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Abstract
Imaging genetic analyses quantify genetic control over quantitative measurements of brain struc-

ture and function using coefficients of relationship (CR) that code the degree of shared genetics

between subjects. CR can be inferred through self-reported relatedness or calculated empirically

using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate

assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants

of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry.

We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion

and structure, cognition, and body physiology) documented by the HCP. We compared the herita-

bility and genetic correlation estimates calculated using self-reported and empirical CR methods

Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic

nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The her-

itability estimates based on whole-genome empirical CR were higher but remained significantly

correlated (r �0.9) with those obtained using self-reported values. Population stratification in the

HCP sample has likely influenced the empirical CR calculations and biased heritability estimates.

Heritability values calculated using empirical CR for chromosomal SNP sets were significantly cor-

related with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The
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chromosomal heritability patterns were correlated among traits from the same knowledge

domains; among traits with significant genetic correlations; and among traits sharing biological pro-

cesses, without being genetically related. The pedigree structures generated in our analyses are

available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP).
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1 | INTRODUCTION

International collaborations and biobanks, such as the Human Con-

nectome Project (HCP), are collecting large multimodal datasets to

identify genetic and environmental factors that underlie normal and

illness-related variances in the brain and body (Glasser et al., 2013;

Van Essen et al., 2013). Genetic analyses use coefficients of relation-

ship (CR) to characterize the degree of shared genetic variance among

study participants and partition the phenotypic variance into genetic

and environmental sources. Traditionally, CR is approximated based

on self-reported relationships. For example, a pair of individuals may

identify themselves as parent and child, siblings, or as cousins. This

method requires knowing all relationships among study participants.

Self-reported relatedness values can be inaccurate (e.g., mistaken

zygosity in the case of same-sex twins or mistaken paternity) and this

can bias genetic analyses. Alternatively, CR can be measured empiri-

cally from high-throughput genome-wide single nucleotide polymor-

phism (SNP) scans (Ramstetter et al., 2017; Toro et al., 2014; Wood

et al., 2014; Yang et al., 2010). We hypothesized that empirical CR

provides more accurate estimates of shared genetic variance (herita-

bility) than zygosity-corrected self-reported values. We tested this

hypothesis using the quantitative brain and body measurements col-

lected by the HCP collaboration.

Heritability analyses that model mixed effects divide the pheno-

typic variance into additive genetic and environmental components in

order to quantify the degree of genetic variance. This mixed effect

model uses an NxN pedigree matrix of CR (where N is the sample size).

Self-reported CR are calculated as the length of the shortest ancestral

path (kindship) between two individuals. Each kinship type is a fixed

number that codes the expected degree of shared genomic variance for

a kinship type: 1 for the self and a monozygotic twin; ½ for parents, full

siblings and dizygotic twins; 1/4 for grandparents or half-siblings; 1/8 for

cousins; and 0 for unrelated individuals. However, no two relatives

share a fixed number of the genome-wide genetic polymorphisms

(Visscher et al., 2006, 2007), and conversely, seemingly unrelated indi-

viduals may share a significant proportion of genetic variance.

CR values can also be inferred empirically by quantifying the simi-

larity in the whole-genome or chromosomal SNP sets among the study

participants. The complex traits used in this analysis are expected to

have a highly polygenic architecture, with genetic factors residing on all

chromosomes. Traits may share chromosomal heritability patterns due

to pleiotropy (directly shared genetic variance) and/or due to similarity

in the chromosomal distribution of genes that regulate similar functions.

For instance, genetic analyses of hypertension, arterial stiffening and

cerebral white matter integrity converged on a 1q24 region that harbors

a constellation of genes that code for the cell adhesion protein (SELP,

SELL, and SELE) and the coagulation factor V (F5) (Kochunov et al.,

2009, 2012; Mitchell et al., 1996; Turner et al., 2005).

We used four empirical CR methods with different normalization

approaches. The Kinship-based INference for Genome wide association

study (KING) method was developed to approximate self-reported CR

values. It is frequently used to verify self-reported relationships in fam-

ily samples (Manichaikul et al., 2010). In our study, KING was used to

verify zygosity for same-gendered twins. A second method, the

Weighted Allelic Correlation (WAC) approach, was developed to study

the “missing heritability” of complex phenotypes. The WAC approach

produces CR values that are weighted by minor allelic frequency (MAF)

using a parameter, α, which is assigned values of 1, −1, or 0 (Speed,

Cai, UCLEB Consortium, Johnson, Nejentsev, & Balding, 2017a; Speed,

Hemani, Johnson Michael, & Balding David, 2012). A weighting of

α = 1 calculates CR by up-weighting on common variants, whereas a

weighting of α = −1 up-weights CR on the low MAF variants. CR

values independent of MAF are calculated using α = 0.

We hypothesized that empirical CR will provide a more accurate

assessment of shared genetic variance than the self-reported values.

To test our hypothesis, we chose 17 quantitative traits from four

knowledge domains ascertained by HCP: diffusion and structural brain

imaging measures, neurocognitive assessments, and physical health.

We selected traits based on the expectation of significant heritability

and the potential for shared genetic variance across the knowledge

domains. Five diffusion traits were analyzed using standard Diffusion

Tensor Imaging (DTI) and advanced White Matter Tract Integrity

(WMTI) models (Fieremans, Jensen, & Helpern, 2011; Jelescu et al.,

2014) to assess the microstructure of cerebral white matter (WM).

Structural brain integrity measurements included average gray matter

(GM) thickness and regional gray and white matter volumes. We

chose four neuropsychological traits consisting of two working mem-

ory and two processing speed measurements. In previous research,

these traits have shown high heritability and significant genetic corre-

lation with measures of brain integrity (Glahn et al., 2013; Kochunov

et al., 2015, 2016). We also considered body mass index (BMI) and

systolic and diastolic blood pressures based on research linking body

adiposity to cerebral integrity (Kochunov, Glahn, Lancaster, et al.,

2011b; Ryan et al., 2017; Spieker et al., 2015).

We tested two hypotheses: (1) Empirical CR derived from whole

genome genotyping will provide more accurate heritability measure-

ments than self-reported CR; and (2) Empirical CR derived from the

chromosomal sets of SNPs can be used to probe the polygenic nature

of quantitative traits (Visscher et al., 2006, 2007). We show that heri-

tability analyses produce higher estimates of additive genetic variance
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using empirical rather than self-reported CR. The chromosomal herita-

bility patterns suggest genes that influence phenotypes with related

biological functions may have similar chromosomal distribution pat-

terns of alleles. Our analyses can be extended to other phenotypes

using pedigrees we uploaded at NITRC.org and the heritability calcula-

tor for self-reported and empirical pedigrees at solar-eclipse-genetics.

org/HCP.

2 | METHODS

2.1 | Subjects

Heritability and genetic correlation analyses were performed on data

from 1,046 (480/566 M/F) participants in the Human Connectome Pro-

ject (HCP) for whom scans and data were released (humanconnectome.

org) after passing the HCP quality control and assurance standards

(Marcus et al., 2013). Details of this release are available in the HCP ref-

erence manual. The participants in the HCP study were recruited from

the Missouri Family and Twin Registry of individuals born in Missouri

(Van Essen et al., 2013). All HCP participants were deliberately selected

as belonging to young adult sibships of average size 3–4 that include

MZ or DZ twin pairs and siblings. Participants ranged in age from 22 to

36 years (average age = 28.7 � 3.68 years). This age range was chosen

because it corresponds to the period when neurodevelopment is largely

complete and the onset of neurodegeneration has not yet occurred.

The full set of inclusion and exclusion criteria is detailed elsewhere (Van

Essen et al., 2013). In short, the HCP subjects are healthy individuals

free from major psychiatric or neurological illnesses. They are drawn

from ongoing longitudinal studies (Edens, Glowinski, Pergadia, Lessov-

Schlaggar, & Bucholz, 2010; Sartor et al., 2010), where they received

extensive previous assessments including history of drug use and emo-

tional and behavioral problems. All subjects provided written informed

consent on forms approved by the Institutional Review Board of

Washington University in St. Louis.

2.2 | Genotyping

The genotyping data for 1,141 subjects were released by HCP and

available through the dbGAP repository (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1). Briefly, all

subjects were genotyped using the Illumina Multi-Ethnic Global

Array (MEGA) SNP-array that included chip-specific content from

PsychChip and ImmunoChip and provides extended coverage of

European, East Asian, and South Asian populations. We used

1,580,642 genotyped SNPs that satisfied the quality control

conditions: excluding SNPs with MAF <1%, genotype call rate <95%,

and Hardy–Weinberg equilibrium <1 × 10−6. The genotype data were

converted to PLINK file format.

2.3 | Quantification of the degree of relationship

SOLAR-Eclipse uses coefficients of relationship (ri,j) (equal to twice

the coefficients of kinship) to code the probability that two alleles

from individuals i and j are identical by descent. The coefficient of

relationship is a function of identity by descent sharing statistics,

ri,j = π1i,j/2 + π2i,j, where, π1i,j and π2i,j are the probabilities that two

individuals share one and two alleles through a common ancestry.

Self-reported coefficients of relationship between individuals

i and j are calculated as ri,j = 1/2n where n is the length of the ances-

tral path that connects them. Common n values include n = 1 for

parents, full siblings, and dizogotic twins; n = 2 for grandparents, half-

siblings; n = 3 for cousins; and increasing n values for more distance

relatives. Unrelated individuals assumed to share no ancestral variance

and are coded with CR = 0. The self-reported CR coefficients may be

subject to mistaken zygosity for same sex twins. Therefore, we used

zygocity corrected self-reported CR values to verify twin zygosity

using the Robust-KING empirical CR method.

Empirical ri,j were calculated using the methods implemented in

SOLAR-Eclipse software (www.solar-eclipse-genetics.org). The empiri-

cal_pedigree function takes the allelic data stored in a PLINK file as an

input and produces a pedigree file. All empirical methods infer ri,j based

on the average identity by state statistics while weighting the result by

sample-level allele frequency at each SNP. We calculated four empirical

pedigrees using two methods: robust Kingship based INference for

Genome-wide studies (robust-KING) (Manichaikul et al., 2010) and

weighted allelic correlation (WAC) (Hayes, Visscher, & Goddard, 2009).

2.3.1 | Robust-KING

The robust KING method was developed for fast ri,j calculations in

familial samples. The method is described in details in the original

publication (Manichaikul et al., 2010). Briefly, the coefficients of relat-

edness are calculated using Equation (1).

ri, j ¼1−
Ni

Aa +N
j
Aa

2Ni
Aa

+
NAa,Aa−2NAA,aa

Ni
Aa

ð1Þ

where, Ni, j
Aa is the total number of heterozygotes for the ith and jth

individuals, and NAa,Aa and NAA,aa are the total number of SNPs at

which both individuals of the pair are hetero- and homozygous. The

KING method is computationally efficient because the N coefficients

are computed using binary logic operations (AND and OR).

2.3.2 | Weighted allelic correlation

The weighted allelic correlation (WAC) approach (Hayes et al., 2009)

calculates the coefficient of relationship using the correlation coeffi-

cient among the allelic scores and weighting it by the minor allele fre-

quency factor: p(1 − p)α using Equation (2).

ri, j ¼ 1
N

XN
n¼1

Gi,n−2pnð Þ Gj,n−2pn
� �

pn 1−pnð Þð Þα ð2Þ

where, Gi,n and Gj,n are the allelic scores (0, 1, or 2) for the nth SNP for

the ith and jth individuals, pn is the minor allele frequency (MAF) for

the SNP calculated for the sample, and N is the total number of SNPs.

The parameter α determines the weightings of the coefficient of rela-

tionship proportional to MAF (α > 0), irrespective of MAF (α = 0), and

inversely proportional to MAF (α < 0). We calculated the pedigree

matrix for three common settings α = 1, 0, and −1. The setting of

1 up-weights CR on the similarity in common alleles; the setting of −1

up-weights CR on similarity in rare alleles; and a setting of 0 calculates

CR independent of allelic frequency.
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2.4 | Quantitative traits

We selected traits from four domains: diffusion, structure, neuropsy-

chology and physiology (Table 1). The traits within each domain were

chosen based on the expected correlation among the traits within and

across the domains. Diffusion weighted imaging (DWI) traits were cal-

culated using standard diffusion tensor imaging (DTI) and White Mat-

ter Tract Integrity (WMTI) models. All other traits were obtained from

the public section of the HCP database (db.humanconnectome.org).

The structural traits included whole-brain average gray mater

(GM) thickness, whole-brain and cortical GM volume, and whole brain

white matter (WM) volume computed from FreeSurfer 5.3 analyses of

high resolution (0.7 mm isotropic) T1w and T2w scans. Four neuro-

psychological traits were chosen to be sensitive to cognitive proces-

sing speed and working memory. Working memory performance was

assessed using accuracy scores on the list sorting (Accuracy working

memory) and dimensional change card sort (Card Sorting) tasks. Pro-

cessing speed was assessed using the Pattern Completion Processing

Speed from the NIH Toolbox (http://www.nihtoolbox.org) (Carlozzi,

Tulsky, Kail, & Beaumont, 2013) and reaction time (Barch et al., 2014).

Physiological traits included body mass index (BMI) and systolic and

diastolic blood pressure (BPSys, BPDias) (Table 1).

2.4.1 | Diffusion data collection and preprocessing

Diffusion data was collected at Washington University St. Louis using a

customized Siemens Magnetom Connectome 3 Tesla scanner with a

100 mT/m maximum gradient strength and a 32-channel head coil.

Details on the scanner, image acquisition and reconstruction are pro-

vided elsewhere (Ugurbil et al., 2013) and found online at https://www.

humanconnectome.org/study/hcp-young-adult/document/1200-subjec

ts-data-release). Briefly, diffusion data were collected using a single-

shot, single refocusing spin-echo, echo-planar imaging sequence with

1.25 mm isotropic spatial resolution (TE/TR = 89.5/5,520 ms, FOV =

210 × 180 mm). Three gradient tables of 90 diffusion-weighted direc-

tions and six b = 0 images each, were collected with right-to-left and

left-to-right phase encoding polarities for each of the three diffusion

weightings (b = 1,000, 2,000, and 3,000 s/mm2). The total imaging time

for collection of diffusion data was approximately 1 hr.

Diffusion data were preprocessed using a modified HCP Diffusion

pipeline (Glasser et al., 2013; Sotiropoulos et al., 2013). The pipeline

first corrected for thermal noise by applying the Marchenko–Pastur

Principle Component Analysis (MPPCA) (Veraart, Fieremans, Jelescu,

Knoll, & Novikov, 2016a; Veraart, Fieremans, & Novikov, 2016b;

Veraart, Novikov, et al., 2016c), and was followed by the normaliza-

tion of b0 image intensity across runs. Corrections for Gibbs ringing

(Kellner, Dhital, Kiselev, & Reisert, 2016) and Rician bias

(Gudbjartsson & Patz 1995) were applied as well as corrections for

EPI susceptibility and eddy-current-induced distortions, gradient-non-

linearities, and subject motion. Lastly, a brain mask was applied.

2.4.2 | Diffusion data modeling

Diffusion data were analyzed using two approaches: a standard diffu-

sion tensor fitting and an advanced White Matter Tract Integrity

model. Standard DTI-Fractional anisotropy (FA) values were obtained

by fitting the diffusion tensor model (first two terms in Equation (3))

using the FSL-FDT toolkit (Behrens et al., 2003). WMTI is an exten-

sion of DTI that uses a model-independent diffusion kurtosis signal

representation and the kurtosis term to account for non-Gaussian

behavior of the diffusion signal (Equation (3)) (Jensen & Helpern

2010; Jensen, Helpern, Ramani, Lu, & Kaczynski, 2005; Lu, Jensen,

Ramani, & Helpern 2006). WMTI derives both the diffusion and kurto-

sis tensors using the second-order expansion of the multi b-shell

diffusion-weighted signal decay as a function of the b-value:

lnS b,gð Þ¼ lnS 0ð Þ−b
X3
i, j¼1

gigjDij +
b2

6

X3
i¼1

Dii

3

 !2 X3
i, j,k, l¼1

gigjgkglWijkl +O b3
� �
ð3Þ

where, gi is the ith component of gradient direction g and S(0) is the

nondiffusion-weighted signal intensity. Dij is the ijth element of the fully

symmetric diffusion tensor D, characterized by six independent ele-

ments and Wijkl denotes an element of the diffusion kurtosis tensor W,

which is fully parameterized by 15 independent elements. During the

WMTI fit, multivariate regression was used to estimate the eigenvalues

for the diffusion (L1,2,3) and kurtosis (K1,2,3) tensors. The three eigen-

values for the diffusion tensor were converted to axial (Lk), radial, (L?),

and DKI-FA. Similarly, the three eigenvalues of the kurtosis tensor were

converted to axial (Kk), radial, (K?), and kurtosis anisotropy (KA) values

(Poot, den Dekker, Achten, Verhoye, & Sijbers, 2010). WMTI calculates

two additional parameters: axonal water fractions (AWF) and tortuosity

of the extra-axonal space (TORT), Equations (4) and (5)

AWF¼ Kmax

Kmax + 3
ð4Þ

TORT¼ De,k
De,⊥

ð5Þ

AWF is hypothesized to constitute the fraction of diffusion signal

that originates from intra-axonal water. Kmax is the maximum kurtosis

along all directions, and De,k and De,⊥ are the apparent axial and radial

diffusivities of the extra-axonal space (Ades-Aron et al., 2018; Jelescu

et al., 2014).

Whole-brain average diffusion parameters were obtained using the

ENIGMA-DTI protocol (https://www.nitrc.org/projects/enigma_dti)

(Jahanshad et al., 2013). Briefly, DTI-FA images were nonlinearly regis-

tered to the ENIGMA-DTI target brain using FSL's FNIRT (Jahanshad

et al., 2013). This target was created as a “minimal deformation target”

based on images from the participating studies as previously described

(Jahanshad et al., 2013). The data was processed using FSL's tract-based

spatial statistics (TBSS; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS) ana-

lytic method (Smith et al., 2006) that was modified to project individual

FA values onto the hand-segmented ENIGMA-DTI skeleton mask. The

DTI-FA projection maps were used to project DKI-FA, KA, AWF, and

TORT maps onto the skeleton to ensure that all values corresponded to

the same voxels. The whole-brain average traits were calculated by

averaging values across the skeleton.

2.5 | Heritability and genetic correlation: Analysis of
additive genetic variance and covariance

Heritability (h2) is the proportion of the total phenotypic variance (σP
2)

that can be explained by the genetic effects of genes (σg
2), Equation (6).
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h2 ¼ σ2g=σ
2
P: ð6Þ

SOLAR-Eclipse's heritability calculations are accelerated using the

Fast Permutation Heritability Inference (FPHI) approach (polygenic –

fphi command). It uses a single step estimation to produce an asymp-

totically unbiased estimate (Ganjgahi et al., 2015). The FPHI provides

a significant (103) computational acceleration relative to the standard

iterative maximum likelihood estimation in SOLAR-Eclipse.

We used a bivariate genetic analysis to calculate the magnitude

and significance of the genetic correlation coefficient (ρG). ρG corre-

sponds to the proportion of variability that results from shared addi-

tive genetic effects. The overall phenotypic correlation (ρP) between

two traits (represented by A and B in Equation (7)) is equal to ρG and

the residual correlation (ρE) that represents shared environmental

effects.

ρP ¼
ffiffiffiffiffi
h2A

q ffiffiffiffiffi
h2B

q
�ρG +

ffiffiffiffiffiffiffiffiffiffiffiffi
1−h2A

q ffiffiffiffiffiffiffiffiffiffiffiffi
1−h2B

q
�ρE ð7Þ

where, h2A and h2B denote the heritability for each of the traits. If ρG

is significantly different from zero, then a significant proportion of the

variance in two traits results from the shared genetic factors (Almasy,

Dyer, & Blangero, 1997). All genetic analyses were conducted with

age, sex, age*sex, age2, and age2 * sex included as covariates.

2.6 | Chromosomal heritability estimates

We partitioned the genotyping data into individual chromosomes to

examine the distribution of empirical heritability across the genome.

We estimated the coefficients of relationship using SNPs from each

autosomal chromosome (22 in total) and used pedigree matrices

constructed from these coefficients to estimate the empirical herita-

bility. We excluded sex chromosomes due to gender differences.

3 | RESULTS

3.1 | Empirical versus self-reported coefficients of
relationship

The scatter plots of the empirical and self-reported coefficients of

relationship (off-diagonal elements) are shown in Figure 1. The KING

approach faithfully approximated the average coefficients of relation-

ship: 0.99 � 0.001 for identical twins (zygosity-corrected self-

reported coefficient = 1.0); 0.50 � 0.02 for fraternal twins/siblings

(zygosity-corrected self-reported coefficient = 0.5); and 0.25 � 0.04

for half-siblings (self-reported coefficient = 0.25). The KING coeffi-

cients showed a slight negative bias (−0.05 � 0.05) for the unrelated

individuals (self-reported coefficient = 0). The correlation between

KING and self-reported coefficients was positive and significant

r2 = 0.95 (p < 10−10).

The relationship coefficients calculated by WAC, under the three

different situations, were lower than the self-reported values. For

identical twins, the coefficients of relationship were 0.79 � 0.05,

0.70 � 0.09, and 0.65 � 0.20 for α = 1, 0, and −1, respectively.

For fraternal twins/siblings the coefficients were 0.48 � 0.06,

FIGURE 1 Scatter plot of coefficients of relationship (CR) obtained using empirical approaches versus self-reported values (off-diagonal elements

only). The linear fit between empirical and self-reported parameter was characterized by intercept (a), slope (b) and the correlation coefficient
squared (r2)
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0.43 � 0.08, and 0.40 � 0.10 for α = 1, 0, and −1. For half-siblings,

these coefficients were 0.31 � 0.05, 0.31 � 0.09, and 0.26 � 0.10

for α = 1, 0, and −1. The coefficients for unrelated individuals had a

zero bias with standard deviation of 0.05, 0.05, and 0.06 for α = 1,

0, and −1.

The highest correlation between empirical and self-reported rela-

tionships were observed for WAC α = 1 (r2 = 0.98, p < 10−10),

followed by α = 0 (r2 = 0.97, p < 10−10). The lowest was observed for

WAC α = −1 (r2 = 0.74, p < 10−10).

3.2 | Heritability

Heritability estimates calculated using self-reported and empirical

coefficients are shown in Table 1 and Figure 2. Heritability estimates

using the empirical relationship, as a group, were significantly higher

than those derived from self-reported relationships (ANOVA p = .001).

The average heritability for all traits was h2 = 0.71 � 0.22,

0.73 � 0.23, 0.75 � 0.22, 0.77 � 0.21, and 0.81 � 0.17 for self-

reported, KING, and WAC α = 1, 0, and −1, respectively (Figure 2).

When compared with self-reported coefficients, WAC α = −1

showed a significant 15% increase in heritability estimates (p = 10−8).

The KING approach also provided heritability estimates that were

1.5% higher than those obtained using the self-reported coefficients

(p = .04). The pattern of heritability values was consistent for all

approaches (r2 > 0.98) with similar standard errors (Figure 2).

3.3 | Genetic correlation

Genetic correlation results for the phenotypic (ρP), genetic (ρG), and

environmental (ρE) correlation coefficients are shown for the zygosity-

corrected self-reported coefficients in Figure 3. The genetic

correlation results for all four empirical approaches were similar to

self-reported pedigree results (r2 > 0.95) and therefore not shown.

We observed significant correlation patterns for within-domain corre-

lations. Notable observations include significant correlations for FA

values calculated using DTI and WMTI (ρP = 0.89, ρG = 0.91, ρE =

0.89, all p < 10−6) and strong correlations between DTI-FA and KA

(ρP = 0.82, ρG = 0.89, and ρE = 0.57).

3.4 | Chromosomal heritability estimates

Heritability estimates using coefficients of relationship calculated for

each of the 22 chromosomes using the WAC approach are shown in

Figure 4. The heritability values were highest for WAC α = −1

(p < .01). The average heritability values for all 17 traits were signifi-

cantly correlated with the chromosomal length (r = 0.76, 0.70, and

0.55, p < .01 for α = 1, 0, and −1) (Figure 4, bottom graph).

Partial correlation analysis was used to calculate bivariate correla-

tions for 22 chromosomal heritability values among the 17 traits, while

correcting for the chromosomal length (Figure 5). This analysis tested

the similarities in variances that are explained by the genetic variability

encoded by each of the chromosomes. The patterns produced by this

analysis were significantly correlated for off diagonal elements among

the three α weighting values (all r > 0.80, all p < 10−5). The pattern of

chromosomal correlation values was not correlated with phenotypic,

genetic, or environmental correlation patterns (all r < 0.10, all p > .3).

They replicated significant within-domain correlations (Figure 5). They

also showed that some traits with hypothetically overlapping biologi-

cal function, such as white matter volume and diffusion domain mea-

surements, had a significant similarity in the chromosomal heritability

patterns in the absence of significant phenotypic or genetic correla-

tions between them (Figure 5). Heritability estimates for the chromo-

somal pedigrees were not available for the KING approach due to

numerical failures of chromosomal heritability estimates.

FIGURE 2 Scatter plot of heritability values calculated using empirical relationship (CR) versus these obtained from self-reported CR, including

linear fit lines, equations, and correlation coefficients
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4 | DISCUSSION

The empirical coefficients of relationship (CR) derived from high-

density genome scans may improve heritability estimates in the com-

plex phenotypes collected by the Human Connectome Project (HCP).

We used four empirical CR approaches and 17 quantitative traits

selected from the four knowledge domains collected by the HCP. We

observed that heritability values calculated using empirical CR values

were highly correlated with heritability estimates obtained using self-

reported CR. The weighted allelic correlation (WAC) approach that

up-weighted CR coefficients based on sharing of low MAF alleles

(α = −1) produced higher heritability estimates. This may suggest that

the variance in complex neuroimaging, neuropsychological and body

health traits is influenced by low MAF alleles or that the low fre-

quency variants may provide more informative CR. However, post-

hoc analyses showed that the WAC α = −1 approach was more sensi-

tive to the ancestral/ethnic differences in this mixed sample which

may have biased heritability estimates. Heritability estimates obtained

using chromosomal CR were correlated with the length of the chro-

mosome (r > 0.5), suggesting the highly polygenetic inheritance mech-

anism expected for complex traits. The patterns of chromosomal

heritability estimates for the HCP traits suggested that genes that

influence phenotypes with closely related biological functions, such as

brain volume and axonal geometry, might have a similar chromosomal

distribution of alleles. The heritability calculator for self-reported and

empirical pedigrees is available online (solar-eclipse-genetics.org/HCP)

and the pedigrees are shared via NITRC.org.

Inferring relatedness in family samples, such as HCP, is an essen-

tial component of imaging genetic analyses. We compared the relat-

edness estimates for four empirical CR approaches and found them to

FIGURE 4 Heritability estimates (top panel) calculated for chromosomal SNPs showed significant dependence on the length of the chromosome

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 The phenotypic (ρp), left, genetic (ρG), center, and environmental (ρE), right, correlation coefficients calculated among the quantitative

traits [Color figure can be viewed at wileyonlinelibrary.com]
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be highly correlated with the self-reported CR values (r = 0.86–0.99).

The Kinship-based INference for Gwas (KING) approach was devel-

oped to approximate self-reported CR in family samples. This method

faithfully matched the self-reported CR values in relatives but showed

a negative bias (average CR = −0.05) for unrelated individuals

(expected CR = 0). In other studies, this approach was 92–99% accu-

rate in estimating relatedness in first- to third-degree relatives, but

likewise showed a negative bias (underestimating relatedness) in more

distant relatives, due to deviations from the Hardy–Weinberg approxi-

mation (Ramstetter et al., 2017; Visscher et al., 2007).

Here, we used empirical CR methods that were developed for

performing SNP-based heritability analyses in unrelated samples and

implemented in LDAK(Speed, Cai, UCLEB Consortium, Johnson,

Nejentsev, & Balding 2017b) and GCTA (Visscher et al., 2006, 2007).

SNP-based heritability analyses are usually performed in unrelated

individuals where relatives (CR > 0.025) are routinely removed. The

rational for removing related individuals from the samples of mainly

unrelated individuals was to prevent potential biases due to shared

environment and instead focus on the variance explained by common

genetic variants. The empirical CR pedigree estimates the genetic

relatedness among a set of individuals and is appropriate for both

unrelated and related individuals (Zaitlen et al., 2013). The SNP-

heritability analysis in a related sample changes the inference to favor

the estimated total additive genetic variance (from both common and

rare sources). The use of related individuals leads to a more statisti-

cally powerful inference of total additive genetic variance as demon-

strated in this study, where the empirical heritability estimates were

similar or higher than these obtained using self-reported values.

CR calculated using the weighted allelic correlation (WAC)

method showed lower correlation with self-reported values when the

weighting emphasis shifted from alleles with common to lower MAF

(r = 0.99, 0.98, and 0.86 for α = 1, 0, and −1). All WAC approaches

showed zero bias for unrelated subjects (average CR = 0.00). The CR

values calculated using the WAC approach were sensitive to the

ethnicity of the HCP sample. Post-hoc analyses were performed to

investigate the break in distribution in CR coefficients that was most

apparent for the α = −1 setting (Figure 1). The variance in the WAC

α = −1 CR values for monozygotic twins was significantly affected

(adjusted r = 0.80) by the variance captured by the distance in four

genetic clusters calculated using the multidimensional scaling analysis.

This dependence was lower but significant for both WAC α = 0 and

1 (adjusted r2 = 0.70 and 0.57, respectively). In all instances, genetic

cluster 1 scores showed the greatest explained variance in CR and

were significant for all three α settings. Multidimensional scaling

scores for clusters 2 and 3 were significant for α = −1, while cluster

3 scores were significant for α = 0. Multidimensional scaling analysis

captures the “genetic distance” between subjects and is sensitive to

population stratification in ethnically diverse samples such as the

HCP. The variance in multidimensional scaling scores was not signifi-

cantly correlated with the traits and repeating heritability analyses

with the scores included as covariates produced no difference in

outcome.

Empirical CR approaches produced higher heritability values than

these obtained using self-reported CR. The KING method produced

an approximately 1.5% improvement over zygosity-corrected self-

reported data. Higher h2 values were seen with increased weighting

on the low MAF (0.5% < MAF < 10%) SNPs with the highest herita-

bility estimates for the WAC α = −1 method. This may suggests that

the phenotypic variance in complex traits may be linked to lower

rather than higher MAF variants (Speed et al., 2017a). It may also sug-

gest that ethnic differences in the sample may bias the heritability

estimates produced using the empirical CR calculated WAC approach.

We observed a high (r > 0.90) correlation between measurements of

the shared genetic and environmental variance among the traits. The

partitioning of shared phenotypic variance is the function of joint heri-

tability. The heritability values were highly correlated between empiri-

cal and self-reported approaches and therefore the results of the

genetic correlation analyses were similar for all methods.

FIGURE 5 The partial correlation coefficients calculated for chromosomal weighted allelic correlation (WAC) heritability patterns while correcting

for chromosomal length. The partial correlation maps show significant within and across domains similarity in heritability patterns for traits that
encode measurements with overlapping biology such as the white matter volume (WM) and the diffusion domain measurements [Color figure can
be viewed at wileyonlinelibrary.com]

KOCHUNOV ET AL. 1685

http://wileyonlinelibrary.com


We observed significant genetic correlation among the traits

within each of the domains. All the traits within the diffusion domain

were highly inter-correlated for both genetic and environmental

estimates. This included high genetic (ρG = 0.81, p < 10−10) correla-

tion between fractional anisotropy (FA) calculated using DTI and

WMTI, despite the differences in the underlying models. Likewise, all

structural volumetric measurements showed high genetic correlations

(all ρG > 0.70, all p < 10−3). However, cortical GM thickness showed

only modest genetic correlation with cortical GM and WM volumes

(ρG = 0.31 and 0.20, p < .001), replicating previous observations

(Winkler et al., 2010). BMI showed the expected shared genetic vari-

ance with both systolic (ρG = 0.60, p < 10−9) and diastolic (ρG = 0.48,

p < 10−7) blood pressure (Figure 3). Significant genetic correlation

was observed between the scores of working memory tests

(Accuracy and Picture Sequencing ρG = 0.62, p < 10−10; Accuracy

and Card Sorting ρG = 0.63, p < 10−10) and processing speed and

reaction time (ρG = −0.62, p < 10−10) despite the differences in the

measurement procedure: that is, computer test versus fMRI experi-

ment (Figure 3). The genetic correlations between traits from differ-

ent domains were sparse. We replicated a significant correlation

between FA and Processing speed (ρG = 0.44 and 0.34, p < 10−6 for

FA measured using DTI and WMTI approaches) and FA and reaction

time (ρG = −0.27 and −0.22, p < .01) (Kochunov et al., 2010, 2015).

Likewise, we replicated a significant negative correlation between

BMI and KA (ρG = −0.22, p = .0001) (Ryan et al., 2017). We also

observed previously reported significant genetic correlation between

DTI-FA and WMTI-KA values (ρG = 0.21 and 0.22, p < .0001)

(Kochunov, Glahn, Nichols, et al., 2011a).

Heritability analyses were repeated using CR calculated for each

autosomal chromosome. The highest average h2 values were again

observed for the WAC α = −1 method. There was a positive corre-

lation between the length of the chromosome and the h2 values

derived from its CR matrix. The correlation with chromosomal

length was numerically higher for an α weighting that emphasized

similarity on common alleles (r = 0.76 vs. 0.55 for α = 1 and −1,

respectively), but this difference was not significant (p > .1). There

were strong similarities in the patterns of per-chromosome h2 values

for some traits (Figure 5). The chromosomal h2 correlation matrix

was visually similar but uncorrelated with the patterns of genetic

and environmental correlations. Traits with significant genetic corre-

lation showed strong correlation with chromosomal h2 values. Traits

from overlapping biological functions had highly correlated chromo-

somal heritability patterns even in the absence of genetic or envi-

ronmental correlation. For instance, the axonal water fraction (AWF)

and WM volumes showed a significant (r = 0.92, p < 10−8) correla-

tion between chromosomal heritability patterns in the absence of

significant genetic or environmental correlations (ρG = 0.08, p = .08;

ρE = 0.03, p = .7). The processing speed and reaction times showed

heritability patterns that overlapped with cognitive, diffusion and

structural traits, yet there was no overlap with the heritability pat-

terns for BMI or blood pressure. Overall, the chromosomal data

indicates that the genetic architecture of complex quantitative traits

is reflected by similarity for low MAF SNPs, where the density of

the loci may also vary across chromosomes.

5 | LIMITATIONS

Empirical CR methods have biological limitations. All four of the

empirical methods we evaluated produced negative CR. The negative

CR reflect violations of Hardy–Weinberg equilibrium such as ancestral

differences in linkage disequilibrium structures, overlapping genera-

tions and deviations from the assumption on the constancy of geno-

type frequencies in a population (Visscher et al., 2007). We retained

negative CR in the analysis because selecting a threshold for empirical

CR may bias the likelihood calculations (Visscher et al., 2007). Empiri-

cal CR values may vary by both the calculation method and the geno-

typing approach and this may alter heritability results. We show that

heritability and genetic correlation patterns had a high (r > 0.9) corre-

lation regardless of the CR approach, which suggests the high overall

reproducibility of these analyses.

Empirical CR should be used with caution in ethnically diverse

samples due to their sensitivity to population stratification along the

ethnic background. We observed that CR calculated using the WAC

approaches were sensitive to the ethnicity-related genetic distance

among HCP subjects. HCP is a multiethnic sample and genetic dis-

tance among the subjects calculated using a multidimensional scaling

approach explained significant variance in the CR. The association was

the highest for the WAC α = −1 approach that up-weighted CR esti-

mates on the low minor allele frequency variants. This has likely

biased the pedigree matrix and led to higher heritability values by

incorporating ethnicity-specific genetic distance in the calculation of

additive genetic variances.

Empirical CR methods also have methodological limitations. The

empirical CR matrix is more densely populated than the self-reported

matrix thus increasing (by a factor of 10–20) the computational time

for the classical maximum likelihood methods. The computation time

remained the same for FPHI while producing an accurate approxima-

tion of h2 values (within 1–3%). Another methodological limitation

was convergence issues in chromosomal CR values produced by the

KING approach which prevented the use of these values in the ana-

lyses. This convergence issue was observed during the inversion of

the chromosomal CR matrix in both the classical ML and FPHI

methods.

6 | CONCLUSIONS

We compared heritability calculations based on empirically measured

genetic variance among participants in HCP and observed them to be

significantly higher than those calculated using self-reported CR. The

highest h2 values were observed for the CR method that weighted on

the sharing of low-MAF alleles. However, the population stratification

caused by ethnic differences among subjects has likely biased this

approach and produced higher heritability estimates. Nonetheless, the

heritability values were highly correlated between empirical and self-

reported CR. The genetic correlation pattern mirrored the pattern of

shared phenotypic variance and was similar across all CR methods.

Empirical CR values can be calculated for whole-genome or individual

chromosomes. Further research may focus on heritability estimates

calculated for specific SNP sets such as these selected for protein
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coding genes and regulatory regions. The heritability values for HCP

traits can now be computed using self-reported and empirical pedi-

grees online at http://www.solar-eclipse-genetics.org/HCP
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