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Abstract

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on 

sensitivity for detecting genomic alterations but have rarely considered the biological properties of 

plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of 

circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA 

and for non-invasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 

plasma samples from 200 cancer patients using low-pass whole-genome sequencing (0.4×). To 

establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was 

performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90–150 bp, 

and developed methods for in vitro and in silico size selection of these fragments. Selecting 

fragments between 90–150 bp improved detection of tumor DNA, with more than 2-fold median 

enrichment in >95% of cases, and more than 4-fold enrichment in >10% of cases. Analysis of 

size-selected cfDNA identified clinically actionable mutations and copy number alterations that 

were otherwise not detected. Identification of plasma samples from patients with advanced cancer 

was improved by predictive models integrating fragment length and copy number analysis of 

cfDNA, with AUC>0.99 compared to AUC<0.80 without fragmentation features. Increased 

identification of cfDNA from patients with glioma, renal, and pancreatic cancer was achieved with 

AUC>0.91, compared to AUC<0.5 without fragmentation features. Fragment size analysis and 

selective sequencing of specific fragment sizes can boost ctDNA detection and could complement 

or provide an alternative to deeper sequencing of cell-free DNA for clinical applications, earlier 

diagnosis and study of tumor biology.

Introduction

Blood plasma of cancer patients contains circulating tumor DNA (ctDNA), but this valuable 

source of information is diluted by much larger quantities of DNA of non-cancerous origins, 

such that ctDNA usually represents only a small fraction of the total cell-free DNA (cfDNA) 

(1, 2). High-depth targeted sequencing of selected genomic regions can be used to detect low 
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amounts of ctDNA, but broader analysis with methods such as whole exome sequencing 

(WES) and shallow whole genome sequencing (sWGS) are only generally informative when 

ctDNA content is ~10% or greater (3–5). The concentration of ctDNA can exceed 10% of 

the total cfDNA in patients with advanced-stage cancers (6–8), but is much lower in patients 

with low tumor burden (9–12) and in patients with some cancer types such as gliomas and 

renal cancers (6). Current strategies to improve ctDNA detection rely on increasing depth of 

sequencing coupled with various error-correction methods (2, 13, 14). However, approaches 

that focus only on genomic alterations do not take advantage of the potential differences in 

chromatin organization or fragment sizes of ctDNA (15–17). Results of ever-deeper 

sequencing are also confounded by the likelihood of false positive results from detection of 

mutations from non-cancerous cells, clonal expansions in normal epithelia, or clonal 

hematopoiesis of indeterminate potential (CHIP) (13, 18, 19).

The cell of origin and the mechanism of cfDNA release into blood can mark cfDNA with 

specific fragmentation signatures, potentially providing precise information about cell type, 

gene expression, cell physiology or pathology, or action of treatment (15, 16, 20). cfDNA 

fragments commonly show a prominent mode at 167 bp, suggesting release from apoptotic 

caspase-dependent cleavage (21–24) (Fig. 1A). Circulating fetal DNA has been shown to be 

shorter than maternal DNA in plasma, and these size differences have been used to improve 

sensitivity of non-invasive prenatal diagnosis (22, 25–27). The size distribution of tumor-

derived cfDNA has only been investigated in a few studies, encompassing a small number of 

cancer types and patients, and showed conflicting results (28–33). A limitation of previous 

studies is that determining the specific sizes of tumor-derived DNA fragments requires 

detailed characterization of matched tumor-derived alterations (30, 33), and the broader 

understanding and implications of potential biological differences have not previously been 

explored.

We hypothesized that we could improve the sensitivity for non-invasive cancer genomics by 

selective sequencing of ctDNA fragments and by leveraging differences in the biology that 

determine DNA fragmentation. To test this, we established a pan-cancer catalogue of cfDNA 

fragmentation features in plasma samples from patients with different cancer types and 

healthy individuals to identify biological features enriched in tumor-derived DNA. We 

developed methods for selecting specific sizes of cfDNA fragments prior to sequencing and 

investigated the impact of combining cfDNA size selection with genome-wide sequencing to 

improve the detection of ctDNA and the identification of clinically actionable genomic 

alterations.

Results

Surveying the fragmentation features of tumor cfDNA

We generated a catalogue of cfDNA fragmentation features (Fig. 1A) from 344 plasma 

samples from 200 patients with 18 different cancer types, and additional 65 plasma samples 

from healthy controls (Fig. 1B, fig. S1, table S1, and table S2). The size distribution of 

cfDNA fragments in cancer patients differed in the size ranges of 90–150 bp, 180–220 bp, 

and 250–320 bp compared to healthy individuals (Fig. 1B and fig. S2). cfDNA fragment 

sizes in plasma of healthy individuals and in plasma of patients with late stage glioma, renal, 
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pancreatic, and bladder cancers, were significantly longer than in other late stage cancer 

types including breast, ovarian, lung, melanoma, colorectal, and cholangiocarcinoma 

(p<0.001, Kruskal-Wallis; Fig. 1C). Sorting the 18 cancer types according to the proportion 

of cfDNA fragments in the size range 20–150 bp resulted in an order very similar to that 

obtained by Bettegowda et al. based on the concentrations of ctDNA measured by individual 

mutation assays (Fig. 1D) (6). In contrast to previous reports (6, 34), this sorting was 

performed without any analysis or prior knowledge of the presence of mutations or somatic 

copy number alterations (SCNAs), yet allowed the investigation of ctDNA content in 

different cancers.

Sizing up mutant ctDNA

We determined the size profile of mutant ctDNA in plasma using two high-specificity 

approaches. First, we inferred the specific size profile of ctDNA and non-tumor cfDNA with 

sWGS from the plasma of mice bearing human ovarian cancer xenografts (Fig. 2A). We 

observed a shift in ctDNA fragment sizes to less than 167 bp (Fig. 2B). Second, the size 

profile of mutant ctDNA was determined in plasma from 19 cancer patients, using deep 

sequencing with patient-specific hybrid-capture panels developed from whole-exome 

profiling of matched tumor samples (Fig. 2C). By sequencing hundreds of mutations at a 

depth >300× in cfDNA, allele-specific reads from mutant and normal DNA were obtained. 

Enrichment of DNA fragments carrying tumor-mutated alleles was observed in fragments 

~20–40 bp shorter than nucleosomal DNA sizes (multiples of 167 bp) (Fig. 2D). We 

determined that mutant ctDNA is generally more fragmented than non-mutant cfDNA, with 

a maximum enrichment of ctDNA in fragments between 90 and 150 bp (fig. S3), as well as 

enrichment in the size range 250–320 bp. These data also indicated that mutant DNA in 

plasma of patients with advanced cancer (pre-treatment) is consistently shorter than 

predicted mono-, and di-nucleosomal DNA fragment lengths (Fig. 2D).

Selecting tumor-derived DNA fragments

We evaluated whether the shorter cfDNA fragments in plasma can be harnessed to improve 

ctDNA detection. We determined the feasibility of selective sequencing of shorter fragments 

using in vitro size selection with a bench-top microfluidic device followed by sWGS, in 48 

plasma samples from 35 patients with high-grade serous ovarian cancer (HGSOC) (Fig. 3A, 

fig. S4, and fig. S5). We assessed the accuracy and quality of the size selection with the 

plasma from 20 healthy individuals (Fig. 3B and fig. S6). We also explored the utility of in 

silico size selection of fragmented DNA using read-pair positioning from unprocessed 

sWGS data (Fig. 3A). In silico size selection was performed once reads were aligned to the 

genome reference, by selecting the paired-end reads that corresponded to the fragment 

lengths in a 90–150 bp size range. Fig. 3C, Fig. 3D, and Fig. 3E illustrate the effect of in 

vitro size selection for one HGSOC case (see all 5 samples in fig. S7 and fig. S8). First, we 

identified SCNAs in plasma cfDNA before treatment, when the concentration of ctDNA was 

high (Fig. 3C). Only a small number of focal SCNAs were observed in the subsequent 

plasma sample collected 3 weeks after initiation of chemotherapy (without size selection, 

Fig. 3D). In vitro size selection of the same post-treatment plasma sample showed a median 

increase of 6.4 times in the amplitude of detectable SCNAs without size selection. Selective 

sequencing of shorter fragments in this sample resulted in the detection of multiple other 
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SCNAs that were not observed without size selection (Fig. 3E), and a genome-wide copy-

number profile that was similar to that obtained before treatment when ctDNA 

concentrations were 4 times higher, with additional copy-number alterations identified in 

this sample despite the lower initial concentration of ctDNA (Fig. 3C). In silico size 

selection also enriched ctDNA but to a lower extent than using in vitro size selection (fig. 

S7). We concluded that selecting short DNA fragments in plasma can enrich tumor content 

on a genome-wide scale.

Quantifying the impact of size selection

To quantitatively assess the enrichment after size selection on a genome-wide scale, we 

developed a metric from sWGS data (<0.4× coverage) called t-MAD (trimmed Median 

Absolute Deviation from copy-number neutrality, see Fig. 4A). All sWGS data were 

downsampled to 10 million sequencing reads for comparison. To define the detection 

threshold, we measured the t-MAD score for sWGS data from 65 plasma samples from 46 

healthy individuals and took the maximal value (median=0.01, range 0.004–0.015). We 

compared t-MAD to the mutant allele fraction (MAF) in the high ctDNA cancer types as 

assessed by digital PCR (dPCR) or WES in 97 samples. We observed a high correlation 

(Pearson correlation, r=0.80) between t-MAD and MAF (Fig. 4B), for samples with t-MAD 

greater than the detection threshold (0.015), or with MAF>0.025. fig. S9 shows that the 

slope of t-MAD versus MAF fit lines differed between cancer types (range 0.17–1.12), 

reflecting likely differences in the extent of SCNAs. We estimated the sensitivity of t-MAD 

for detecting low amounts of ctDNA using a spike-in dilution of DNA from a patient with a 

TP53 mutation into DNA from a pool of 7 healthy individuals (fig. S10), which confirmed 

that the t-MAD score was linear with ctDNA fraction down to MAF of ~0.01. In addition, t-

MAD scores greater than the detection threshold (0.015) for samples were present even in 

samples with MAF as low as 0.004. t-MAD was also strongly correlated with tumor volume 

determined by RECIST1.1 (Pearson correlation, r=0.6, p<0.0001, n=35) (fig. S11).

Using t-MAD, we detected ctDNA from 69% (130/189) of the samples from cancer types 

where ctDNA concentrations were shown to be high (Fig. 4C). From cancer types for which 

ctDNA concentrations are suspected to be low (glioma, renal, bladder, pancreatic), we 

detected ctDNA in 17% (10/57) of the cases (Fig. 4C). We used in silico size selection of the 

DNA fragments between 90–150 bp from the high ctDNA cancers (n=189) and healthy 

controls (n=65) to improve the sensitivity for detecting t-MAD (Fig. 4D). Receiver operating 

characteristic (ROC) analysis comparing the t-MAD score for the samples revealed an area 

under the curve (AUC) of 0.90 after in silico size selection, against an AUC of 0.69 without 

size selection (Fig. 4D).

We explored whether size selected sequencing could improve the detection of response or 

disease progression. We used sWGS of longitudinal plasma samples from six cancer patients 

(Fig. 4E, F) and in silico size selection of the cfDNA fragments between 90–150 bp. In two 

patients, size-selected samples indicated tumor progression 60 and 87 days before detection 

by imaging or unselected t-MAD analysis (Fig. 4E, F). Other longitudinal samples exhibited 

improvements in the detection of ctDNA with t-MAD and size selection (Fig. 4F).
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Identifying more clinically relevant genomic alterations with size selection

We next tested whether size selection could increase the sensitivity for detecting cancer 

genomic alterations in cfDNA. To test effects on copy number aberrations, we studied 35 

patients with HGSOC as the archetypal copy-number driven cancer (35). t-MAD was used 

to quantify the enrichment of ctDNA with in vitro size selection in 48 plasma samples, 

including samples collected before and after initiation of chemotherapy treatment. In vitro 

size selection resulted in an increase in the calculated t-MAD score from the sWGS data for 

47/48 of the plasma samples (98%, t-test, p=0.06) with a mean 2.5 and median 2.1-fold 

increase (Fig. 5A and table S3). We compared the t-MAD scores against those obtained by 

sWGS for the plasma samples from healthy individuals. 39 of the 48 size-selected HGSOC 

plasma samples (82%) had a t-MAD score greater than the highest t-MAD value determined 

in the in vitro size selected healthy plasma samples (Fig. 5A, fig. S12 and fig. S6), compared 

to 24 out of 48 without size selection (50%). ROC analysis comparing the t-MAD score for 

the samples from the cancer patients (pre- and post-treatment initiation, n=48) and healthy 

controls (n=46) revealed an AUC of 0.97 after in vitro size selection, with maximal 

sensitivity and specificity of 90% and 98%, respectively. This was superior to detection by 

sWGS without size selection (AUC=0.64) (Fig. 5B).

We then determined if this improved sensitivity resulted in the detection of SCNAs with 

potential clinical value. Across the genome, t-MAD scores evaluating SCNAs were higher 

after size selection in 33/35 (94%) HGSOC patients, and the magnitude of the copy number 

(log2 ratio) values significantly increased after in vitro size selection (t-test for the means, 

p=0.003) (Fig. 5C). We compared the relative copy number values for 15 genes frequently 

altered in HGSOC (table S4). Analysis of plasma cfDNA after size selection revealed a large 

number of SCNAs that were not observed in the same samples without size selection (Fig. 

5D), including amplifications in key genes such as NF1, TERT, and MYC (fig. S13).

We also tested whether similar enrichment was seen for substitutions, to exclude the 

possibility that size selection might only increase the sensitivity for sWGS analysis. We 

performed whole exome sequencing of plasma cfDNA from 23 patients with 7 cancer types 

(fig. S1). We used the WES data to compare the size distributions of fragments carrying 

mutant or non-mutant alleles (Fig. 6A), and to test whether size selection could identify 

additional mutations. We first selected 6 patients with HGSOC and performed WES of 

plasma DNA with and without in vitro size selection in the 90–150 bp range, analyzing time 

points before and after initiation of treatment (36). In addition, in silico size selection for the 

same range of fragment sizes was performed (Fig. 6A). Analysis of the MAF of SNVs 

revealed statistically significant enrichment of the tumor fraction with both in vitro size 

selection (mean 4.19-fold, median 4.27-fold increase, t-test, p<0.001) and in silico size 

selection (mean 2.20-fold, median 2.25-fold increase, t-test, p<0.001) (Fig. 6A and fig. S14). 

Three weeks after initiation of treatment, ctDNA fractions are often lower (36), and 

therefore we further analyzed post-treatment plasma samples using Tagged-Amplicon Deep 

Sequencing (TAm-Seq) (37). We observed enrichment of MAFs by in vitro size selection 

between 0.9 and 11 times (mean 2.1 times, median 1.5 times), with one outlier sample 

exhibiting a relative enrichment of 118 times, compared to the same samples without size 

selection (fig. S15).
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Size selection with both in vitro and in silico methods increased the number of mutations 

detected by WES by an average of 53% compared to no size selection (Fig. 6B). We 

identified a total of 1023 mutations in the non-size-selected samples. An additional 260 

mutations were detected by in vitro size selection, and an additional 310 mutations were 

called after in silico size selection (Fig. 6B and table S5). To exclude the possibility that the 

improved sensitivity for mutation detection was a result of sequencing artefacts, we 

validated whether new mutations were also detectable in tumor specimens. We used in silico 

size selection in an independent cohort of 16 patients for whom matched tumor tissue DNA 

was available (table S6). In silico size selection enriched the MAF for nearly all mutations 

(2061/2133, 97%), with an average increase of MAF of ×1.7 (Fig. 6C). For 13 of 16 patients 

(81%), we identified additional mutations in plasma after in silico size selection. Of these 82 

additional mutations, 23 (28%) were confirmed to be present in the matched tumor tissue 

DNA (Fig. 6D). Notably, this included mutations in key cancer genes including BRAF, 

ARID1A, and NF1 (fig. S16).

Detecting cancer by supervised machine learning combining cfDNA fragmentation and 
somatic alteration analysis

It is important to note that although in vitro and in silico size selection increase the 

sensitivity of detection, they also result in a loss of cfDNA for analysis. In analysis of 

ctDNA based on genomic signals, potentially-informative data is lost since regions of the 

cancer genome which are not mutated or altered do not contribute to detection (fig. S17). We 

hypothesized that leveraging other biological properties of the cfDNA fragmentation profile 

could enhance the detection of ctDNA.

We defined other cfDNA fragmentation features from sWGS data including (1) the 

proportion of fragments in multiple size ranges, (2) the ratios of proportions of fragments in 

different sizes, and (3) the amplitude of oscillations in fragment size density with 10 bp 

periodicity (see Materials and Methods and Fig. 7A). These fragmentation features were 

compared between cancer patients and healthy individuals (fig. S18), and the feature 

representing the proportion (P) of fragments between 20–150 bp exhibited the highest AUC 

(0.819). Principal component analysis (PCA) of the samples represented by t-MAD and 

fragmentation features showed a separation between healthy samples and samples from 

cancer patients and identified fragment features that were aligned (in PCA analysis) with t-

MAD scores (Fig. 7B).

We next explored the potential of fragmentation features to enhance the detection of tumor 

DNA in plasma samples. A predictive analysis was performed using the t-MAD score and 9 

fragmentation features across 304 samples (239 from cancer patients and 65 from healthy 

controls) (Fig. 7C, fig. S19, and table S2). The 9 fragmentation features determined from 

sWGS included five features based on the proportion (P) of fragments in defined size ranges: 

P(20–150), P(100–150), P(160–180), P(180–220), P(250–320); three features based on 

ratios of those proportions: P(20–150)/P(160–180), P(100–150)/P(163–169), P(20–150)/

P(180–220); and a further feature based on the amplitude of the oscillations having 10 bp 

periodicity observed below 150 bp.
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Variable selection and the classification of samples as “healthy” or “cancer” were performed 

using logistic regression (LR) and random forests (RF) trained on 153 samples and validated 

on two datasets of 94 and 83 independent samples (Fig. 7C). The best feature set for the LR 

model included t-MAD, 10 bp amplitude, P(160–180), P(180–220), and P(250–320). The 

same five variables were independently identified using the RF model (with some 

differences in their ranking). Fig. S20 shows performance metrics for the different 

algorithms on training set data using cross-validation. Using t-MAD alone in the validation 

pan-cancer dataset (Fig. 7D and fig. S19), we could distinguish cancer samples from healthy 

individuals with AUC=0.764. Using the LR model improved the classification of the 

samples to AUC=0.908. The RF model (trained on the 153-sample training set) could 

distinguish cancer from healthy individuals even more accurately in the validation data set 

(n=94) with AUC=0.994. On the second validation dataset containing low-ctDNA cancer 

samples (n=83) (Fig. 7E), t-MAD alone or the LR performed less well, with AUC values of 

0.421 and 0.532, respectively. However, the RF model was still able to distinguish low-

ctDNA cancer samples from healthy controls with AUC=0.914. At a specificity of 95%, the 

RF model correctly classified as cancer 64/68 (94%) of the samples from high-ctDNA 

cancers (colorectal, cholangiocarcinoma, ovarian, breast, melanoma) and 37/57 (65%) of the 

samples from low-ctDNA cancers (pancreatic, renal, glioma) (Fig. 7F). In a second iteration 

of model training, we omitted t-MAD, using only the 4 fragmentation features (fig. S21). 

The RF model could still distinguish cancer from healthy controls, albeit with slightly 

reduced AUCs (0.989 for cancer types with high amounts of ctDNA and 0.891 for cancer 

types with low amounts of ctDNA), suggesting that the cfDNA fragmentation pattern is the 

most important predictive component.

Discussion

Our results indicate that exploiting fundamental properties of cfDNA with fragment-specific 

analyses can allow more sensitive evaluation of ctDNA. We based the fragment size 

selection criteria on a biological observation that ctDNA fragment size distribution is shifted 

from non-cancerous cfDNA. Our work builds on a comprehensive survey of plasma cfDNA 

fragmentation patterns across 200 patients with multiple cancer types and 65 healthy 

individuals. We identified features that could determine the presence and amount of ctDNA 

in plasma samples, without a priori knowledge of somatic aberrations. We caution that this 

catalog is limited to double-stranded DNA from plasma samples and is subject to potential 

biases incurred by the DNA extraction and sequencing methods we used. Additional 

biological effects could contribute to further selective analysis of cfDNA. Other bodily fluids 

(urine, cerebrospinal fluid, saliva), different nucleic acids and structures, altered mechanisms 

of release into circulation, or sample processing methods could exhibit varying fragment 

size signatures and could offer additional exploitable biological patterns for selective 

sequencing.

Previous work has reported the size distributions of mutant ctDNA, but only considered 

limited genomic loci, cancer types, or cases (30, 32, 33). We identified the size differences 

between mutant and non-mutant DNA on a genome-wide and pan-cancer scale. We 

developed a method to size mutant ctDNA without using high-depth WGS. By sequencing 

>150 mutations per patient at high depth, we obtained large numbers of reads that could be 
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unequivocally identified as tumor-derived, and thus determined the size distribution of 

mutant ctDNA and non-mutant cfDNA in cancer patients. A potential limitation of our 

approach is that capture-based sequencing is biased by probe capture efficiency and 

therefore our data may not accurately reflect ctDNA fragments <100 bp or >300 bp.

Our work provides strong evidence that the modal size of ctDNA for many cancer types is 

less than 167 bp, which is the length of DNA wrapped around the chromatosome. In 

addition, our work also shows that there is enrichment of mutant DNA fragments at sizes 

greater than 167 bp, notably in the range 250–320 bp. These longer fragments may explain 

previous observations that longer ctDNA can be detected in the plasma of cancer patients 

(29, 32). The origin of these long fragments is still unknown, and their observation could be 

linked to technical factors. However, it is likely that mechanisms of compaction and release 

of cfDNA into circulation, which may differ depending on its origin, will be reflected by 

different fragment sizes (38). Improving the characterization of these fragments will be 

important, especially for future work combining analysis of ctDNA with that of other 

entities in blood such as microvesicles and tumor-educated platelets (39, 40). Fragment-

specific analyses not only increase the sensitivity for detection of rare mutations, but could 

be used to track modifications in the size distribution of ctDNA. Future work should address 

whether this approach could be used to elucidate mechanistic effects of treatment on tumor 

cells, for example by distinguishing between necrosis and apoptosis based on fragment size 

(41).

Genome-wide and exome sequencing of plasma DNA at multiple time points during cancer 

treatment have been proposed as non-invasive means to study cancer evolution and for the 

identification of possible mechanisms of resistance to treatment (3). However, WGS and 

WES approaches are costly and have thus far been applicable only in samples for which the 

tumor DNA fraction was >5%–10% (3–5, 42). We demonstrated that we could exploit the 

differences in fragment lengths using in vitro and in silico size selection to enrich for tumor 

content in plasma samples, which improved mutation and SCNA detection in sWGS and 

WES data. We demonstrated that size selection improved the detection of mutations that are 

present in plasma at low allelic fractions, while maintaining low sequencing depth by sWGS 

and WES. Size selection can be achieved with simple means and at low cost and is 

compatible with a wide range of downstream genome-wide and targeted genomic analyses, 

greatly increasing the potential value and utility of liquid biopsies as well as the cost-

effectiveness of cfDNA sequencing.

Size selection can be applied in silico, which incurs no added costs, or in vitro, which adds a 

simple and low-cost intermediate step that can be applied to either the extracted DNA or the 

libraries created from it. This approach, applied prospectively to new studies, could boost 

the clinical utility of ctDNA detection and analysis and creates an opportunity for re-analysis 

of large volumes of existing data (4, 34, 43). The limitation of this technique is a potential 

loss of material and information, since some of the informative fragments may be found in 

size ranges that are filtered out or de-prioritized in the analysis. This may be particularly 

problematic if only a few copies of the fragments of interest are present in the plasma. 

Despite potential loss of material, we demonstrated that classification algorithms can learn 

from cfDNA fragmentation features and SCNA analysis and improve the detection of 
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ctDNA with a cheap sequencing approach. Moreover, the cfDNA fragmentation features 

alone can be leveraged to classify cancer and healthy samples with a high accuracy 

(AUC=0.989 for high ctDNA cancers, and AUC=0.891 for low ctDNA cancers).

Analysis of fragment sizes could provide improvements in other applications. Introducing 

fragment size information on each read could enhance mutation-calling algorithms from 

high-depth sequencing, to distinguish tumor-derived mutations from other sources such as 

somatic variants or background sequencing noise. In addition, cfDNA from patients 

analyzed with CHIP is likely to be structurally different from ctDNA released during tumor 

cell proliferation (18, 19). Thus, fragmentation analysis or selective sequencing strategies 

could be applied to distinguish clinically relevant tumor mutations from those present in 

clonal expansions of normal cells. This will be critical for the development of cfDNA-based 

methods for identification of patients with early stage cancer.

Size selection could also have an impact on the detection of other types of DNA in body 

fluids or enrichment of signals from circulating bacterial or pathogen DNA and 

mitochondrial DNA. These DNA fragments are not associated with nucleosomes and are 

often highly fragmented below 100 bp. Filtering or selection of such fragments may prove to 

be important in light of the recently established link between the microbiome and treatment 

efficiency (17, 44). Moreover, recent work highlights a stronger correlation of ctDNA 

detection with cellular proliferation than with cell death (45). We hypothesize that the mode 

of the distribution of ctDNA fragment sizes at 145 bp could reflect cfDNA released during 

cell proliferation, and the fragments at 167 bp may reflect cfDNA released by apoptosis or 

maturation/turnover of blood cells. The effect of other cancer hallmarks (46) on ctDNA 

biology, structure, concentration, and release is yet unknown.

In summary, ctDNA fragment size analysis, via size selection and machine learning 

approaches, boosts non-invasive genomic analysis of tumor DNA. Size selection of shorter 

plasma DNA fragments enriches ctDNA and assists in the identification of a greater number 

of genomic alterations with both targeted and untargeted sequencing at minimal additional 

cost. Combining cfDNA fragment size analysis and the detection of SCNAs with a non-

linear classification algorithm improved the discrimination between samples from cancer 

patients and those from healthy individuals. Because the analysis of fragment sizes is based 

on the structural properties of ctDNA, size selection could be used with any downstream 

sequencing applications. Our work could help overcome current limitations of sensitivity for 

liquid biopsy, supporting expanded clinical and research applications. Our results indicate 

that exploiting the endogenous biological properties of cfDNA provides an alternative 

paradigm to deeper sequencing of ctDNA.

Materials and Methods

Study design

344 plasma samples from 200 patients with multiple cancer types were collected along with 

plasma from 65 healthy controls. Among the patients, 172 individuals, and notably the 

OV04 samples, were recruited through prospective clinical studies at Addenbrooke’s 

Hospital, Cambridge, UK, approved by the local research ethics committee (REC reference 
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numbers: 07/Q0106/63; and NRES Committee East of England - Cambridge Central 

03/018). Written informed consent was obtained from all patients, and blood samples were 

collected before and after initiation of treatment with surgery or chemotherapeutic agents. 

DNA was extracted from 2 mL of plasma using the QIAamp circulating nucleic acid kit 

(Qiagen) or QIAsymphony (Qiagen) according to the manufacturer’s instructions. In 

addition, 28 patients were recruited as part of the Copenhagen Prospective Personalized 

Oncology (CoPPO) program (Ref: PMID: 25046202) at Rigshospitalet, Copenhagen, 

Denmark, approved by the local research ethics committee. Baseline tumor tissue biopsies 

were available from all 28 patients, together with re-biopsies collected at relapse from two 

patients, and matched plasma samples. Brain tumor patients were recruited at 

Addenbrooke’s Hospital, Cambridge, UK, as part of the BLING study (REC – 15/EE/0094). 

Bladder cancer patients were recruited at the Netherlands Cancer Institute, Amsterdam, The 

Netherlands, and approval according to national guidelines was obtained (N13KCM/

CFMPB250) (47). 65 plasma samples were obtained from healthy control individuals using 

a similar collection protocol (Seralab). Plasma samples have not been freeze-thawed more 

than 2 times to reduce artifactual fragmentation of cfDNA. A flowchart of the study is 

presented in fig. S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One sentence summary

Selective sequencing or in silico analysis for differences in DNA fragment size can 

improve the detection of circulating tumor DNA
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Figure 1. Survey of plasma DNA fragmentation with genome-wide sequencing on a pan-cancer 
scale.
A, The size profile of cfDNA can be determined by paired-end sequencing of plasma 

samples and reflects its organization around the nucleosome. cfDNA is released into the 

blood circulation by various means, each of which leaves a signature on the DNA fragment 

sizes. We inferred the size profile of cfDNA by analyzing with sWGS (n=344 plasma 

samples from 65 healthy controls and 200 cancer patients) and the size profile of mutant 

ctDNA by personalized capture sequencing (n=18 plasma samples). B, Fragment size 
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distributions of 344 plasma samples from 200 cancer patients. Samples are split into two 

groups based on previous literature (6), with orange representing samples from patients with 

cancer types previously observed to have low amounts of ctDNA (renal, bladder, pancreatic, 

and glioma) and blue representing samples from patients with cancer types previously 

observed to have higher levels of ctDNA (breast, melanoma, ovarian, lung, colorectal, 

cholangiocarcinoma, and others, see table S1). C, Proportion of cfDNA fragments below 

150 bp in those samples, grouped into cancer types as defined in B. The Kruskal-Wallis test 

for difference in size distributions indicated a significant difference between the group of 

samples from cancer types releasing high amounts of ctDNA and the group of samples from 

cancer types releasing low amounts, as well as the group of samples from healthy 

individuals (p<0.001). D, Proportion of cfDNA fragments below 150 bp by cancer type (all 

samples). Cancer types represented by fewer than 4 individuals are grouped in the “other” 

category. The red line indicates the median proportion for each cancer type. 

ChC=cholangiocarcinoma.
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Figure 2. Determining the size profile of mutant ctDNA with animal models and personalized 
capture sequencing.
A, A mouse model with xenografted human tumor cells enabled the discrimination of DNA 

fragments released by cancer cells (reads aligning to the human genome) from the DNA 

released by healthy cells (reads aligning to the mouse genome), with the use of sWGS. B, 

Fragment size distribution from the plasma extracted from a mouse xenografted with a 

human ovarian tumor, showing ctDNA originating from tumor cells (red) and cfDNA from 

non-cancerous cells (blue). Two vertical lines indicate 145 bp and 167 bp. The fraction of 

reads shorter than 150 bp is indicated. C, Design of personalized hybrid-capture sequencing 
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panels developed to specifically determine the size profiles of mutant DNA and non-mutant 

DNA in plasma from 19 patients with late-stage cancers. Capture panels included somatic 

mutations identified in tumor tissue by WES. A mean of 165 mutations per patient was then 

analyzed from matched plasma samples. Reads were aligned and separated into fragments 

carrying either the reference or the mutant sequence. Fragment sizes for paired-end reads 

were calculated. D, Size profiles of mutant DNA and non-mutant DNA in plasma from 19 

patients with late stage cancers were determined by tumor-guided capture sequencing. The 

fraction of reads shorter than 150 bp is indicated.
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Figure 3. Enhancing the tumor fraction from plasma sequencing with size selection.
A, Plasma samples collected from ovarian cancer patients were analyzed in parallel without 

size selection or using either in silico or in vitro size selection. B, accuracy of the in vitro 

and in silico size selection determined on a cohort of 20 healthy controls. The size 

distribution before size selection is shown in green, after in silico size selection (with sharp 

cutoff at 90 and 150 bp) in blue, and after in vitro size selection in orange. Vertical lines 

indicate 90 bp and 150 bp. C, SCNA analysis with sWGS from plasma DNA of an ovarian 

cancer patient collected before initiation of treatment, when ctDNA MAF was 0.271 for a 

TP53 mutation as determined by TAm-Seq. Inferred amplifications are shown in blue and 

deletions in orange. Copy number neutral regions are in gray. D, SCNA analysis of a plasma 

sample from the same patient as in panel C, collected three weeks after treatment start. The 

MAF for the TP53 mutation at this time point was 0.068, and sWGS revealed only limited 

evidence of copy number alterations (before size selection). E, Analysis of the same plasma 

sample as in D after in vitro size selection of fragments between 90 bp and 150 bp in length. 

The MAF for the TP53 mutation increased to 0.402 after in vitro size selection, and SCNAs 

were clearly apparent by sWGS. More SCNAs were detected in comparison to C and D (for 

example in chr2, chr9, chr10). SCNAs were also detected in this sample after in silico size 

selection (fig. S7).
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Figure 4. Quantifying the ctDNA enrichment by sWGS with in silico size selection and t-MAD.
A, Workflow to quantify tumor fraction from SCNA as a genome-wide score named t-MAD. 

B, Correlation between the MAF of SNVs determined by digital PCR or hybrid-capture 

sequencing and t-MAD score determined by sWGS. Data included 97 samples from patients 

of multiple cancer types with matched MAF measurements and t-MAD scores. Pearson 

correlation (coefficient r) between MAF and t-MAD scores was calculated for all cases with 

MAF>0.025 and t-MAD>0.015. Linear regression indicated a fit with a slope of 0.44 (purple 

solid line). C, Comparison of t-MAD scores determined from sWGS between healthy 
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samples, samples collected from patients with cancer types that exhibit low amounts of 

ctDNA, and from patients with cancer types that exhibit high amounts of ctDNA (as in Fig. 

1). All samples for which t-MAD could be calculated have been included. D, ROC analysis 

comparing the classification of these plasma samples from high ctDNA cancer samples 

(n=189) and plasma samples from healthy controls (n=65) using t-MAD had an area under 

curve (AUC) of 0.69 without size selection (black solid curve). After applying in silico size 

selection to the samples from the cancer patients, we observed an AUC of 0.90 (black 

dashed curve). E, Determination of t-MAD from longitudinal plasma samples of a colorectal 

cancer patient. t-MAD was analyzed before and after in silico size selection of the DNA 

fragments 90-150 bp, and then compared to the RECIST status for this patient. F, 

Application of in silico size selection to 6 patients with long-term follow-up. t-MAD score 

was determined before and after in silico size selection of the short DNA fragments. Dark 

blue circles indicate samples in which ctDNA was detected both with and without in silico 

size selection. Light blue circles indicate samples where ctDNA was detected only after in 

silico size selection. Empty circles indicate samples where ctDNA was not detected by either 

analysis. Times when RECIST status was assessed are indicated by a red bar for 

progression, or an orange bar for regression or stable disease.
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Figure 5. Quantifying the ctDNA enrichment by sWGS with in vitro size selection.
A, The effect of in vitro size selection on the t-MAD score. For each of 48 plasma samples 

collected from 35 patients, the t-MAD score was determined from the sWGS after in vitro 

size selection (y axis) and without size selection (x axis). In vitro size selection increased the 

t-MAD score for nearly all samples, with a median increase of 2.1-fold (range from 1.1 to 

6.4 fold). t-MAD scores determined from sWGS for 46 samples from healthy individuals 

were all <0.015 both before and after in vitro size selection. B, ROC analysis comparing the 

classification of plasma samples from cancer patients (n=48) and plasma samples from 

healthy controls (n=46) using t-MAD had an area under curve (AUC) of 0.64 without size 

selection (green curve). After applying in silico size selection to the samples from the 

patients and controls, we observed an AUC of 0.78 (blue curve), and after in vitro size 

selection, an AUC of 0.97 (orange curve). C, Comparison of t-MAD scores determined from 

sWGS between matched ovarian cancer samples with and without in vitro size selection. 

The t-test for the difference in means indicates a significant increase in tumor fraction 

(measured by t-MAD) with in vitro size selection (p<0.0001). D, Detection of SCNAs across 
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15 genes frequently mutated in recurrent ovarian cancer, measured in plasma samples 

collected during treatment for 35 patients. Patients were ranked from left to right by 

increasing tumor fraction as quantified by t-MAD (before in vitro size selection). SCNAs are 

labeled as detected for a gene if the mean log2 ratio in that region was greater than 0.05. 

Empty squares represent copy number neutral regions, bottom left triangles in light blue 

indicate that SCNAs were detected without size selection, and top right triangles in dark 

blue represent SCNAs detected after in vitro size selection.
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Figure 6. Improving the detection of somatic alterations by WES in multiple cancer types with 
size selection.
A, Analysis of the MAF of mutations detected by WES in 6 patients with HGSOC without 

size selection and with either in vitro or in silico size selection. B, Comparison of size-

selected WES data with non-selected WES data to assess the number of mutations detected 

in plasma samples from 6 patients with HGSOC. For each patient, the first bar in light blue 

shows the number of mutations called without size selection, the second bar quantifies the 

number of mutations called after the addition of those identified with in silico size selection, 

and the third, dark blue bar shows the number of mutations called after addition of mutations 

called after in vitro size selection. C, Patients (n=16) were retrospectively selected from a 

cohort with different cancer types (colorectal, cholangiocarcinoma, pancreatic, prostate) 

enrolled in early phase clinical trials. Matched tumor tissue DNA was available for each 

Mouliere et al. Page 25

Sci Transl Med. Author manuscript; available in PMC 2019 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



plasma sample, and 2 patients also had a biopsy collected at relapse. WES was performed on 

tumor tissue DNA and plasma DNA samples, and in silico size selection was applied to the 

data. 2061/2133, 97% of the shared mutations detected by WES showed higher MAF after in 

silico size selection. D, Mutations detected only after in silico selection of WES data from 

16 patients (as in C) compared to mutations called by WES of the matched tumor tissue. 

Three of 16 patients had no additional mutations identified after in silico size selection. Of 

the 82 mutations detected in plasma after in silico size selection, 23 (28%) had low signal in 

tumor WES data and were not identified in those samples without size selection.
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Figure 7. Enhancing the potential for ctDNA detection by combining SCNAs and fragment-size 
features.
A, Schematic illustrating the selection of different size ranges and features in the distribution 

of fragment sizes. For each sample, fragmentation features included the proportion (P) of 

fragments in specific size ranges, the ratio between certain ranges, and a quantification of 

the amplitude of the 10 bp oscillations in the 90-145 bp size range calculated from the 

periodic “peaks” and “valleys”. B, Principal Component Analysis (PCA) comparing cancer 

and healthy samples using data from t-MAD scores and the fragmentation features. Red 
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colored arrows indicate features that were selected as informative by the predictive analysis. 

C, Workflow for the predictive analysis combining SCNAs and fragment size features. 

sWGS data from 182 plasma samples from patients with cancer types with high amounts of 

ctDNA (colorectal, cholangiocarcinoma, lung, ovarian, breast) were split into a training set 

(60% of samples) and a validation set (Validation data 1, together with the healthy individual 

validation set). A further dataset of sWGS from 57 samples of cancer types exhibiting low 

amounts of ctDNA (glioma, renal, pancreatic) was used as Validation data 2, together with 

the healthy individual validation set. Plasma DNA sWGS data from healthy controls were 

split into a training set (60% of samples) and a validation set (used in both Validation data 1 

and Validation data 2). D, ROC curves for Validation data 1 (samples from cancer patients 

with high ctDNA amounts=68, healthy=26) for 3 predictive models built on the pan-cancer 

training cohort (cancer=114, healthy=39). The beige curve represents the ROC curve for 

classification with t-MAD only, the long dashed green line represents the logistic regression 

model combining the top 5 features based on recursive feature elimination (t-MAD score, 10 

bp amplitude, P(160-180), P(180-220), and P(250-320)), and the dashed red line shows the 

result for a random forest classifier trained on the combination of the same 5 features, 

independently chosen for the best RF predictive model. E, ROC curves for Validation data 2 

(samples from cancer patients with low ctDNA amounts=57, healthy=26) for the same 3 

classifiers as in D. The beige curve represents the model using t-MAD only, the long-dashed 

green curve represents the logistic regression model combining the top 5 features (t-MAD 

score, 10 bp amplitude, P(160-180), P(180-220), and P(250-320)), and the dashed red curve 

shows the result for a random forest classifier trained on the combination of same 5 

predictive features. F, Plot representing the probability of classification as cancer with the 

RF model for all samples in both validation datasets. Samples are separated by cancer type 

and sorted within each by the RF probability of classification as cancer. The dashed 

horizontal line indicates 50% probability (achieving specificity of 24/26=92.3%), and the 

long-dashed line indicates 33% probability (achieving specificity of 22/26=84.6%).
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