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Abstract

Hepatocellular carcinoma (HCC) is the world’s second leading cause of cancer death; 82.4% of 

patients die within 5 years. This grim prognosis is the consequence of a lack of effective early 

detection tools, limited treatment options, and the high frequency of HCC recurrence. Advances in 

the field of liquid biopsy hold great promise in improving early detection of HCC, advancing 

patient prognosis, and ultimately increasing the survival rate. In an effort to address the current 

challenges HCC screening and management, several studies have identified and evaluated liver–

cancer-associated molecular signatures such as genetic alterations, methylation, and noncoding 

RNA expression in the form of circulating biomarkers in body fluids and circulating tumor cells of 

HCC patients. In this review, we summarize recent progress in HCC liquid biopsy, organized by 

the intended clinical application of the reported study.

INTRODUCTION

Cancer is one of the most challenging health care problems of our times, the second leading 

cause of death globally1 and in the United States.2,3 The number of new cases is expected to 

rise by about 70% over the next two decades.1 Technological advances have enhanced our 

understanding of carcinogenesis from a histo-pathological definition of tumorous cells to a 

molecular characterization as a disease of the genome and epigenome. This fundamental 

genetic understanding of cancer reveals its high heterogeneity and evolutionary dynamic 

(tumor evolution) as a function of time,4,5 particularly in response to treatment, thus not only 

highlighting the importance of genetics-based tumor analysis for precise management of 

cancer, but also providing the potential for patient selection in targeted drug development.

Liquid biopsy refers to the less- or noninvasive tests performed on blood or other body 

fluids, as opposed to surgical tumor biopsy, that provide genetic information about a 

patient’s tumor.6 The source of tumor material for liquid biopsy encompasses circulating 

cell-free tumor DNA (ctDNA), circulating tumor cells (CTC), and circulating exosomes 

from body fluids such as serum, plasma, urine, saliva, etc.

Among different cancer types, liver cancer, with hepatocellular carcinoma (HCC) as its 

primary form, is the second most common cause of cancer-related deaths worldwide and one 
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of the fastest growing cancers in the United States.1,2,7 The high mortality rate of HCC is 

attributable to lack of effective early detection tools, limited treatment options, and high-

frequency recurrence.8–10 Although liquid biopsies have shown promising applications 

already in clinic for several cancers such as colorectal carcinoma, breast cancer, and lung 

cancer11–16 in predicting response to therapy and monitoring relapse, their relevance in 

clinical application for liver cancer is limited. Due to the shedding of ctDNA into circulation 

by the microcirculation of discontinuous sinusoids (fenestrated capillaries with intercellular 

gaps and a fragmented basement membrane) in the liver, liver cancer should be particularly 

suitable for liquid biopsy for cancer genetics for precision medicine once more treatment 

options become available and for drug development. In the current review, we summarize 

recent developments in the field of liquid biopsy of HCC, organized by the intended clinical 

application of the reported study.

Screening and early diagnosis.

Early detection is critical for the effective treatment of HCC.7,9,10,17,18 Despite HCC 

surveillance programs for the high-risk population and well known, identifiable HCC-

associated risk groups, such as those with chronic hepatitis B or C viral infection, 

alcoholism, or fatty liver disease, most HCC remains undetected until late stages (the 5-year 

survival rate remains less than a mere 10%)2,7,19–22 due to the lack of a sensitive and 

convenient screening method. The current, most used marker, serum alfa-fetoprotein (AFP), 

and its fucosylated glycoform, L3, are of limited value because of an overall sensitivity of 

only 50%. The remaining ~50% of HCC cases are considered to be AFP-negative HCC (less 

than 20 ng/mL, as suggested by American Association for the Study of Liver Diseases 

(AASLD) guideline for HCC screening9). Thus, there is an urgent need for a test that can be 

effective either alone or in combination with serum AFP to improve the early detection of 

HCC. Recent studies have suggested that liquid biopsy-based screening tests can be a 

promising and attractive option to detect cancer-causing genetic alterations.

Cell-free DNA integrity and quantification.

Although cell-free DNA (cfDNA) integrity as a marker for detection of HCC has been 

evaluated by number of studies,23–25 the results have not been conclusive. These studies 

generally evaluated DNA integrity by qPCR analysis of two differently sized amplicons of a 

gene of interest, such as Alu repeat or beta-actin. A recent study by the Dennis Lo group26 

has taken a more comprehensive approach: using massive parallel sequencing to evaluate the 

size profile of plasma cfDNA and analyzing the z-score of the chromosome-arm level to 

distinguish tumor-derived DNA from the nontumoral DNA. Their analysis provides evidence 

that the tumor-derived DNA was shorter than the nontumor-derived DNA. Huang et al27 

have also reported that cfDNA is more fragmentized in HCC patients than in patients with 

benign liver diseases and healthy individuals. It was also observed that this decrease in 

cfDNA integrity is reversed back to normal after resection of the HCC tumor. Interestingly, 

this shortened cfDNA feature has been reported for other cancers as well.28–31 Given the 

generalized nature of this marker quantification, more studies are needed to evaluate the 

value of cfDNA integrity decrease as a marker for HCC diagnosis or for cancer in general. 

Despite intriguing observation and the ease of performing this assay, the size and quantity of 
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cfDNA as a marker for HCC and/or other cancers has fallen short of the desired specificity 

for cancer diagnosis.32–34

Somatic mutations.

The mutational landscape of HCC has been well characterized by multiple whole genome 

sequencing and whole exome sequencing based studies of tumor tissue.35–39 Briefly, TERT 
promoter activating mutations, found in 40%−60% HCC, and the mutually exclusive 

mutations of TP53 and CTNNB1 genes, together found in 30%−50% of HCC cases, are the 

three most frequently reported mutational events in HCC.35–39 Additional significantly 

mutated genes include the tumor suppressor genes AXIN1 (~8%) and RB1 (~4%), which 

were inactivated by mutation, and the chromatin remodeling genes ARID1A (~7%), ARID2 
(~5%), and BAP1 (~5%). NFE2L2 and its interactor KEAP1, which are both instrumental in 

cellular antioxidant defenses, were also significantly mutated in ~3% and ~5% of HCC, 

respectively. Albumin (ALB) and APOB mutations were observed in ~13% and ~10% of 

tumors.

Among the dozens of reported mutations from tissue studies, the TP53 p.R249S, c.747G>T 

mutation is the most frequently reported HCC-associated somatic mutation in the peripheral 

body fluids, including serum, plasma, and urine, of HCC subjects.40–47 Although TP53 
mutations are reported in almost all cancer types, the mutation at codon 249 of the TP53 
gene is known to be highly specific for HCC. In case-control studies evaluating the 

performance of this marker as a tool for detection of HCC, a sensitivity of 15%−47% at a 

specificity of 46%−86% was obtained in plasma,44–46,48–55 as compared with a sensitivity of 

4%–18% at a specificity of 83.3% in serum42,56,57 and 53% sensitivity at 75% specificity in 

the urine.41 This mutation is known to be more common in HCC subjects residing in regions 

with high prevalence of chronic hepatitis B infection and dietary aflatoxin exposure. Recent 

studies have reported the detection of TERT promoter and CTNNB1 mutation in the body 

fluids of HCC patients using digital PCR and Next generation sequencing (NGS) 

technologies.58–60 However, to the best of our knowledge, despite its high frequency found 

in HCC tumor, the TERT promoter mutation has also been reported in ~10% of cirrhosis 

cases, thus diminishing its specificity as a HCC biomarker.61–63 This could explain, at least 

in part, why TERT promoter mutations have not yet been reported as a biomarker for the 

early detection of HCC.

A recent experimental blood test called Cancer-SEEK, which combines genetic alterations 

and protein biomarkers in circulation for early detection of cancer, was able to detect liver 

cancer with an overall sensitivity of about 98% with 99% specificity in a case-control study 

with 44 HCC and 812 normal healthy controls.64 Encouragingly, the plasma of all 44 liver 

cancer cases was found to contain detectable level of at least one of the 16 gene mutations 

analyzed, suggesting the sufficient quantity of HCC ctDNA for sensitive genetic liquid 

biopsy. Of 44 HCC, TP53 mutation was detected in 59.09% (26/44) of plasma samples and 

CTNNB1 mutation was detected in 18.18% (8/44) of plasma samples. As anticipated, the 

detections of TP53 and CTNNB1 were in a mutually exclusive fashion, as previously 

suggested.36, 65 Mutations in CDKN2A (2/44), GNAS (¼4), KRAS (2/44), PI3KCA (2/44), 

and PTEN (3/4) genes were also detected in the HCC plasma. It is of note that the TP53 
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p.R249S, c.747G>T mutation was identified in 20.45% (9/44) HCC plasma samples, 3.22% 

(3/93) pancreatic cancer, 4.41% (3/68) stomach cancer, and none of the 812 healthy controls. 

The sensitivity of CancerSEEK was highest for liver cancer (100%) among the various stage 

1 cancers evaluated. Although the results of this study demonstrate the promising future of 

HCC genetic liquid biopsy using ctDNA, as acknowledged by the authors, the high 

sensitivity of HCC detection would be compromised by specificity, since the controls in this 

study were limited to healthy individuals. Some of the markers included in the panel are 

reportedly related to inflammation and other diseases such as hepatitis and cirrhosis. As a 

result, false positives for HCC may be concerned when CancerSEEK blood test is 

implemented for HCC screening from at-risk population.

There are a few technical challenges that need to be overcome in order to develop somatic 

mutations for a liquid biopsy for HCC screening and early detection. These include 

development of sophisticated technology that is capable of detecting such rare mutations (up 

to 0.01%) in a background of normal DNA. Also, mutations vary based on the etiological 

factor that is responsible for hepatocarcinogenesis. Given that HCC has multifactorial risk 

factors, such as viral infections, alcoholic liver disease, nonalcoholic fatty liver disease, etc., 

a panel that integrates multiple genes and multiple locations within a given gene will be 

needed to optimize performance. Additionally, combining genetic alterations with either 

DNA methylation markers and/ or circulating RNA-based markers and/or protein markers 

could also be a possibility.

DNA methylation.

Studies have indicated that DNA methylation of tumor suppressor genes such as CDKN2A, 
RASSF1A, and GSTP1 are early events of carcinogenesis and hence are promising markers 

for developing an HCC screening test,66–69 in which sensitivity is more important than 

specificity, to identify positive patients for more sophisticated imaging diagnosis. Similar to 

cancer-associated genetic mutations, cancer-related methylation events can also be detected 

in the circulation of the patients with cancer, including HCC.53,70–72 In fact, the first blood-

based colorectal screening test that has been approved by the United States Food and Drug 

Administration (USFDA), Epi proColon, is a test for methylated SEPT9 DNA in plasma.73 

Several studies have reported on the performance of methylated markers, both individually 

and in panels, for the diagnosis of HCC.74–76

Xu et al77 have developed a new diagnostic and prognostic blood test for early detection of 

HCC. An HCC-specific methylation marker panel was identified by comparing HCC tissue 

and normal peripheral blood mononuclear cells (PBMC) methylation to generate a 

diagnostic prediction model and was tested using cfDNA samples from plasma of 1098 

HCC patients and 835 normal controls. Application of this model yielded a sensitivity of 

85.7% and specificity of 94.3% for HCC in a training data set of 715 HCC and 560 normal 

samples and a sensitivity of 83.3% and specificity of 90.5% in a validation data set of 383 

HCC and 275 normal samples. The combined diagnostic score of the model was able to 

differentiate liver diseases (Hepatitis B virus (HBV) and/or HCV infection, fatty liver) and 

HCC similar to normal healthy controls. Similar to CancerSEEK, no cirrhosis controls were 

used in this study, raising concern about the specificity of the test performance.
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HCC is one of the few cancers with an identified high-risk population and an implemented 

surveillance program.10 Given its incidence, a general population screening is not warranted. 

Hence, HCC screening performance must be evaluated against this HCC high-risk 

population as controls instead of healthy controls. This includes patients with hepatitis B, 

and cirrhosis of any origin. This is especially true in the case of methylation biomarkers 

since they represent very early events of carcinogenesis and are often detectable in 

precancerous conditions such as liver cirrhosis.67 For example, Dong et al78 reported the 

detection of methylated RASSF1A in the serum of 52.04% (51/75) of patients with HBV-

HCC, 13.33% (10/75) with liver cirrhosis, 4.44% (4/90) with chronic hepatitis B, and 3.75% 

(3/80) healthy controls. Similar trends were also seen in the methylated APC, BVES, 

TIMP3, GSTP1, and HOXA9 genes that were also evaluated in this study as a multigene 

panel for HCC diagnosis. In another study, methylated RASSF1A was detected in 10% of 

the healthy controls (2/20), 62.5% of the hepatitis C group (25/40), and in 90% of the HCC 

group (36/40).79 A cut-off determination comparing the quantity of methylation between 

HCC and at-risk populations could be one approach to include these methylation markers for 

HCC screening.69 The challenges that researchers face in translating methylation markers 

from the bench to the bedside include the impact of the HCC-specific methylation site 

locations, nontumor-associated methylation, technology-related obstacles as discussed in 

this review article,69 and the inclusion of age-matched high-risk groups, such as patients 

with cirrhosis, in the study design for marker development since, DNA methylation is an 

early event in tumorigenesis and is related to age as well.

Circulating tumor cells.

One main pathway for metastasis is through tumor cell in the systemic circulation and 

similar to other solid tumors,80,81 CTC positivity has been shown to a promising tool for 

HCC diagnosis.82 It is estimated that approximately 106 cells/g of tumor are shed into the 

circulation each day; however, the short half-life of CTCs results in approximately 1 CTC in 

1 billion blood cells being present in the circulation at a given time.83 Various techniques 

have been developed to detect these rare CTCs, based either on the physical (size, density, or 

charge) or cell surface expression, properties of CTCs. To separate the enriched CTCs with 

leukocytes, specific antibody-based enrichment techniques have been incorporated such 

immunomagnetic bead separation using epithelial surface antigen markers such as Epithelial 

cell adhesion molecule (EpCAM).84 However, only about 35% of HCC cases express 

EpCAM. Other methods that are independent of epithelial antigen expression have been 

studied, including size-based filtration method, flow cytometry,82 and RT-PCR-based HCC-

specific RNA quantification85 or sequencing for identification of HCC mutations.86 A recent 

meta-analysis also demonstrated a more robust diagnosis accuracy for HCC with 

nonmagnetic isolation methods over magnetic methods dependent on epithelial antigen 

expression. Based on data of 20 studies on CTCs for HCC with 998 eligible study subjects, a 

pooled sensitivity of CTC detection was 67% at a pooled specificity of 98% with liver and 

tumorous disease and 100% with healthy controls.87

Several new developments that combine genomic analysis to CTC enrichment have 

improved the specificity of CTC detection. Kalinich et al used a microfluidic chip device 

(iChip), which depletes hematopoietic cells from blood by size-based exclusion of red blood 
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cells, platelets, and plasma, followed by magnetic deflection of white blood cells, and 

combined with RNA-based digital PCR to detect CTC-derived signatures.88 Based on this 

test, 56% (9 out of 16) untreated HCC cases had detectable CTCs including early stage 

HCC. It also showed much lower detection in patients with “no-evidence of disease” after 

curative-intent treatment, demonstrating a high degree of specificity of the test. Guo et al85 

obtained a sensitivity of 72.5% at 95% specificity by identifying the subpopulations of CTC 

with stem cell phenotypes and constructing a qRT-PCR-based RNA marker diagnostic CTC 

panel in a well-designed training (200 HCC, 101 CHB/LC and 100 healthy) and validation 

sets (195 HCC, 100 CHB/LC, 100 benign liver lesions, and 110 healthy). The panel was also 

accurate for early stage and AFP-negative HCC.

Circulating RNA.

Several microRNAs (miRNA) and long noncoding RNAs (lncRNA) have been reported as 

potential biomarkers for liver cancer with great promise. MicroRNAs are small noncoding 

RNAs involved in gene expression. Specific miRNAs, such as miR-21, miR-200a, miR-122, 

miR-223, let-7f, miR-155, etc., have been demonstrated to be associated with HCC.75 

MicroRNAs are released in the circulation by either cell lysis or secretion. In the plasma, 

microRNAs bind to certain proteins such as Argonaute 2 and high-density lipoprotein or are 

packaged into exosomes, which protect them from degradation by RNAse in the circulation.
89 Circulating miRNAs have been extensively investigated for their potential as biomarkers 

for HCC detection, both individually and in combination as a panel.75,76 Also, similar to 

methylated DNA markers, some miRNAs had a lower specificity for HCC when comparing 

HCC in chronic liver disease populations tothat of normal healthy controls.76,90–94 A panel 

of miR-122 and let-7,95 panel of miR-122, miR-885–5p, miR-221, and miR-22 with AFP,96 

miR-143 and miR-224 with AFP97 have been reported to have a good sensitivity for HCC 

diagnosis.95 A meta-analysis of 24 studies by Ding et al found expression levels of miR-21, 

miR-122, and miR-192 to be highly selective for HCC diagnosis.98 Some miRNAs such as 

miR-16, and miR30e and miR223 were found to be downregulated in the serum of HCC 

patients as compared with chronic liver diseases and healthy controls.99,100 Although 

promising, most of these miRNA biomarkers are in their early phases and need to be 

thoroughly evaluated in the five-phase format recommended by the Early Detection 

Research Network101 for HCC diagnosis.

lncRNAs are greater than 200 bp transcripts that are not translated. Their expression has 

been involved in the regulation of multiple carcinogenic processes such as proliferation, 

apoptosis, invasion, and metastasis. Similar to other biomarkers, the lncRNAs provide the 

best accuracy when combined in a panel of lncRNA markers with either other microRNAs 

and/or AFP due to the high heterogeneity of HCC. For instance, HULC and Linc00152 have 

been shown to be associated with HCC in a case-control study (66 HCC, 32 chronic 

hepatitis, and 53 healthy controls).102 In this study, lncRNAs LINC00152, RP11–160H22.5, 

and XLOC014172 along with serum AFP had a promising performance (AUROC of 0.985 

and 0.986) discriminating HCC (n = 100) development from both cirrhotic (n= 100) and 

healthy patients (n= 100), respectively. Four RNA-based biomarker panels [lncRNA-C 

terminal binding protein, androgen responsive (lncRNACTBP), microRNA-16–2 (miR-16–

2), microRNA-21–5-P (miR-21–5p), and LAMP2] had a positive predictive value of 87% 
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and a negative predictive value of 80% in a validation study of 100 HCC and 100 chronic 

hepatitis patients.103 Similar to miRNA markers, most of these markers, although promising, 

are in need for a thorough development for HCC diagnosis.

Development of multimarker models and/or algorithms for hepatocellular carcinoma 
prediction.

As discussed above, a panel of multiple biomarkers derived from different cancer pathways 

is needed for an HCC screening test to attain sufficient sensitivity and robustness and104–106 

to overcome cancer’s high heterogeneity. Combining data from several different types of 

liquid biopsies (CTCs, other types of circulating cells, ctDNA or tumor-derived extracellular 

vesicles) or other forms of biomarkers (proteins, miRNAs, metabolites, etc.) may provide 

complementary information, resulting in more accurate and sensitive early detection 

methods. To analyze multiple variables and generate algorithms for classification, many 

different multivariate models can be applied (eg k-nearest neighbor and Bayesian classifiers, 

etc.107,108 Among these, logistic regression (LR) is most commonly used, and classification 

and regression trees (CART) have also become popular. However, LR and CART may lack 

the robustness necessary to serve as effective algorithms for cancer screening because of 

increasing numbers of variables. In addition, biomarkers maybe also needed to tailor these 

models for various etiologies. Machine learning techniques have recently been used in the 

field of classification, showing promise in predictive accuracy and robustness in various 

heterogeneous classification settings, for example, the human gut microbiome and detection 

of cancers such as ovarian, lung, and breast.109,110

We, Wang et al, had applied the machine learning algorithm, random forest (RF), and 

proposed the novel statistical algorithms fixed sequential (FS) and two-step (TS) for 

biomarker development for HCC screening.111 These two novel statistical algorithm, 

compared with both the commonly used multivariate techniques LR and CART, performed 

significant better in both sensitivity and robustness, as models for the development of HCC 

screening test using multiple biomarkers. The two models FS and TS using RF machine 

learning techniques provided a substantial improvement in performance over the commonly 

used models LR and CART within the iterative crossvalidation experiment. Various other 

machine learning techniques such as neural networks and support vector machines112 have 

also been employed in cancer biomarker development. It would be of interest to examine the 

performance of such techniques for HCC screening.

Liquid biopsy for hepatocellular carcinoma management.

Diagnosis of HCC is usually confirmed by radiology such as multiphasic computed 

tomography (CTscan) or magnetic resonance imaging (MRI) with agents that characterize 

the blood flow in the liver. Tissue biopsy, if performed, has value only if it is positive for 

HCC. It is not routinely performed because of the risk of bleeding, tumor seeding, and 

inability to rule out HCC in the event of a negative biopsy.10 Liquid biopsy of HCC ctDNA 

can be a superior alternative because it can provide confirmation of HCC diagnosis in such 

indeterminate cases, as opposed to the “wait and watch” approach that is currently been 

employed for such early stage HCC. It also provides HCC genetics for precision medicine 

when treatment options for targeted therapy become available. Current treatment options for 
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HCC are broadly classified into two categories: either curative (surgical resection or liver 

transplantation) or palliative, based on the size and number of the tumor nodules, assessment 

of the liver function based on the Child Pugh score. Intermediate stage tumors are treated by 

transcatheter arterial chemoembolization (TACE) and advanced stage tumors are currently 

treated with multikinase inhibitors such as Sorafenib or regorafenib and immunotherapy 

with Nivolumanb.113 At the present time, no liquid biopsy or genetic markers have been 

applied to the decision-making of any of the current treatment plans. Recent progress in the 

applications of ctDNA in HCC precision medicine is discussed in more detail in companion 

diagnostic tool for hepatocellular carcinoma-targeted therapy section, which covers recent 

progress in the development of the companion diagnosis tool for HCC target therapy and 

immune-therapy below.

As mentioned earlier, in addition to difficulties in early detection and limited treatment 

options, a high recurrence rate also contributes to the high mortality rate of HCC. Rates of 

recurrence range from 15% for transplant to near 100% for surgery or ablation.17,114–122 

Recurrence is most common within 2 years of treatment. The high HCC recurrence rate is 

attributed to (1) incomplete treatment, (2) micrometastases within the liver, and (3) de novo 

lesions.117 Currently, HCC recurrence is monitored by serum AFP or other serum proteins 

and serial imaging. Notably, there are no specific guidelines addressing how HCC 

recurrence should be monitored. This is likely due to the limited sensitivity of the available 

methods. MRI and/or CT imaging is the gold standard for diagnosis, although it is expensive 

and has limited utility in the detection of small tumors (<2 cm) and tumors in the presence of 

previously treated lesions (especially from local ablation), cirrhosis, obesity, and dysplastic 

nodules.121–123 Liquid biopsy-based methods, on the other hand, are unaffected by the 

abovementioned limitations of imaging, and can thus be a great option for evaluating the 

response to treatment and monitoring of HCC recurrence.

Somatic mutations and methylation markers for recurrence and prognosis.

In additional to its potential in the early detection, ctDNA biomarkers have also been 

reported as good prognosis markers and indicators of HCC progression. RASSF1A 
methylation levels in plasma have been shown to be a prognostic factor for overall survival,
71 and can be taken into account with tumor size68 and LINE-1 hypomethylation to correlate 

early recurrence and poor prognosis in sera of patients after curative resection.124 The 

combined diagnostic score based on 10 selected methylation markers developed by Xu et 

al77 associated with tumor stage, tumor burden, detectable residual tumor post-treatment, 

disease progression, and development of HCC recurrence. Wong et al125 demonstrated 

association between p15 methylation and liver cancer recurrence or metastasis.

Recent strategies have focused on expanding the panel of cfDNA alterations for detection, 

assessment of HCC molecular information, intratumoral heterogeneity and monitoring of 

HCC recurrence. Cai et al126 extensively analyzed the mutation profiles of 574 cancer-

related genes known to harbor actionable mutations from the plasma of four HCC patients. 

The circulating DNA captured more than 98% of subclonal mutations detected in the 

matching tissue. Circulating levels of 61.64%–94.12% of subclonal mutations correlated to 

patients’ tumor burden in samples collected at preoperation, postoperation, and follow-up at 
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recurrence time points. In this study, one of the patients displayed increasing circulating 

levels of somatic mutations prior to imaging diagnosis and increase of AFP levels, 

suggesting the promising utility of liquid biopsy as a tool for monitoring recurrence. This 

elevation of DNA markers in cfDNA before MRI imaging diagnosis was also observed in a 

pilot study (n= 10) by Hann et al, which is the first study to combine both mutational and 

methylation markers in one panel.40 In this study, urine samples were collected 

prospectively from HCC patients (when available) after curative treatment at follow-up 

visits. Five patients developed recurrence during the study. The samples were retrospectively 

analyzed in a blinded fashion for HCC DNA bio-markers (TP53 R249S mutation, 

methylation of RASSF1A, and GSTP1). These markers were elevated in the urine of four 

patients up to 9 months before or at the time of diagnosis of HCC recurrence by MRI 

imaging. Although MRI and/or CT imaging is the current gold standard for diagnosis of 

recurrent HCC, it has difficulty in detecting early recurrence in the previously treated areas 

(especially after local ablation). This study demonstrates not only the efficacy of using 

ctDNA for monitoring HCC recurrence but also the applications of urine as a noninvasive 

body fluid for HCC liquid biopsy.

Circulating RNA.

Kim et al127 recently demonstrated that combination of plasma miR-21, −26a, and −29a-3p 

expression could predict early TACE refractoriness in patients (n = 198) with history of 

TACE-treated HCC. Interestingly, Lu et al identified hypermethylated regions encoding for 

miRNAs in the plasma of HCC subjects and demonstrated their diagnostic and prognostic 

potential.128 Increased expression of serum let-7f has been shown to correlate with tumor 

size (>5 cm) and with early HCC recurrence.129 HCC-associated circulating miRNAs levels 

of miR-224 and miR-500 decreased following surgery thus reflecting tumor dynamics.76,130 

Conversely, circulating miR-30e, miR223, and miR-125a-5p are downregulated in HCC 

patients.99, 131 Lnc00974, lncRNA MALAT1, and SPRY-IT1 have been shown to be 

detectable in the circulation of HCC patients, and their levels correlate with disease severity 

and prognosis.132–134

Circulating tumor cells.

Several studies have shown that CTCs are significantly associated with HCC recurrence and 

poor prognosis. Fan et al first reported using CTC with stem-like characteristics (CD90+ and 

CD44+) as a prognostic marker for HCC recurrence after hepatectomy.135,136 Using a qRT-

PCR-based RNA platform for CTC detection has also demonstrated the use of CTCs not 

only as a diagnostic test but also as risk prediction tools for HCC recurrence after surgery.85 

In this multicenter cohort study, patients with persistently high CTC load had a higher 

propensity for recurrence. This panel incorporated EpCAM, CD90, CD133, and CK19, 

which had better correlation to prognosis than AFP or EpCAM alone. While these have been 

largely focused on Asian population with chronic HBV and cirrhosis, findings are promising 

for the use of CTCs for disease prognostication of HCC. Further studies with incorporation 

of patients from other geographic areas, with various etiology of HCC including cirrhosis 

from nonalcoholic fatty liver disease or aflatoxin exposure should be explored.
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Similarly, accumulating evidence shows that a subset of CTCs has an epithelial-

mesenchymal transition phenotype that is associated with more metastaticspread by vascular 

invasion137–139 One study evaluated 46 patients with HCC in which CTCs with 

mesenchymal features with twist and vimentin expression were detected in 39 (84.8%) and 

37 (80.4%) patients, respectively. This significantly correlated with portal vein tumor 

thrombus.140 There are also emerging data on heterogeneity of the epithelial-mesenchymal 

transition status in CTCs across different vascular compartments of the circulation.141 While 

studies need more validation with larger patient cohort, there’s a promising evidence for use 

of CTCs for disease progression in HCC. The challenges in bringing CTCs for disease 

management are lacking of a technology platform that is tailored for capture HCC CTC.

Companion diagnostic tool for hepatocellular carcinoma-targeted therapy.

Currently, no targeted therapy has been approved for liver cancer. As a result, no companion 

test is needed for HCC treatment. As our understanding of the HCC genetic landscape and 

HCC drivers increases, precision medicine for liver cancer could become feasible in the near 

future.

Table 1 summarizes the potential actionable (drug-gable) genetic biomarkers and the status 

of drug development for HCC therapy. For instance, at least one potentially druggable 

mutation was identified in 88.5% (23/26) of HCC patients in a recent study that investigated 

ctDNA analysis in advanced HCC patients.142 Drugs targeting the TERT pathway, either by 

telomerase enzyme inhibition or telomerase active immunotherapy (GX301, Imetelstat, and 

GV1001), and the Wnt and/or CTNNB1 pathway (pRI-724 and XAV939) are currently in 

various stages of clinical development, ranging Ph I–III studies for non-HCC cancers.143 

TP53 genomic alterations correlate with increased VEGF-A expression and such tumors can 

potentially be targeted by antiangiogenic drugs such as Bevacizumab.144 A retrospective 

study suggests that patients with TP53 mutations had longer progression free survival with 

bevacizumab-containing therapies when compared with nonbevacizumab containing 

regimen (median 11.0 vs 4.0 months [P < 0.0001]).145 Another report indicates that TP53 
mutations predict sensitivity to VEGF and/or VEGFR inhibitors and are associated with 

improvement of the disease outcome.146 Finally, TP53 mutations have been associated with 

better outcomes in sarcoma patients treated with the VEGFR inhibitor pazopanib.147 TP53 
may also be targetable by WEE1 inhibitors.148 Other genomic alterations with possible 

targeted treatments include ARID1, BRAF, CCNE1, CDK4, CDK6, CDKN2A, CTNNB1, 

EGFR, ERBB2, FGFR1, KRAS, MET, MYC, PI3KCA, and PTEN.142 An overview of the 

current research on HCC-related biomarker selection and potential future personalized drug 

testing for HCC has been discussed in detail in recent review articles.143,149

The USFDA has granted accelerated approval to Nivolumab, a programmed cell death 

protein-1 (PD-1) immune checkpoint inhibitor for the treatment of patients with HCC who 

have been previously treated with Sorafenib, based on the CheckMate-040 study, where it 

had an objective response rate of 20%.113 Pembrolizumab, a humanized antibody targeting 

the PD-1 receptor, elicited promising progression-free survival and overall survival results in 

patients with advanced HCC who received previous treatment with sorafenib, according to 

phase II findings.150 Tumor mutational burden (TMB; total number of mutations per coding 
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area of tumor genome), measured in tumor tissue by whole exome sequencing, is a 

biomarker for predicting response to immunotherapy.151,152 Recent studies have shown that 

TMB can be accurately measured in smaller gene panels limited to several hundred genes 

instead of the whole exome.153,154 Since a tumor biopsy may not capture tumor 

heterogeneity, emerging evidence indicates that it may be feasible and more effectively to 

asses TMB in ctDNA.155 Thus, liquid biopsy has the potential to be the companion 

diagnostic tool for identification of responders to HCC immunotherapy.

Technology platform in detection of circulating cell-free tumor DNA and circulating tumor 
cells for hepatocellular carcinoma liquid biopsy.

We are entering a new era of precision medicine led by technical advances in analysis of 

nucleic acids and other biological molecules and generation of targeted therapeutic agents. 

Precision medicine is driven by accurate evaluation of pathologic tumor markers, 

specifically in this review, markers measured in bodily fluids. Because the amount of ctDNA 

is very limited (as low as 0.001%), a highly sensitive technology platform and robust sample 

preparation are both essential to accurately identify ctDNA markers and characterize CTCs 

once isolated. This was highlighted in a recent study with a less than satisfactory congruence 

obtained from patient-paired blood samples between two commercial liquid biopsy tests.156 

Thus, a positive detection of ctDNA markers indicates the existence of such markers in the 

circulation, but a negative result only indicates ctDNA markers were nondetectable at the 

time of biopsy using the methods of detection and sample processing. More than one 

sampling may be needed to efficiently detect the ctDNA markers.

Mutations in the TERT promoter, CTNNB1, and TP53 genes are the three most frequently 

altered genes in HCC. Huang et al used digital PCR assays with a limit of detection of 

0.01% to evaluate the four gene loci, TP53 (R249S), CTNNB1 (T41A, S45P), and TERT (c.

1–124C>T) in 41 HCC patients.27 At least one kind of circulating mutant was found in 27 

patients (56.3%, 27/48), with the mutant allele frequency ranging from 0.33% to 23.7%. 

Although PCR technology has a desirable sensitivity for detecting ctDNA markers, it is 

restricted by its ability to assess only a limited number of markers of interest from a given 

sample. Technology with a higher throughput for number of markers multiplexed, such as 

targeted next-generation sequencing technology, has gained more attention for profiling 

HCC ctDNA markers. Initial attempts to use next-generation sequencing technology, such as 

the Miseq platform, in evaluating the TERT, CTNNB1, and TP53 hotspots with limited 

coverage (453 bp) resulted in an unsatisfactory sensitivity of 20% (8/41) for at least one 

detectable marker in the plasma of HCC patients.157 A recent study59 focused on a 58-gene 

panel that included HCC driver gene and a candidate drug-able mutation (JAK1) by 

targeting ultradeep NGS in the paired plasma, serum, PBMC, and tissues from eight HCC 

patients. Of the 21 mutations identified in the tissue with deep sequencing, 9 (43%) were 

confidently detected in both plasma and serum. A subset of the tissue and plasma mutations 

detected by NGS were tested for validation by Sanger and/or digital PCR and confirmed. 

This is the first study to compare the mutation detection performance in paired plasma and 

serum from five HCC patients. Interestingly, in this small sample size study, no significant 

differences were noted in the DNA recovery rates, median DNA fragment size, and mutation 

detection rate from both sources. This is surprising because plasma is considered superior to 
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serum as a source of circulating cell-free DNA.158, 159 A digital ctDNA sequencing study 

targeting a panel of 68 genes detected at least one genetic alteration in 100% of advanced 

HCC plasma samples (n=14).142 Mutations were detected in TP53 (8/14), CTNNB1 (4/14), 

PTEN (1/14), CDKN2A (1/14), ARID1A (1/14), and MET (1/14) genes.

Although the CTC is not currently being used for HCC detection or management, the CTC 

has been used in other cancers for prognosis or management, including breast cancer.160,161 

The only technology that is approved by the FDA to capture CTC is CellSearch, which uses 

antibodies to capture EpCAM-positive cells. Unfortunately, only 35% of HCC CTCs express 

EpCAM, thus this technology platform does not have the desired sensitivity to capture HCC 

CTC. Incorporation of more HCC-specific surface antigens into a capture platform may 

improve the sensitivity of the capture. Other technology platforms that use microfluidic 

chips (CTC-iChip), size-selection, or combinations of technologies, as discussed in 

circulating tumor cells section, are under development to improve the sensitivity and 

specificity of HCC CTC captures for the subsequent downstream characterization of 

captured cells.

CONCLUSIONS

All cancers, including HCC, result from accumulation of genomic and epigenomic 

modifications and thus consequentially orchestrate aberrant expression or forms of its 

downstream molecules, such as RNA and proteins. Identification of such modifications 

(markers) underlying the development of HCC should permit unambiguous screening and 

early detection if such modifications can be detected in a less or noninvasive liquid biopsy 

and provide characterization of the tumor, allowing for a more precise treatment plan. 

Anatomically, highly vascularized liver cancer should shed significant amounts of tumor-

derived molecules in the body fluid for liquid biopsy. Although—unlike colorectal cancer, 

breast cancer, and lung cancer—liquid biopsy has not been used in HCC clinical 

applications, the exciting progress of its applications, as discussed, in HCC early detection, 

prognosis prediction, and monitoring recurrence highlights great promise in near future. Fig 

1 summarizes the pros and cons of the categories of different liquid biopsy markers for HCC 

early detection and precision medicine.

Given the high heterogeneity of HCC, we envision a panel of genetic and epigenetic DNA, 

RNA, or protein markers with other clinical variables such as patient risk factors (age, 

gender, hepatitis B and/or C, alcohol, Non-alcoholic steatohepatitis (NASH), etc.), clinical 

laboratory information (AFP, liver function), and radiographic studies (ultra-sound), to be 

integrated into an algorithm for both screening and early detection. As our understanding of 

the HCC genetic landscape expands and more treatment options become available, liquid 

biopsy tests for HCC management should also take place in near future. Simultaneously, 

efforts should also be made for the standardization and quality control of technology 

platform. Additionally, attention should be drawn to study designs for developing liquid 

biopsy tests for the screening and early detection of HCC to ensure the inclusion of high-risk 

populations as controls in order to better define test performance for HCC detection, and 

thus facilitating the translation of experimental liquid biopsy tests to clinical applications.
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qRT-PCR quantitative reverse transcriptase polymerase chain reaction
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Fig 1. 
Approaches for HCC liquid biopsy and a summary of the pros and cons of each category of 

markers. HCC, hepatocellular carcinoma.
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