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Emerging evidence suggests that schizophrenia is associ-
ated with brain dysconnectivity. Nonetheless, the implicit 
assumption of stationary functional connectivity (FC) 
adopted in most previous resting-state functional mag-
netic resonance imaging (fMRI) studies raises an open 
question of schizophrenia-related aberrations in dynamic 
properties of resting-state FC. This study introduces an 
empirical method to examine the dynamic functional dys-
connectivity in patients with schizophrenia. Temporal brain 
networks were estimated from resting-state fMRI of 2 in-
dependent datasets (patients/controls  =  18/19 and 53/57 
for self-recorded dataset and a publicly available repli-
cation dataset, respectively) by the correlation of sliding 
time–windowed time courses among regions of a predefined 
atlas. Through the newly introduced temporal efficiency 
approach and temporal random network models, we exam-
ined, for the first time, the 3D spatiotemporal architecture 
of the temporal brain network. We found that although 
prominent temporal small-world properties were revealed 
in both groups, temporal brain networks of patients with 
schizophrenia in both datasets showed a significantly higher 
temporal global efficiency, which cannot be simply attrib-
utable to head motion and sampling error. Specifically, 
we found localized changes of temporal nodal properties 
in the left frontal, right medial parietal, and subcortical 
areas that were associated with clinical features of schizo-
phrenia. Our findings demonstrate that altered dynamic FC 
may underlie abnormal brain function and clinical symp-
toms observed in schizophrenia. Moreover, we provide new 
evidence to extend the dysconnectivity hypothesis in schizo-
phrenia from static to dynamic brain network and highlight 
the potential of aberrant brain dynamic FC in unraveling 
the pathophysiologic mechanisms of the disease.
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Introduction

Schizophrenia is a complex neuropsychiatric disorder 
with a myriad of clinical manifestations.1 While the pre-
cise neural substrates underpinning the heterogeneous 
clinical manifestations are far from understood, it is in-
creasingly being conceptualized as a disorder that results 
from abnormal interactions between brain regions,2–5 
coinciding with the recent advent of human connec-
tome studies.6,7 For instance, a number of resting-state 
functional magnetic resonance imaging (fMRI) stud-
ies showed widespread dysconnectivity,3 which leads to 
aberrant network topology in schizophrenia, including 
reduced local clustering/efficiency8–10 and modularity (an 
optimal partition of a brain network into smaller func-
tional communities),11,12 as well as increased global in-
tegration10,11,13 and network robustness (under targeted 
and/or random node removal).13 However, most of the 
aforementioned resting-state functional connectivity 
(FC) studies were performed in a static manner with an 
implicit assumption of stationary FC during the scan-
ning period,14,15 while accumulating evidences have sug-
gested that brain networks are dynamically connected 
and quantifying dynamic FC may provide new insights 
into fundamental properties of brain networks.16–18

It is noteworthy that the investigation of dynamic FC 
in schizophrenia is only beginning to be revealed. Using 
a sliding-window approach, Sakoğlu et al19 investigated 
the resting-state dynamic FC and found significant 
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aberrations in the time–frequency patterns of dynamic 
FC in patients with schizophrenia. Through further clus-
tering the dynamic FC into a set of connectivity states (re-
curring connectivity patterns), Damaraju et al20 showed 
that healthy participants switched more often among the 
states in comparison with a rigid dynamic FC pattern in 
schizophrenic patients. Similar observation was also evi-
denced in other works.21,22 Meanwhile, to delineate the 
architecture of the aberrant dynamic FC, graph theo-
retical analysis was applied separately to network within 
each sliding window.18,23–25 Through inspecting the vari-
ance of the obtained graph measures, Du et  al25 found 
schizophrenia-related aberrant global and local proper-
ties of the dynamic FC states within default mode net-
work. Extending this framework to the whole brain, the 
same metrics were found to be lower and less fluctuant 
in patients with schizophrenia.26 Beyond the simplistic 
stationary characterization, these studies have provided 
some of the first quantitative insights to unveil aberrant 
flexibility in the functional coordination between differ-
ent neural systems in schizophrenia.

To date, no study has investigated the combined 3D 
spatiotemporal architecture of the whole temporal brain 
network (ie, the spatiotemporal distribution of dynamic 
FC) in terms of information flow in patients with schiz-
ophrenia. Given the known dynamic nature of brain ac-
tivity and connectivity,16–18 we believe that examining the 
topological characteristics of dynamic FC may lead to a 
better understanding of fundamental properties of brain 
function in behavioral shifts and adaptive processes, 
and potentially help to elucidate the etiology of schizo-
phrenia. In this study, we used our newly developed anal-
ysis framework27 (1) to delineate temporal small-world 
properties of dynamic FC using resting-state fMRI data, 
and (2) to provide a clear and direct physical meaning to 
the concept of 3D spatiotemporal architecture concerning 
efficiency of information flow for quantitatively assessing 
dynamic reorganization of FC in schizophrenia. On the 
basis of the consistent observations of small-world ar-
chitecture in static brain networks,6 we hypothesized that 
temporal brain networks of both groups would exhibit 
prominent temporal small-world topology. Moreover, On 
the basis of convergent findings of a subtle randomiza-
tion in static brain network architecture14,15 as well as ab-
errant dynamic FC patterns in schizophrenia,19–21,25,26,28 we 
further hypothesized that schizophrenic patients would 
show a more randomized spatiotemporal distribution of 
dynamic FC in comparison with healthy volunteers.

Methods and Materials

Subjects

Two independent datasets were included: a self-recorded 
dataset of  20 patients with a Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition diagnosis 
of schizophrenia and 20 matched healthy volunteers 

recruited from the Institute of Mental Health (IMH), 
Singapore, and local community through advertisements. 
The detailed inclusion and exclusion criteria are described 
in Supplementary materials. The protocol of the study 
was approved by the institutional review boards of the 
IMH and written informed consent was obtained from 
each participant. A publicly available dataset (COBRE, 
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) 
of 72 patients and 75 healthy volunteers was used as an 
independent replication dataset.

Data Acquisition

Self-recorded Dataset.  All subjects underwent a resting-
state MRI scan using a 3 Tesla scanner (Philips Achieva) 
at National Neuroscience Institute, Singapore. One high-
resolution T1-weighted MRI and one resting-state fMRI 
(8 min) were acquired.

Publicly Available Dataset.  The replication dataset was 
acquired with a 3 Tesla Siemens Trio scanner (Siemens, 
Germany) and included a high-resolution T1-weighted 
images and resting-state fMRI scan (5 min).

For the details of scanning parameters, see 
Supplementary materials.

Data Preprocessing

We used the DPARSF toolbox (http://rfmri.org/
DPARSF)29 to carry out data preprocessing, which 
include removal of  first 10 volumes, slice-time correction, 
head motion correction, anatomical coregistration, new 
segmentation to DARTEL,30 nuisance signal regression, 
spatial normalization, and bandpass filtering. Of note, 
the data of  1 healthy participant and 2 patients in the 
principal dataset and 18 healthy controls and 19 patients 
in the replication dataset were discarded due to signifi-
cant head motion.31 For demographics of  the included 
subjects, see table 1. Greater details of  the resting-state 
fMRI data preprocessing and criteria for significant head 
motion are provided in Supplementary materials.

Temporal Network Construction

A widely used sliding-window approach34–36 was applied 
on the time series, which were extracted from the estima-
tion of mean values of voxels within a region of interest 
(ROI). Here, a previously validated atlas37 was used to 
parcellate the brain into 90 ROIs. The names and corre-
sponding abbreviations of the cortical regions were listed 
in supplementary table 1. The Pearson’s correlation coeffi-
cient between all pairs of the time series was taken as the 
level of functional coupling.38 A schematic diagram of the 
temporal network construction is shown in supplementary 
figure S1. Here, the window length was chosen as 100 s with 
an incremental step of 6 s to balance the dynamics of the 
BOLD signals and the quality of connectivity estimation, 
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as well as to reduce the computational complexity.39,40 As 
such, one temporal network G Gw

t
w
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, where 

Gt
w  is a static weighted graph within each window and T 

is the lifetime (T = 60 for self-recorded dataset and T = 30 
for the replication dataset) obtained for each participant. 
Detailed steps for temporal network construction are 
shown in Supplementary materials.

Temporal Efficiency Analysis

Before the network analysis, each of the obtained tem-
poral networks was thresholded into a binarized matrix 
(Gt) with a commonly applied sparsity approach to en-
sure that the assessment of intrinsic between-group dif-
ferences in the topological architecture of the temporal 
networks without bias from different number of contacts 
and possible inclusion of low-weight spurious connec-
tions.41,42 Here, a range of sparsity (0.5%–10%) with an 
interval 0.25% was selected to retain the most promi-
nent dynamic FC (backbone). Threshold values for the 
inclusion of dynamic FC are shown in supplementary 
figure S2(A). Detailed criteria for sparsity selection were 
shown in Supplementary materials. Examples of the 
obtained binary temporal brain network are presented in 
figure 1 and the Supplementary video.

Once we obtained the binarized network, we could estimate 
the temporal distance ( ) :τ τi j i jt t→ →( ) ( )  defined as the small-
est number of time steps required to reach node j from node 
i starting at time t (supplementary figure S3).27,43 Of note, a 
temporal distance can be any positive integer, with the small-
est value being 1 (when i and j are connected through a static 
path at time t) and the largest value being infinity (when no 
time-respecting path exists from i to j at time t). It is noteworthy 
that temporal distance is a measure in the time domain, which 
is influenced by both the topology of each of the snapshot 
static graphs and the temporal structure of the network.

Based on the estimation of temporal distances, we 
then investigated the 3D spatiotemporal architecture of 
the temporal brain network using a unified efficiency 
approach,27 that is, the global network topology was 
quantified in terms of temporal global efficiency (Et

glob) 
and temporal local efficiency (Et

loc). Heuristically, one 
can regard Et

glob as a measure of the overall information 
transfer efficiency in a temporal network, whereas the Et

loc 
as a measure of the resilience of the temporal network to 
local failures. Regional properties were described in terms 
of temporal nodal efficiency (Et

nodal(G, i)). In Appendix, 
we provided a brief  glossary of concepts, whereas greater 
details of the formulation and interpretation of these 
metrics could be found in Supplementary materials or 
our previous methodological work.27

Table 1.  Demographic and Clinical Characteristics of the Samplesa

Characteristics Self-recorded Dataset Publicly Available Replication Dataset 
(COBRE)

Patients (n = 18) Controls (n = 19) Patients (n = 53) Controls (n = 57)

Age (y) 24–56 (38.8 ± 9.9) 28–59 (37.7 ± 9.0) 18–65 (38.3 ± 13.9) 18–62 (35.4 ± 11.9)
Gender: male/female 10/8 10/9 41/12 37/20
Handedness: R/L/A 17/1/0 19/0/0 44/8/1 55/1/1†

Education (y) 6–16 (11.2 ± 3.1) 10–19 (15.1 ± 2.2)b,* 10–20 (13.1 ± 1.8)c 12–17 (14.0 ± 1.6)d,*

Age of onset (y) 17–47 (26.2 ± 8.3) — 5–61 (22.7 ± 9.4) —
Duration of illness (y) 1–30 (11.6 ± 8.4) — 0–47 (15.6 ± 12.0) —
Medication dosee (mg/day) 50–850 (293.9 ± 214.1) — 0–1800 (368.7 ± 310.8) —
PANSS symptomsf

  Positive symptoms 7–14 (9.5 ± 2.8) — 7–28 (15.1 ± 4.9) —
  Negative symptoms 7–26 (10.9 ± 5.2) — 8–29 (13.8 ± 4.0) —
  General symptoms 16–28 (20.0 ± 3.5) — 16–56 (29.9 ± 8.5) —
  Overall symptoms 30–53 (40.4 ± 7.1) — 35–94 (59.8 ± 14.0) —
Global assessment of functioning
  Total 31–70 (49.7 ± 10.7) — — —
  Symptoms 31–71 (53.1 ± 13.1) — — —
  Disability 31–70 (51.3 ± 10.3) — — —

Note: R, right; L, left; A, ambidextrous—within each dataset; *indicates significant (P < 0.05) between-group difference in a 2-sample 
2-tailed t-test; †indicates significant (P < 0.05) between-group difference via a 2-tailed Pearson χ2 test. Detailed statistics could be found 
in the supplementary table S2 (for self-recorded dataset) and table S3 (for publicly available replication dataset).
aUnless otherwise indicated, data are expressed as a range of minimum – maximum (mean ± SD).
bData were missing for 1 normal control in the principal dataset.
cData were missing for 3 patients with schizophrenia in the replication dataset.
dData were missing for 7 normal controls in the replication dataset.
eThe antipsychotic medication dosage was converted to daily chlorpromazine milligram equivalents according to Woods.32 Detailed 
medical types could be found in supplementary table S2.
fThe Positive and Negative Syndrome Scale (PANSS)33 was used to assess the psychopathology and symptom severity.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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Temporal Reference Network

The richness of the complex structures in temporal 
networks allows the application of powerful temporal 
randomization techniques,44–46 which could be used to pro-
duce reference networks for temporal small-world topol-
ogy identification. A 2-step randomization approach was 
implemented in the current: first, we employed random-
ized edges46 technique to destroy the topological struc-
ture of the aggregated graph of temporal network, while 
preserving the distribution of the contact sequences, the 
total number of contacts, and the connectedness of the 
aggregated network. Second, to further randomize the 
temporal network in terms of contact sequences, the 
obtained topologically randomized temporal networks 
were subjected to randomized contacts technique to ran-
domly redistribute the contacts among all connected 
node pairs.27 An example of temporal random network 
is shown in figure 1C. Following the small-world defini-
tion in static network,47 a real temporal network would 
be considered temporally small-world if  it meets the fol-
lowing criteria: Et

loc/E
t
loc_rand >>1 and Et

glob/E
t
glob_rand ≈ 1.   

Here, Et
loc_rand and Et

glob_rand are the mean overall tempo-
ral global efficiency and temporal local efficiency esti-
mated from 100 temporal random networks. Details on 
the temporal reference network construction are shown 
in Supplementary materials.

Statistical Analysis

To reduce the dependency of any significant differences 
in the network topology on the arbitrary choice of a sin-
gle-threshold selection, an integrated network metric was 

estimated over the predefined sparsity range.41 Separate 
nonparametric permutation test48 with 100 000 iterations 
was used to investigate the differences of the temporal 
efficiencies between both groups. A value of P < 0.05 was 
considered significant. Corrections for multiple compari-
sons of regional characteristics were performed via false 
discovery rate (FDR) at q = 0.05.

Multiple linear regressions were used to assess the asso-
ciation between the network metrics and clinical variables 
in the patient group. To limit the number of association 
calculations for regional properties, only network metrics 
that displayed significant between-group different were 
chosen as independent variables. Statistical analyses were 
performed using SPSS 17. Further details of statistical 
analysis are provided in Supplementary materials.

Validation Analysis

To validate the reproducibility of our results, we adopted 
2 procedures as follows:

Regional Parcellation Effects.  Recent neuroimaging 
studies have showed that different parcellation schemes 
might lead to different properties of brain networks.49,50 
To assess the effect of different parcellation schemes and 
to provide more comprehensive information, 2 additional 
widely used parcellation schemes (ie, the Harvard-Oxford 
Atlas (HOA-112)51,52 and the Craddock’s functional 
atlas (Craddock-200)53) (supplementary figure  S4) were 
adopted. The network construction procedures and tem-
poral network analysis approaches were repeated for 
both templates.

Fig. 1.  Examples of temporal brain networks of (A) one normal control and (B) one patient randomly selected from each group. The 
example temporal brain networks are obtained using a fixed sparsity of 1%. The corresponding temporal random reference network 
is presented (C). The spatial distributions of the dynamic functional connections are also presented in the right panel at [1, 20, 40, 60] 
windows (see all windows in Supplementary video). The dynamic functional connections within each window/snapshot are color-coded 
with the color bar representing the corresponding temporal window.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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Temporal Network Construction.  Recent studies of 
dynamic FC showed that sliding-window correlation 
might be influenced by the window length and a range 
between 40 and 100  s was recommended.34,40,54 Here, to 
validate our main observations in terms of different set-
tings of temporal network construction, we performed 
the same analysis with different temporal window length 
and step length (window/step = [40, 60, 80, 100]/[2, 4, 6] s). 
Given that consistent findings were revealed across differ-
ent settings (supplementary table S6), the less computa-
tional complexity combination of window/step = 100/6 s 
was chosen to present the main findings.

Results

Temporal Small-World Properties

The brain networks of both groups in the self-recorded 
dataset exhibited typically temporal small-world proper-
ties (supplementary figure S5), suggesting that temporal 
evolution and topologic arrangement of the temporal 
brain network permits effective coordination of various 
brain regions for globally integrated brain functions and 
efficient information transfer over time among neighbor-
ing brain regions for temporal functional specialization.

Additional quantitative statistical analyses revealed 
significantly higher temporal global efficiency (P = 0.033, 
100 000 permutations) in patients with schizophrenia  
(figure 2A). We performed additional analyses to account 
for the potential confounding effects of age, gender, years 
of educations, medication dosage, head motion (via 
mean framewise displacement (FD) values), and overall 
strength of FC on the observed between-group differ-
ences. These confounds were included as linear regressors 
and the differences of the residuals between both groups 
were assessed again using permutation test. Results indi-
cated that the reported higher Et

glob were not explained 

by variance related to any of these factors. In line with 
the self-recorded dataset, a significantly higher tem-
poral global efficiency was observed in patients group 
(P = 0.029) in the publicly available dataset (supplemen-
tary figure S6, supplementary table S4).

Moreover, in our validation analysis of the reproduc-
ibility, we found the same schizophrenia-related disrup-
tion of temporal global efficiency that is independent of 
parcellation schemes (supplementary table  S5) and set-
tings for temporal network construction (supplementary 
table  S6). Taken together, these verification results lead 
us to believe that the observed between-group differences 
in Et

glob may represent an intrinsic schizophrenia-related 
aberration in dynamic FC.

Abnormal Temporal Regional Properties

In the self-recorded dataset, schizophrenia-related signif-
icant increment (P < 0.05, FDR-corrected) of temporal 
regional efficiency was revealed in 18 regions across the 
cerebral cortex (including the left inferior gyrus, opercula, 
and triangular parts [IFGoperc.L, IFGtriang.L]; left or-
bitofrontal gyrus, inferior part [ORBinf.L]; left postcen-
tral gyrus [PoCG.L]; left middle occipital gyrus [MOG.L]; 
left temporal pole, middle part [TPOmid.L]; right cau-
date nucleus [CAU.R]; right precuneus [PCUN.R]; right 
cuneus [CUN.R]; right lingual gyrus [LING.R];and bi-
laterally in amygdala [AMYG]; parahippocampal gyrus 
[PHG]; pallidium [PAL]; and putamen [PUT]), where 
most of these regions were resided in the left inferior 
frontal, right medial parietal, and bilateral subcortical 
areas (figure 3).

In the publicly available dataset, significantly higher 
(P < 0.05, FDR-corrected) temporal regional efficiency 
was found in the left IFGtring, the left ORBinf, the left 
hippocampus, [HIP.L], bilateral PHG, bilateral CAU, 

Fig. 2.  (A) Temporal global efficiency and (B) temporal local efficiency of the dynamic functional connectivity as a function of sparsity 
in the self-recorded dataset. The integrated temporal efficiency measures (over the entire sparsity range) are shown at the bottom of the 
corresponding plot (bars represent mean ± SEM).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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bilateral TPOmid, and bilateral inferior temporal gyrus 
[ITG] (supplementary figure S7), which were largely over-
lapped with the regional findings in the self-recorded 
dataset.

Relationship Between Temporal Efficiency Metrics and 
Clinical Features

In the self-recorded dataset, 7 regions exhibited significant 
correlations with the clinical measurements. Specifically, 
a significant positive correlation was observed between 
the temporal regional efficiency in the ORBinf.L and 
positive symptoms (r = 0.603, P = 0.023) on the Positive 
and Negative Syndrome Scale (PANSS). For the PANSS-
negative symptoms, significant negative correlations 
were found in the AMYG.R (r  =  −0.705, P  =  0.004), 
CUN.R (r = −0.581, P = 0.029), LING.R (r = −0.532, 
P  =  0.047), MOG.L (r  =  -0.642, P  =  0.013), PCUN.R 
(r = −0.802, P < 0.001 *, * indicates correlation-survived 
FDR threshold at q < 0.05), and TPOmid.L (r = −0.711, 
P = 0.004 *). For the PANSS-general symptoms, a sig-
nificant positive relationship was found in the ORBinf.L 
(r = 0.620, P = 0.018). For the PANSS-overall symptoms, 
only AMYG.R (r = −0.678, P = 0.007) and TPOmid.L 
(r = −0.562, P = 0.036) exhibited significant negative cor-
relation (table 2).

In the replication dataset, relationship between tem-
poral network metrics and clinical variables failed to pass 
the significance threshold (P > 0.05).

Discussion

We report a functional neuroimaging analysis examin-
ing the schizophrenia-related dynamic functional dys-
connectivity. To our knowledge, this is the first study to 

directly examine the 3D spatiotemporal architecture of 
the temporal brain networks in patients with schizophre-
nia. The significant findings are as follows: first, although 
the optimal temporal small-world properties were pre-
served, a significantly higher temporal global efficiency 
was revealed in patients; second, we found prominently 
localized changes of the temporal nodal properties in the 
left frontal, right medial parietal, and bilateral subcorti-
cal areas; third, the aberration of temporal network topo-
logical properties was correlated with the clinical features 
of schizophrenia.

The temporal brain network in patients with schizo-
phrenia exhibited a significantly higher temporal global 
efficiency with a preserved temporal local efficiency, 
indicating a tendency toward a more random orga-
nization of  temporal brain networks (supplementary 
figure S5). Of note, a subtle randomization of  functional 
network architecture has been repeatedly reported in 
static FC studies of  schizophrenia.10,14 In searching for 
the origin of  such topological alterations, 2 recent stud-
ies showed more spatially diverse static FC in patients 
with schizophrenia.13,55 Taking into account time-vary-
ing role of  dynamic FC, our findings may therefore 
extend this finding to a context of  spatiotemporal ran-
domization of  temporal brain network architecture in 
schizophrenia. Heuristically, the higher temporal global 
efficiency, the shorter temporal distances between pairs 
of  nodes in the temporal network.44,46 The finding of 
higher temporal global efficiency therefore represents 
more fluctuations of  the dynamic brain network back-
bone in schizophrenia (see an example in Supplementary 
video). However, our findings are unlike recent studies 
of  dynamic dysconnectivity in schizophrenia,25,26 which 
revealed low fluctuations of  brain network metrics. 

Fig. 3.  The spatial distribution of cortical regions showing significant between-group difference (P < 0.05, FDR (false discovery rate)-
corrected) in the self-recorded dataset. The color bar represents Z-score. For the abbreviations of the cortical regions, see supplementary 
table 1. L = left, R = right.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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The discrepancies could stem from the different analyt-
ical frameworks used in this study and previous work, 
that is a temporal distance-based estimation on highly 
sparse dynamic FC backbone in this study in compar-
ison with variance analysis of  static graph theoretical 
metrics in snapshot networks in the works of  Du et al 
and Yu et al.25,26 Initial exploration of  the origins of  dy-
namic FC showed direct relevance between the promi-
nent and stable dynamic FC and underlying anatomical 
connections24,56,57 and highlight a rich-club (highly inter-
connected hubs in structural brain networks) core where 
functional connections exhibited greatest stability over 
time to facilitate the dynamic spreading.56,58 It is note-
worthy that convergent evidences have demonstrated 
a widely spread significantly reduced anatomical con-
nectivity59,60 and a disrupted rich-club organization in 
patients with schizophrenia.61,62 Thus, we speculate the 
higher fluctuations of  dynamic brain network backbone 
may be attributable to a relaxation of  the normal con-
straints imposed by anatomical interactions. In line with 
our observation, Ma et al28 utilized independent vector 
analysis of  time-varying spatial brain connectivity and 
revealed significantly more fluctuations of  spatial con-
cordance in patients with schizophrenia. According to 
Zalesky et  al,36 dynamic fluctuations in FC appear to 
be coordinated across the brain so as to realize globally 
coordinated variations in network efficiency over time, 
which might represent a balance between optimizing in-
formation processing and minimizing metabolic expend-
iture. However, excessive variability of  dynamic FC may 
prevent thoughts from developing meaningful intercon-
nectedness among successive mental states.63 Therefore, 
the higher fluctuations of  dynamic brain network back-
bone revealed here may represent less optimal informa-
tion processing and an aberration of  maintaining the 
economy metabolic cost in schizophrenia.

Conceptually, temporal nodal efficiency is a measure of 
localized temporal information transmission. Therefore, 
it seems plausible that profoundly higher temporal nodal 
efficiency in the left frontal, right medial parietal, and 
bilateral subcortical areas may indicate more fluctuations 
of dynamic FC linking the areas. Of note, the structural 
aberrations of these areas have been repeatedly revealed 
in previous neuroimaging studies.14 For instance, in one 
recent meta-study, Ellison-Wright and Bullmore59 found 
significant reductions in a left frontal–thalamocortical 
circuit and a temporal network interconnecting the fron-
tal lobe, insula, hippocampus–amygdala, and temporal 
and occipital lobes. Meanwhile, pathology of subcortical 
regions has been consistently implicated as robust find-
ings in the pathogenesis of schizophrenia and relation-
ship with various clinical manifestations.64 The restricted 
nature of the anatomical reduction may reflect the greater 
fluctuations of dynamic functional connections in the 
localized brain regions of patients with schizophrenia as 
observed in this work. In terms of the functional architec-
ture of the brain,65 these regions belong to default mode, 
salience, and frontoparietal subnetworks. According to 
Christoff  et al,63 thought is constrained automatically by 
default mode network and deliberately by frontoparietal 
network, where the modulation is conducted via salience 
network. Therefore, the significantly higher temporal 
regional properties may represent a dysregulation of both 
automatic and deliberate constraints, which contribute to 
the “profound disruption of thought” characterized by 
frequent and abrupt leaps from one topic to another in 
schizophrenia.63 More importantly, we found that the 
aberrations of temporal nodal properties were associ-
ated with clinical features of schizophrenia in a complex 
manner. These findings are consistent with the notion 
that variations in distinct symptom domains arise from 
alterations of different neural circuits.66 Of note, given 

Table 2.  Partial Correlation Coefficients Between Temporal Network Metrics and Clinical Characteristics of Patients with Schizophrenia 
in the Self-Recorded Dataset

Metrics

Partial Correlation Coefficients (P Value)

Duration PANSS Positive PANSS Negative PANSS General PANSS Overall

Et
nodal ORBinf.L( ) −0.287 (0.320) 0.603 (0.023) −0.204 (0.484) 0.620 (0.018) 0.407 (0.149)

Et
nodal AMYG.R( ) −0.206 (0.479) −0.126 (0.668) −0.705 (0.004) −0.371 (0.191) −0.678 (0.007)

Et
nodal CUN.R( ) −0.099 (0.736) 0.454 (0.103) −0.581 (0.029) 0.110 (0.708) −0.141 (0.630)

Et
nodal LING.R( ) −0.013 (0.965) 0.330 (0.249) −0.532 (0.047) 0.192 (0.510) −0.116 (0.692)

Et
nodal MOG.L( ) −0.287 (0.320) 0.444 (0.111) −0.642 (0.013) −0.059 (0.842) −0.267 (0.357)

Et
nodal PCUN.R( ) −0.397 (0.160) 0.426 (0.129) −0.802 (<0.001)* −0.107 (0.716) −0.400 (0.157)

Et
nodal TPOmid.L( ) −0.256 (0.377) −0.034 (0.907) −0.711 (0.004)* −0.200 (0.494) −0.562 (0.036)

Note: PANSS, Positive and Negative Symptom Scale; *Indicates correlation survived FDR (false discovery rate) threshold at q < 0.05. 
The partial correlation coefficients were estimated via multiple linear regressions with age, gender, age-by-gender interaction, and 
medication dosage as covariates. Significant correlation (P < 0.05) was indicated by the bold text. For the abbreviations of the cortical 
regions, see supplementary table 1. 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby077#supplementary-data
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the uncorrected statistics, the observed significant rela-
tionship should be interpreted as exploratory in nature.

In comparison to previous dynamic FC studies of 
schizophrenia,19,20,25,26 investigations of  the 3D spati-
otemporal topology of  the temporal brain networks, 
as in this study, are of  important for 2 reasons. First, 
through incorporating the temporal variations in func-
tional connections into quantitative graph theoreti-
cal framework, they allow better appreciation of  the 
intrinsic organization of  brain functional networks. 
Second, the unidirectional characteristic of  temporal 
distance may help to delineate the dynamic reconfig-
uration of  brain networks in prominent cognitive dis-
turbance in schizophrenia, particularly in task-design 
experiment.67

Some issues should be considered when interpret-
ing our findings. First, patients within the study were 
regularly taking medication during the scan period. 
Although previous neuroimaging studies have reported 
pharmacological changes in both localized brain regions 
and connections in patients with schizophrenia,68,69 the 
effects of  medication on brain structure and function 
are far from conclusive.70 In fact, one recent study sug-
gested that medication is unlikely to be a confounding 
factor and may on the contrary exert a normalizing 
influence.10 We had performed additional analysis to 
regress the covariant of  antipsychotic dose equivalency 
and found between-group differences intact, suggesting 
the observed aberrations may reflect the intrinsic disease 
process rather than the effects of  direct pharmacological 
treatment. Second, a widely used proportional thresh-
olding approach41,42 was used in this work to retain the 
dynamic FC backbone. Most recently, van den Heuvel 
et al71 performed a case–control study to investigate the 
influence of  proportional thresholding in resting-state 
fMRI FC and suggested that cautious application of 
thresholding approach for patient–control comparisons 
should take into account of  potential influence of  overall 
FC. According to van den Heuvel et al,71 we performed 
two additional analyses to address this issue. The over-
all FC strength of  the dynamic brain network backbone 
was initially compared between both groups, where no 
significant between-group difference was revealed (sup-
plementary figure S2B). Moreover, in following statisti-
cal analysis of  temporal network metrics, we regressed 
out potential effects of  the overall strength of  FC and 
found consistent between-group differences. As there 
is no current consensus on the selection of  network 
thresholds in graph theoretical analysis, new advances 
in thresholding of  functional connectomes72 are there-
fore expected. Alternative effort may also be made to 
extend the temporal efficiency metrics into weighted 
temporal brain network.73 Third, to date, most fMRI-
based dynamic FC studies including the present work 

are concerned with the changes that happen over the 
course of  seconds.16,18 Nevertheless, the organization of 
brain functional networks exhibits temporal dynamics 
on multiple timescales. For instance, transient cognitive 
networks established and dissolved on a subsecond time-
scale.74 New advances in temporal network construction 
utilizing neuroimaging techniques with higher temporal 
resolution (ie, electroencephalography/magnetoencepha-
lography) are therefore of  interest to reveal dynamic 
reconfiguration of  networks in prominent cognitive dis-
turbance in schizophrenia at fine timescale.73,75 Finally, 
to increase the credibility of  the current work, we used 
2 independent datasets and mainly focused on the inter-
pretation of  the comparable findings. Although this is 
an advantage of  the study, the included patients subse-
quently have different scanning settings and heterogene-
ous clinical characteristics. Given the paucity of  research 
in schizophrenia-related dynamic dysconnectivity, fur-
ther studies with a larger independent study sample are 
recommended to confirm our observations.

In summary, quantitative assessment of  the dynamic 
FC in terms of  temporal small-world properties, as 
performed in this study, provides the first opportunity 
to investigate the impaired spatiotemporal topology 
of  the temporal brain networks in schizophrenia. We 
show that beyond a prominent temporal small-world 
architecture, there are aberrations of  dynamic FC both 
globally and regionally in schizophrenia, which are 
also correlated with clinical features. These findings 
extend the dysconnectivity hypothesis in schizophre-
nia2 from static to dynamic brain network and provide 
insights into the aberrant brain dynamics, which may 
help unravel the pathophysiologic mechanisms of  the 
disease.
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Appendix

Appendix Table. Glossary of key concepts used in this article

Name Measurement and Meaning

Node Corresponding to the region of interest defined using parcellation atlas and it is constant in the 
snapshot static graph at each sliding-window.

Contact Connection linking a pair of nodes in the snapshot static graphs at each sliding-window.
Sparsity The ratio of the number of existing contacts divided by the maximum possible number of contacts in 

the snapshot static graphs.
Aggregated network Aggregate the contacts over the entire network lifetime, ie, a connection between a pair of nodes 

would be determined to exist if  the pair of nodes is linked by at least one contact at any time step.
Edge Connection linking a pair of nodes in the aggregated network.
Temporal distance
( τ i j t→ ( ) )

τi→j(t) is defined as the smallest number of time steps required to reach node j from node i starting at 
time t. Temporal distance is a measure in the time domain, with the smallest value being 1 (when i and 
j are connected through a static path at time t irrespective of the geometric distance of the static path) 
and the largest value being infinity (when no time-respecting path exists from i to j at time t.

Temporal global efficiency
(Et

glob)
Et

glob measures how efficient the overall information is exchanged in a time- 
varying system.

Temporal local efficiency
(Et

loc)
Et

loc measures the overall resilience of the temporal network to local failures caused by the removal of 
any node at any time step.

Temporal nodal efficiency
(Et

nodal(G, i))
Et

nodal(G, i) measures the ability of temporal information transmission of node i in the temporal 
network: a node with high Et

nodal(G, i) indicates greater interconnectivity with other nodes in the 
temporal network.
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