. The automatically 

suggested interventions can reduce the likelihood of missing suitable interventions for a 

patient. All of these factors can help improve outcomes and cut costs.

Below are several examples of temporal features with potential preventive interventions for 

asthma patients:

1. Air pollution: Consider the number of days in the past week in which the 

concentration of a given air pollutant like sulfur dioxide stayed above a fixed 

level. If either this number or the concentration’s rate of increase exceeds its own 

specific threshold, the following preventive interventions could be used:

a. Suggest the patient to stay indoors as much as possible until the 

pollutant concentration drops below a safe threshold.

b. Ensure the patient is compliant with his/her current controller therapy 

like inhaled corticosteroid. If the patient is compliant and symptomatic, 

consider a temporary increase in controller medication dose during the 

next two to four weeks.

c. Ask the patient to increase the dose and/or dosing frequency of quick-

relief asthma medication during the next two to four weeks. For 

example, increase albuterol dose from two to four puffs per dose and/or 

dosing frequency to four to six doses per day as needed.

2. Pollen count: Consider the number of days in the past week in which a given 

type of pollen count stayed above a fixed level. If either this number or the pollen 

count’s rate of increase exceeds its own specific threshold, the following 

preventive interventions could be used:

a. Recommend the patient to use allergy medication like antihistamine or 

nasal steroid spray during the pollen season (February to October 

depending on the pollen type).
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b. If asthma control worsens during the pollen season despite medication 

compliance, consider initiating or increasing the dose of the daily 

controller medication regimen (inhaled corticosteroid).

c. Consider adding a leukotriene inhibitor to the daily controller 

medication regimen.

3. Fractional exhaled nitric oxide (FeNO): Rising FeNO levels over time despite 

treatment may indicate non-compliance with or non-responsiveness to inhaled 

corticosteroid, or worsening asthma. If this increase occurs, the following 

preventive interventions could be used:

a. Assess and address reasons for non-compliance with inhaled 

corticosteroid.

b. Adjust the medication type or dose of inhaled corticosteroid.

c. Perform allergy testing on the patient and prescribe allergy medication 

as needed.

4. Forced expiratory volume in 1 second (FEV1): Decreasing FEV1 over the past 

year to below 80% of the predicted normal value or prior personal best may 

indicate poor asthma control or progressive lung injury from asthma. If this 

decrease occurs, the following preventive interventions could be used:

a. Assess the patient for asthma triggers and ensure avoidance of them.

b. Assess asthma controller medication compliance and dosage. Adjust the 

medication as indicated.

c. Assess asthma control and intervene based on the National Heart, Lung 

and Blood Institute step therapy guidelines.

5. Oral corticosteroid prescription: Increasing frequency of filling oral 

corticosteroid prescription over the past year indicates poor asthma control. If 

this increase occurs, the following preventive interventions could be used:

a. Assess the patient for asthma triggers and ensure the patient avoids 

them.

b. Assess asthma controller medication compliance. Prescribe, change, or 

increase the dose of the medication if indicated.

c. Prepare a new asthma action plan to intervene more aggressively in the 

yellow zone [111].

d. Assess asthma control and intervene based on the National Heart, Lung 

and Blood Institute step therapy guidelines.

6. Body mass index: The status that a patient’s body mass index keeps rising over 

12 months or exceeds 25, the threshold value for overweight, is associated with 

poorer asthma control. If the patient reaches this status, the following preventive 

interventions could be used:
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a. Advise the patient to lose weight with a healthy diet and regular 

exercise. Provide education and information on weight loss to 

caregivers.

b. Refer the patient to a dietician and/or a dedicated weight loss clinic.

7. Asthma control test score: The asthma control test score reflects a patient’s 

asthma control status [112,113 ] and can be assessed every week [114]. A lower 

score indicates worse asthma control. If over a period of two weeks, the score 

has trended down but stayed between 15 and 18, the following preventive 

intervention could be used:

a. Ensure the patient is compliant with asthma controller medications and 

avoids asthma triggers. Ask the patient to see his/her care provider for 

further interventions/ instructions.

If the score is below 15 at any time, the following preventive 

intervention could be used:

b. Besides the actions listed in (a), refer the patient to his/ her personalized 

asthma action plan for acute interventions including initiating oral 

corticosteroids.

8. Asthma controller medication compliance: Lack of compliance with daily 

controller medication can lead to poor asthma control. Yet, medication 

compliance data are rarely provided to a patient’s care provider. We can track 

medication compliance data electronically in two ways. First, we track monthly 

asthma controller medication refills from claims data as a surrogate for 

medication compliance, as compliance should link to monthly refills. Second, we 

use the electronic-Asthma Tracker [114,115], an asthma control tracker with a 

symptom diary tool that also monitors a patient’s daily use of asthma controller 

medications. When monitoring frequency of monthly refills or daily use of 

asthma controller medications, the patient’s compliance is expected to be ≥ 80% 

of prescribed asthma controller medications [116]. If this is not the case, the 

following preventive intervention could be used:

a. The care provider assesses over the phone or during clinic visits 

potential barriers to compliance, and provides education about the 

importance of achieving and maintaining medication compliance.

The above preventive interventions are useful for asthma care management [117]. Currently, 

care managers handle most of the care management process and provide limited input on the 

patient to physicians. Using our automatic explanation method to identify risk trends early 

and obtain suggestions on potential preventive interventions, care managers can pass this 

tailored information to physicians for them to act accordingly. This transforms the care 

management process and makes it more effective via closer collaboration between care 

managers and physicians.

We can use the final predictive model and automatic explanations to give early warnings for 

high-risk patients. To measure the number of days of early warning provided by the model, 
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we use an approach illustrated by the following example. Suppose the model predicts an 

individual patient’s hospitalization in the next 365 days. A patient could be hospitalized 

more than once during a one-year period. Consider a patient admitted to the hospital on date 

D. To measure the number of days of early warning the model provides for the patient, we 

use D-365 as the initial prediction time point and input the patient’s history up to D-365 into 

the model. If it predicts hospitalization, it warns 365-j1 days in advance, with D-j1 being the 

first day between D-365 and D when the patient was admitted to the hospital. Otherwise, if 

the model predicts no hospitalization, we move the prediction time point one day forward to 

D-364 and input the patient’s history up to D-364 into the model. If it predicts 

hospitalization, it warns 364-j2 days in advance, with D-j2 being the first day between D-364 

and D when the patient was admitted to the hospital. Otherwise, if the model still predicts no 

hospitalization, we move the prediction time point another day forward. We keep moving the 

prediction time point forward until the model predicts hospitalization or we reach D, 

whichever occurs first. If we reach D, the model warns zero day in advance. For patients 

ever hospitalized during a certain period, the average number of days of early warning 

provided by our model reflects how early it gives warnings.

5. Related work

Much related work is mentioned in the previous sections. In this section, we describe some 

other related work not covered in any of the previous sections.

5.1. Automating feature engineering on tabular data

Several papers have been published on automating feature engineering on tabular data.

As a form of meta-learning, Bilalli et al. [118] used knowledge learned from processing 

prior data sets to automatically suggest data pre-processing operators for the current data set. 

That method considers only a few pre-defined operators and cannot handle longitudinal data. 

In comparison, MCLSTM handles longitudinal data and does not limit the types of temporal 

features it can learn. Numerous types of clinically meaningful temporal features could be 

useful for predictive modeling with medical data. The exact forms of many of these types are 

often unknown beforehand and need to be discovered in a data-driven way.

Khurana [119] automated feature engineering on data stored in a single table, by recursively 

applying a set of pre-defined transformations on the table’s columns to form new features. 

That method cannot handle longitudinal data. Often, a feature formed by recursive 

transformations has no clear medical meaning. It is difficult to use the feature to 

automatically explain machine learning prediction results. Yet, this function is needed in our 

case.

Kanter et al. [120–122] described three methods for automating feature engineering on data 

stored in multiple tables. Each method supports a few predefined aggregate operators like 

sum and average, and allows them to be applied to temporal data over the same period. Yet, 

this is insufficient for handling longitudinal medical data. On medical data, many types of 

temporal features could be useful for predictive modeling. Each feature could be computed 

on data over a distinct period. For example, one feature is whether a patient’s body mass 
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index kept rising over the past 12 months. Another feature is whether the patient had at least 

two emergency department visits for asthma in the past six months. Our feature extraction 

method can obtain features computed on data over different periods.

Lam et al. [123] described a method for automatically learning features from data stored in 

multiple tables. That method can handle temporal data, if each temporal attribute’s values 

are stored in a separate table or a separate column of a table linking to the main table via 

key-foreign key relationships. That method learns temporal features by forming one RNN 

per temporal attribute. As a result, each learned feature involves only one attribute. Also, the 

learned features are not guaranteed to be meaningful. In comparison, on medical data, a 

useful feature could involve more than one longitudinal attribute. Our feature extraction 

method can find such features and ensures each kept feature is clinically meaningful.

5.2. Temporal and sequential pattern mining

Our temporal feature extraction method is also a pattern mining method, as each temporal 

feature obtained by it captures a pattern that is temporal and/or sequential. The data mining 

community has developed many temporal [17,18] and sequential [19] pattern mining 

techniques, some of which use visualization to facilitate pattern discovery [77,90,124]. 

Existing techniques [77,124–129] usually handle a single type of attribute. For example, 

standard sequential pattern mining techniques handle only categorical attributes. This does 

not serve our feature extraction purpose. In our case, medical data often contain several 

types of attributes (numeric, categorical, and interval). An extracted temporal feature can 

involve more than one type of attribute.

Many temporal and sequential pattern mining techniques [125,126,130] ignore pattern 

interactions and mine each pattern independently of the others. On a data set of non-trivial 

size, such a technique often finds numerous patterns, many of which are clinically 

meaningless and highly redundant with each other, e.g., differ by only one item with all 

other items in the pattern being the same. It is daunting, if not infeasible, for the clinician to 

examine these patterns and identify the clinically meaningful ones. Without dropping the 

redundant patterns, using all mined patterns, each as a feature, to build a machine learning 

predictive model would degrade model accuracy. In comparison, MCLSTM model training 

considers pattern interactions. Hence, our MCLSTM-based pattern mining method finds 

mostly non-redundant patterns and avoids the pattern explosion problem. For the clinician 

and the data scientist involved in the feature extraction process, this greatly reduces the 

manual examination work needed by them.

Many temporal and sequential pattern mining techniques mine frequent patterns without 

thinking about building an accurate predictive model [130,131 ]. As a result, many mined 

patterns have little or no predictive power for the outcome variable. In comparison, our 

pattern mining method starts from building an MCLSTM predictive model for the outcome 

variable. The model often has a reasonable accuracy. Thus, the patterns mined by our 

method tend to have high predictive power for the outcome variable.

Existing temporal and sequential pattern mining techniques either ignore the time gap 

between consecutive events or require a human expert to specify a threshold, above which 
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the consecutive events in the same sequence are regarded as unrelated to each other [126]. 

The time gap between consecutive events should be used, as it gives useful information on 

how closely these events relate to each other. Yet, manually specifying the threshold for the 

time gap is difficult, particularly because each type of event can have its own optimal 

threshold that is often unknown beforehand. In comparison, our pattern mining method 

considers the time gap between consecutive events, requires no manual specification of any 

threshold for the time gap, and learns which consecutive events in the same sequence relate 

to each other in a data-driven way.

Some temporal pattern mining techniques use temporal abstraction, which converts a time 

series of a variable into a sequence of time-interval events [132,133]. Each event denotes a 

property of the time series. Temporal abstraction requires manual specification of its 

primitives and thresholds that are often specific to a given disease. This is difficult to do, 

particularly in a thorough fashion.

Some temporal pattern mining techniques use shapelets [134]. Each shapelet is a univariate 

time series subsequence that represents a class well in some sense. In comparison, in our 

case, an extracted temporal feature can involve more than one attribute.

Using shapelets, Ghalwash et al. [135] developed a method to extract multivariate temporal 

patterns from medical time series. That method assumes time series are evenly spaced, 

which is often not true in our case. Also, certain temporal patterns can be learned by 

MCLSTM, but not by that method. One such pattern is that an attribute’s value shows a 

specific trend, and then after a period of variable length, the attribute’s value shows another 

specific trend.

Nguyen et al. [136] used a convolutional neural network built on medical data to find 

sequence patterns of a fixed length. That method handles only categorical attributes and does 

not fit our case, where temporal patterns can have varying lengths and other types of 

attributes exist.

Wang et al. [127] used non-negative matrix factorization to mine temporal patterns from 

medical data. That method handles only binary event attributes, and does not require the 

mined patterns to correlate with the outcome variable.

Liu et al. [126] used a graph-based method to mine temporal patterns from medical data. 

That method handles only categorical event attributes.

5.3. Visualizing deep neural networks

Many papers have been published on visualizing deep neural networks [137,138]. Most of 

these papers focus on convolutional neural network. Only a few of these papers address 

RNN [138]. Our temporal feature extraction method includes a technique of visualizing 

MCLSTM.
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5.4. Automatically explaining machine learning prediction results

Much work has been done on automatically explaining machine learning prediction results 

[139,140]. Most of the work focuses on tabular data, images, and texts. To the best of our 

knowledge, no paper has been published on this paper’s topic of automatically providing 

rule-based explanations for machine learning prediction results on longitudinal medical data 

and suggesting tailored interventions [139]. Compared to other forms of explanations for 

machine learning prediction results used in the literature, rule-based explanations are easier 

to understand and easier to use for designing tailored interventions. Among the work 

published on automatically explaining deep neural network’s prediction results [138,141–

143], most targets convolutional neural network rather than RNN [141].

5.4.1. Automatically explaining LSTM’s prediction results on genomic and 
text data—Several papers on automatically explaining LSTM’s prediction results focus on 

genomic and text data. Unlike a patient’s medical data that have multiple attribute values at 

each time step, a genomic or text sequence has only one value at every position of the 

sequence.

For an LSTM network built on genomic data, Lanchantin et al. [144] automatically 

explained its positive prediction result on a genomic sequence by displaying the sub-

sequence of a fixed length that gives the largest score change from negative to positive 

output score. This approach does not fit our case, where temporal patterns can have varying 

lengths.

For an LSTM network built on text data, researchers have automatically explained its 

classification result on a text sequence by showing which words [145], pieces of text [146], 

or phrases [147] in the sequence are responsible for the classification result. Ming et al. 

[148] explained the function of each hidden state vector element in the network using the 

words highly correlated with the element. Strobelt et al. [149] built a tool to visualize the 

network’s hidden state sequences. For a text sequence, the tool can find other text sequences 

producing hidden state sequences similar to that produced by this one. In comparison, our 

feature extraction method uses the memory cell vector elements at the last time step to 

identify the top and bottom training instances, and visualize their effective segments rather 

than hidden state sequences.

Besides that done for LSTM on text data, researchers have also done some automatic 

explanation work for non-LSTM RNN on text data. In particular, Foerster et al. [150] 

proposed a non-LSTM RNN on text data. That RNN takes a character sequence as its input 

and computes each input character’s linear contribution to its classification result on the 

sequence.

5.4.2. Automatically explaining LSTM’s prediction results on medical data—
For an LSTM network built on medical data, researchers have automatically explained its 

prediction result on a patient by highlighting the data elements [22] or medical codes [46] 

that influence the prediction. Neither of these methods offers rule-based explanations or 

suggests tailored interventions.
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5.5. Other relevant topics

For medical data of a fixed sequence length, Che et al. [151 ] used a gradient boosting tree to 

mimic an LSTM network built on them and to learn interpretable features. That method 

neither extracts temporal features nor handles medical data of varying sequence lengths.

To support feature engineering on text data, Brooks et al. [152] built a tool, which visually 

summarizes misclassified data instances to help find features that can be used to improve 

model accuracy. Our temporal feature extraction method supports feature engineering on 

longitudinal medical data.

On non-longitudinal medical data, Ho et al. [153] used tensor factorization to find patterns 

as features.

Suo et al. [154] used deep neural network to identify non-temporal risk factors. In 

comparison, many temporal features found by our feature extraction method reflect temporal 

risk factors.

The usual goal of longitudinal data analysis [155] is to model the expected value of an 

outcome variable measured repeatedly over time. This is different from our goal of using 

independent variables measured repeatedly over time to predict an outcome variable that 

usually has one value per data instance.

6. Conclusions

Identifying predictive and clinically meaningful temporal features is critical for improving 

the accuracy and transparency of machine learning predictive models on medical data. This 

paper sketches a method for semi-automatically extracting such features from medical data, 

and shows how to use these features to automatically explain machine learning prediction 

results and suggest tailored interventions. This provides a roadmap for future research. 

Besides being useful for healthcare, our proposed methods can also be used to handle 

temporal data for non-medical applications.
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GPU graphics processing unit

Lasso least absolute shrinkage and selection operator

LSTM long short-term memory
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MCLSTM multi-component LSTM

RNN recurrent neural network

⊕ element-wise sum

⊗ element-wise multiplication

λ1 parameter controlling RW’s importance

λ2 parameter controlling Ru’s importance

λ3 parameter controlling Rf’s importance

σ element-wise sigmoid function

τ+ for the top N+ training instances with the highest positive 

values in a given memory cell vector element, the lowest 

one of these values

τ- for the bottom N+ training instances with the lowest 

negative values in a given memory cell vector element, the 

highest one of these values

bc
the bias vector for the memory cell

bc, q
the bias vector for the memory cell in the q-th component 

network

b f
the bias vector for the forget gate

b f , q
the bias vector for the forget gate in the q-th component 

network

bi
the bias vector for the input gate

bi, q
the bias vector for the input gate in the q-th component 

network

bo
the bias vector for the output gate

bo, q
the bias vector for the output gate in the q-th component 

network

cq, l, t the memory cell vector on the l-th layer of the q-th 

component network at time step t

cq, t the memory cell vector in the q-th component network at 

time step t

ct memory cell at time step t
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ct the memory cell vector at time step t

D date

d( y , z ) the distance between vectors y and z

dp(Y ,Z) the total distance between temporal sequences Y and Z 
along warping path p

dq the q-th component network s memory cell vector 

dimensionality

DTW(Y, Z) the dynamic time warping distance between temporal 

sequences Y and Z

ei the i-th condition on the left hand side of an, association 

rule

f q, t
the forget gate ‘ s activation vector in the q-th component 

network at time step t

f t forget gate at time step t

f t
the forget gate ‘ s activation vector at time step t

gi number of weights in the i-th group

G number of groups

hq, l, t
the hidden state vector on the l-th layer of the q-th 

component network at time step t

hq, t
the hidden state vector in the q-th component network at 

time step t

ht hidden state at time step t

ht
the hidden state vector at time step t

iq,t the input gate’s activation vector in the q-th component 

network at time step t

it input gate at time step t

it the input gate s activation vector at time step t

k the number of clusters of effective segments that will be 

created for the top/bottom training instances of a memory 

cell vector element at the last time step of the MCLSTM 

network
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K number of component networks

L the loss function measuring the mismatch between the 

predicted and actual outcomes of the data instances

Lo the overall loss function

m, m1, m2 number of time steps

MDTW(Y, Z) the multivariate dynamic time warping distance between 

temporal sequences Y and Z

n the input vector’s dimensionality

n+ the number of training instances with positive values in a 

given memory cell vector element

n− the number of training instances with negative values in a 

given memory cell vector element

N the maximum number of top/bottom training instances that 

will be obtained for each memory cell vector element at the 

last time step of the MCLSTM network

N+ the number of identified top training instances with the 

highest positive values in a given memory cell vector 

element

N− the number of identified bottom training instances with the 

lowest negative values in a given memory cell vector 

element

nq the number of longitudinal attributes used in the q-th 

component network

oq, t the output gate s activation vector in the q-th component 

network at time step t

ot output gate at time step t

ot the output gate ‘s activation vector at time step t

p, p* warping path

|p| warping path p’s length

P(Y, Z) all possible warping paths between temporal sequences Y 
and Z

R association rule
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Rf the L2 regularizer for the weights in the fully connected 

feedforward network used at the end of the MCLSTM 

network

Rq,r the L2 norm of the input vector weight matrix elements 

linking to the r-th longitudinal attribute in the q-th 

component network

RU the L2 regularizer for the elements of the hidden state 

vector weight matrices Uf,q, Ui,q, Uo,q, and Uc,q

RW the exclusive group Lasso regularizer

t, t′, t1, t2, t3, t4, t5 time step

tend an effective segment’s ending time step

tstart an effective segment’s starting time step

tanh element-wise hyperbolic tangent function

Uc the hidden state vector weight matrix for the memory cell

Uc,q the hidden state vector weight matrix for the memory cell 

in the q-th component network

Uc,q,s,r the element in the s-th row and r-th column of Uc,q

Uf the hidden state vector weight matrix for the forget gate

Uf,q the hidden state vector weight matrix for the forget gate in 

the q-th component network

Uf,q,s,r the element in the s-th row and r-th column of Uf,q

Ui the hidden state vector weight matrix for the input gate

Ui,q the hidden state vector weight matrix for the input gate in 

the q-th component network

Ui,q,s,r the element in the s-th row and r-th column of Ui,q

Uo the hidden state vector weight matrix for the output gate

Uo,q the hidden state vector weight matrix for the output gate in 

the q-th component network

Uo,q,s,r the element in the s-th row and r-th column of Uo,q

v value

wi,j weight

Wc the input vector weight matrix for the memory cell
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Wc,q the input vector weight matrix for the memory cell in the q-

th component network

Wc,q,s,r the element in the s-th row and r-th column of Wc,q

Wf the input vector weight matrix for the forget gate

Wf,q the input vector weight matrix for the forget gate in the q-th 

component network

Wf,q,s,r the element in the s-th row and r-th column of Wf,q

Wi the input vector weight matrix for the input gate

Wi,q the input vector weight matrix for the input gate in the q-th 

component network

Wi,q,s,r the element in the s-th row and r-th column of Wi q

Wo the input vector weight matrix for the output gate

Wo,q the input vector weight matrix for the output gate in the q-

th component network

Wo,q,s,r the element in the s-th row and r-th column of Wo,q

xq, t the input vector in the q-th component network at time step 

t

Xq,t,j the j-th element of the input vector xq, t

xt the input vector at time step t

xt,i the i-th element of the input vector xt

Y temporal sequence

yr the r-th element of temporal sequence Y

Z temporal sequence

zs the s-th element of temporal sequence Z
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Fig. 1. 
An LSTM network.
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Fig. 2. 
A multi-component LSTM network with K components.
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Fig. 3. 
A multi-component stacked LSTM network with K components and two recurrent layers.
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Fig. 4. 
Identifying the effective segments of the input vector sequence in a top training instance.

Luo Page 54

Glob Transit. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Time alignment of two sequences.
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Fig. 6. 
Visualizing a cluster of three effective segments involving two longitudinal attributes.
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Fig. 7. 
Displaying a sequence of values of the visit type attribute.
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Fig. 8. 
Displaying the interval sequences from three patients’ hospitalization period attribute.
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