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Numerous high-throughput omics studies have been con-
ducted in schizophrenia, providing an accumulated catalog 
of susceptible variants and genes. The results from these 
studies, however, are highly heterogeneous. The variants 
and genes nominated by different omics studies often have 
limited overlap with each other. There is thus a pressing 
need for integrative analysis to unify the different types 
of data and provide a convergent view of schizophrenia 
candidate genes (SZgenes). In this study, we collected a 
comprehensive, multidimensional dataset, including 7819 
brain-expressed genes. The data hosted genome-wide as-
sociation evidence in genetics (eg, genotyping data, copy 
number variations, de novo mutations), epigenetics, tran-
scriptomics, and literature mining. We developed a method 
named mega-analysis of odds ratio (MegaOR) to prior-
itize SZgenes. Application of MegaOR in the multidi-
mensional data resulted in consensus sets of SZgenes (up 
to 530), each enriched with dense, multidimensional evi-
dence. We proved that these SZgenes had highly tissue-
specific expression in brain and nerve and had intensive 
interactions that were significantly stronger than chance 
expectation. Furthermore, we found these SZgenes were 
involved in human brain development by showing strong 
spatiotemporal expression patterns; these characteristics 
were replicated in independent brain expression datasets. 
Finally, we found the SZgenes were enriched in critical 
functional gene sets involved in neuronal activities, ligand 
gated ion signaling, and fragile X mental retardation pro-
tein targets. In summary, MegaOR analysis reported con-
sensus sets of SZgenes with enriched association evidence 
to schizophrenia, providing insights into the pathophysi-
ology underlying schizophrenia.
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candidate genes/brain/spatiotemporal expression

Introduction

Schizophrenia is a chronic and severe brain disorder 
whose pathophysiology remained largely unknown.1,2 
Over the past decade, numerous studies have been con-
ducted to understand the genetic and pathophysiologic 
architecture of schizophrenia. These studies utilized the 
approaches in genetics,3–5 epigenetics,6 transcriptomics,7 
proteomics, metabolomics,8,9 and functional genomics, 
among others. Genetic factors contribute significantly to 
risk for schizophrenia.10 So far, there have been hundreds 
of inherited genetic variants that were identified through 
genome-wide association studies (GWAS)2,11,12 and hun-
dreds of rare variants and de novo mutations (DNMs) 
identified through next-generation sequencing (NGS) 
technologies.13 More than 10 studies reported DNMs in 
schizophrenic patients, though a recent study found only 
1 gene, ie, SETD1A, had reached genome-wide signifi-
cance.13 In addition to single nucleotide polymorphisms 
(SNPs), a stronger burden of rare copy number varia-
tions (CNVs) was observed in schizophrenic patients.14,15 
In addition, more than 10 large-scale epigenetics studies 
reported differentially methylated CpG sites that showed 
significant association with schizophrenia.16–25 Because 
schizophrenia has long been considered a brain disorder, 
transcriptomic studies using postmortem human brain 
tissue are helpful for exploring molecular mechanisms 
of schizophrenia, such as genes and pathways abnor-
mally expressed in patients.7,26,27 However, human brain 
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development involves complex and rigorous regulation 
of transcriptional programs in a manner with temporal 
and spatial specificity,28 placing additional layers of com-
plexity in the investigation of schizophrenia genes.

Several challenges exist in the integration of  heteroge-
neous data to prioritize disease candidate genes.29 First, 
the correlations among the multidimensional data remain 
elusive. Specific properties of  genes or mutations vary 
among original studies (eg, RNA-sequencing [RNA-seq] 
measures mRNA level of  a gene whereas methylation 
measures the epigenetic level of  a gene) and at differ-
ent scales or resolution (eg, linkage studies report large 
genomic regions but NGS at single-base resolution). 
Some datasets presumably have high correlations (such 
as GWAS signals and linkage peaks) whereas others 
barely have good correlation (such as GWAS signals and 
DNMs). Although integration of  GWAS signals with 
expression quantitative trait loci (eQTL) has revealed 
regulatory roles of  schizophrenia-associated SNPs,30 in-
tegrative and cross-talk analysis among other types of 
association data has been lacked so far. Second, it is not 
known a priori which data types are more predictive 
than others for disease candidate genes. We previously 
developed a weighted-sum algorithm that estimated a 
relative weight for each dimension of  data based on a 
set of  gold-standard genes and assigned a weighted-sum 
score for each gene to prioritize promising candidates.31 
However, as we will show in our results, such strategies 
are no longer suitable because historically important 
genes (HIGs), which were used as the gold-standard 
genes in previous works,31 were mainly detected using 
conventional technologies (eg, candidate gene associa-
tion studies) and they have limited power in evaluating 
genes from newly explored data types (eg, methylation). 
Therefore, new approaches are needed to effectively inte-
grate a variety of  omics data for the discovery of  disease 
candidate genes and can be easily expanded when new 
data are generated.

Here, we curated comprehensive, multidimensional 
omics data conducted for schizophrenia, involving 10 
058 candidate genes (7819 expressed in brain).32 All 
datasets were constructed using schizophrenia cases and 
normal controls and all genes had at least one kind of 
evidence indicating their association with schizophrenia. 
We proposed a method called mega-analysis of odds 
ratio (MegaOR) to prioritize consensus sets of schizo-
phrenia candidate genes (SZgenes). We demonstrated the 
robustness of the SZgenes by using independent omics 
data from normal brain samples. Such computational 
benchmarking revealed tissue specificity, temporal and 
spatial expression pattern, intensive connection, and 
functional enrichment of SZgenes in brain. To the best 
of our knowledge, this is the largest ever integrative anal-
ysis of schizophrenia genes, which leverages on nearly 
all types of variants and genes that had been reported in 
schizophrenia.

Materials and Methods

Multidimensional Datasets in Schizophrenia

We used the omics data collected in our SZGR 2.0 data-
base32 and organized the data into 8 categories based on 
the types of evidence (tables S1 and S2). A ground rule for 
the data to be included in our analyses was that all vari-
ants and genes must be collected from studies using schiz-
ophrenic patients and normal control samples so that the 
association relationship could be calculated. We included 
GWAS “top hit” genes at genome-wide significance, CNV 
genes, GWAS Pascal genes (gene-based combined GWAS 
association information measured by PPascal

33), Sherlock 
genes (gene-based combined GWAS and eQTL informa-
tion measured by PSherlock

34), genes with DNMs (gene-
based enrichment of DNMs measured by Transmission 
And De novo Association (TADA)35 P value), differen-
tially expressed genes (DEGs), differentially methylated 
genes (DMGs), and genes nominated by the literature 
co-occurrence. A detailed description of the preprocess-
ing steps is presented in the Supplementary material. All 
genes and their evidence are presented in table S1.

Mega-analysis of Odds Ratio

We aim to identify a set of candidate genes that collec-
tively have the most intensive load of evidence for their 
association with schizophrenia. We propose MegaOR, an 
unsupervised approach that does not rely on a predefined 
gold-standard gene set (ie, a training set) to identify such 
consensus gene sets (figure 1). MegaOR implements an 
iterative “try-and-fix” procedure and requires 2 inputs: a 
multidimensional data matrix, with a value of 1 indicat-
ing a gene was a positive candidate based on the corre-
sponding evidence and 0 otherwise, and a predefined set 
size of candidate genes (n). MegaOR calculates an odds 
ratio (OR) for each single dimension and a combined OR 
(cOR) across multidimensional data for a given set of 

candidate genes (S, with size n): cOR
d

= + −µ µΣ( )OR 2

,  

where OR is defined for each dimension, μ is the average 
value of all ORs, and d  =  8 indicates the number of 

dimensions. The part Σ( )OR − µ 2

d
 was included as pen-

alty to control deviation of any dimensional OR from the 
average OR. cOR is iteratively optimized by exchanging 
genes in the temporary candidate gene list S and genes 
not in S (ie, the trying process) and fixing the change if  
cOR improves (ie, the fixing process). Such “try-and-fix” 
steps will continue until cOR reaches a stable value. The 
number of candidate genes, n, depends on the partic-
ular polygenic burden of the disease model. Although 
it is far from accurate understanding in schizophrenia, 
previous studies have suggested n to be hundreds to a 
few thousands.29 Thus, we tested multiple representa-
tive parameters, ie, n = 200, 300, 400, 500, 600, 700, 800, 
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900, and 1000. A detailed description is available in the 
Supplementary material.

Multiple Tissue and Brain Expression Data

We utilized 3 sets of  gene expression data with different 
aspects to explore the tissue specificity and spatiotem-
poral expression pattern of  the SZgenes. Of  note, all val-
idation data were collected from normal samples, which 
had no overlap with the samples used in SZgene prioriti-
zation. First, the GTEx data (version 6) were included to 
investigate the tissue-specific expression patterns of  each 
gene.36 A total of  27 tissues were considered, each with 
≥ 30 samples. For each gene, we defined a z score to m 

easure its tissue specificity: Z
e mean E

sd Ei
i=

− ( )

( )
, where ei  

is the average gene expression of  the gene in the i th tissue, 

E represents the collection of  its average gene expression 
in all tissues, and sd  indicates the standard deviation 
of  E. A  higher z score indicates the gene to be more 
specifically expressed in the investigated tissue. Second, 
the BrainSpan dataset measured the developmental 
transcriptome of  normal brain from fetus to adulthood 
and was included to explore the spatiotemporal expres-
sion patterns of  genes.37 The transcriptome of  multiple 
brain regions was investigated using RNA-seq. Third, 
the BrainCloud dataset was included to explore the 
temporal expression pattern of  genes,28 including 269 
human postmortem dorsolateral prefrontal cortex sam-
ples. Following the original work, we calculated a β value 
for each gene to measure the expression changes before 
birth (n = 38 fetal samples) and after birth (n = 231 sam-
ples aging up to 80 years). Specifically, we fit a regres-

sion model for each gene as y X SVfetal= + + +α β γ εΣ ,  
where y is the vector of  expression for the gene, Xfetal is 
an indicator variable with xi = 0 for fetal samples and 
xi = 1 otherwise, and ΣγSV  represents surrogate vari-
ables as suggested by the original work to control for 
potential biases.28,38

Results

Multidimensional Association Evidence for 
Schizophrenia

We obtained a total of 7819 brain-expressed genes, each 
with at least one type of evidence supporting its associ-
ation with schizophrenia: 451 GWAS genes, 138 CNV 
genes, 4146 genes with PPascal < .05, 707 genes with PSherlock 
< .05, 243 genes with PTADA < .05, 149 DEGs, 246 (2715) 
DMGs supported by ≥2 (≥1) studies, and 617 (2173) 
genes co-mentioned with schizophrenia key words in ≥3 
(≥1) PubMed records (figure 2B–I). Among them, 5494 
(70.26%) genes had only 1 line of evidence and no gene 
was supported by ≥6 lines of evidence (figure 2A). Some 
example genes included CACNA1C (a GWAS gene, 
PPascal = 1.00 × 10−12, PSherlock = 2.98 × 10−3, a DMG, and 
# PMIDs [PubMed identifier]) = 77), GRIN2A (a GWAS 
gene, PPascal = 2.30 × 10−5, a DMG, PTADA = .024, and # 
PMIDs = 25), and GABRB3 (located in the duplication 
region on chromosome 15,39 PPascal = 5.53 × 10−4, and # 
PMIDs = 9).

We evaluated HIGs using our data but did not find 
overrepresentation of evidence. HIGs referred to those 
that were implied in the widely recognized hypotheses in 
schizophrenia (neurodevelopment, glutamate, dopamine, 
immune, and mood disorder)40,41 and have been exten-
sively studied, such as BDNF, DISC1,42 and DTNBP1.43 
HIGs had been frequently used as gold-standard genes 
in many studies to evaluate and predict novel candidate 
genes for schizophrenia.31 Here, we collected 45 HIGs 
from our previous work (n = 38)31 and others (n = 25)40 

Fig. 1.  A schematic pipeline of the mega-analysis of odds ratio 
(MegaOR) method. (A) Definition of odds ratio (OR) in each 
dimension and the combined OR (cOR). (B) Illustration of the 
MegaOR pipeline.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
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and re-evaluated the evidence for these HIGs. Eight genes 
were removed due to low expression in brain. Among 
the remaining 37 HIGs, none had ≥4 lines of evidence 
(table S4). Within each data dimension, there were <50% 
HIGs with evidence: 8 GWAS genes, 3 CNV genes, 14 
genes with PPascal < .05, no gene with PSherlock < .05, 2 genes 
with PTADA < .05, no DEG, and 8 DMGs. This obvious 
lack of support, which is consistent with a recent study,44 
made HIGs short of power to evaluate other genes with 
the multidimensional evidence data, and thus, HIGs 

might not be appropriate to serve as the gold standard to 
prioritize candidate genes in omics-based studies.

Correlation Among Multidimensional Data

Pairwise comparisons of all 8 data types revealed only 4 
pairs of cross talk with positive correlations (figure 2J). 
Genes co-occurring with schizophrenia key words (# 
PMIDs ≥3) had 3 correlated data types: GWAS genes 
(P  =  1.71  ×  10−8, 1-sided Fisher’s exact test [FET]; 

Fig. 2.  Overview of the multidimensional data covering 7819 genes with at least 1 line of evidence. (A) Distribution of genes with 
multiple lines of evidence. Genome-wide association studies (GWAS) genes (B) and copy number variation (CNV) genes (C) were binary 
definition. The gene-based P values by Pascal (D), by Sherlock (E), and by TADA were continuous variables (H). (F) Distribution 
of differentially methylated genes (DMGs) reported by the number of studies. (G) Distribution of PubMed identifier (PMID) genes 
co-occurring with schizophrenia keywords. (I) Distribution of adjusted P values for differentially expressed genes (DEGs) from 2 
datasets. Triangles indicate DEGs defined in Zhao et al.,7 whereas rectangles indicate DEGs using HBB_BA9 and dots indicate DEGs 
using CC_BA10 from Maycox et al.27 (J) Overall representation of the pairwise comparison. Genes were categorized as candidates if  
they had PPascal < .05, PSherlock < .05, or PTADA < .05, or if  they were GWAS genes, CNV genes, DEGs, DMGs with ≥2 studies, or PMID 
genes co-occurring with schizophrenia keywords in ≥3 publications. The values in each cell are—log10(P) from 1-sided χ2 test. (K–N) 
Demonstration of pairwise comparison. The comparison between PSherlock and PPascal was not shown.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
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figure 2K), CNV genes (P = 2.53 × 10−6; figure 2M), and 
DNM genes (P = 5.03 × 10−3; figure 2L). GWAS genes 
tended to have small Pascal P values (P = 6.99 × 10−29, 
1-sided t test; figure 2N). The remaining pairs showed no 
favorable overlaps or correlations. For example, DEGs, 
DMGs, and DNM genes were not correlated with any 
other data types; Pascal genes showed no difference be-
tween CNV and non-CNV genes, DNM and non-DNM 
genes, DEGs and non-DEGs, or DMGs and non-DMGs. 
Surprisingly, no significant enrichment was found be-
tween Pascal genes and Sherlock genes, even though both 
were derived from the Psychiatric Genomics Consortium 
(PGC)11 GWAS data. This lack of correlation suggested 
that there might be unique information in each of them. 
Collectively, these results implied that the 8 categories of 
evidence data were highly heterogeneous and diversely 
correlated, motivating an effort to develop an efficient 
method to integrate them, as shown in the following 
sections.

SZgenes by MegaOR

Considering that the candidate genes supported by each 
single category were rather sparse, we applied MegaOR 
with the ultimate goal for identifying a subset of candidate 
genes that collectively have the most intensive load of evi-
dence to support their association with schizophrenia. To 
ensure high confidence of candidate genes, we utilized the 
following criteria: GWAS and CNV genes as originally 
mapped, PPascal < .001, PSherlock < .05, DEGs with adjusted 
P < .05 in the original studies, PTADA < .05, DMGs re-
ported by ≥2 studies, and PMID genes co-occurring with 
schizophrenia key words in ≥3 publications. We tested 9 
set sizes (n = 200, 300, 400, 500, 600, 700, 800, 900, and 
1000) and for each set size, we conducted MegaOR for 
100 times, resulting in 100 stable sets, each with n genes. 
Figure 3A shows the average OR values of the 100 stable 
sets at each sizes. When set size increased, the OR values 
decreased. For each set size, the difference of ORs from 
each dimension did not exceed by 1.5, implying that none 

Fig. 3.  Application of mega-analysis of odds ratio (MegaOR) to identify schizophrenia candidate genes (SZgenes). (A) Odds ratio 
(OR) distribution in each dimension for each set size: n = 200, 300, 400, 500, 600, 700, 800, 900, and 1000. Each dot line in the same 
color indicates the average ORs in each dimension for 100 stable sets resulted from MegaOR (see main text). (B) The frequency of genes 
covered by 100 stable sets at an example size n = 700. Genes on the left part of the plot were less frequently covered, ie, <50% times. 
Genes on the right part of the plot  were selected as the final SZgenes for the corresponding set size. (C) Distribution of SZgenes at each 
set size. (D) Tissue-specific expression of 9 SZgene sets (S1–S9) in 27 tissues from GTEx. The y-axis is the average z scores of SZgenes in 
each tissue. The x-axis was ordered by the average z scores in S1. P values for each tissue were obtained using 1-sided t test comparing z 
scores of SZgenes and non-SZgenes. For each tissue, the range of P values from 9 SZgene sets were labeled. (E) Illustration of z scores 
in tissues where SZgenes had significantly higher z scores than other genes (brain and nerves) and in tissues where SZgenes showed no 
difference (blood) or showed decreased z scores (testis) compared to non-SZgenes. (F) Brain region-specific expression of 9 SZgene sets 
(S1–S9) using GTEx data. The y-axis is the average z scores of SZgenes in each brain region. The x-axis was ordered by the average z 
scores in S1.



703

Mega-analysis of Odds Ratio

of the 8 types of evidence dominated the resultant genes, 
mainly due to the penalty we included in the calculation 
of cOR (see the section “Materials and Methods”). We 
chose the genes that were retained in the stable sets for 
more than 50% times (figure 3B). In total, we obtained 
9 sets of SZgenes. We referred them to S1 for set size 
n = 200 (final SZgenes: 189), S2 for n = 300 (287), S3 for 
n = 400 (314), S4 for n = 500 (371), S5 for n = 600 (452), 
S6 for n = 700 (530), S7 for n = 800 (537), S8 for n = 900 
(537), and S9 for n = 1000 (538). SZgenes obtained using 
large set sizes could cover nearly all the SZgenes obtained 
using lower set sizes. For example, S2 had 287 genes, in-
cluding all the 189 genes in S1. At size n = 700, SZgenes 
converged to a stable status—no substantial extension 
of SZgenes even when the set size increased to 1000 
(figure 3C). Thus, we suggested that the 530 SZgenes in 
S6, all of which were included in S7–S9, were close to 
a consensus set of SZgenes that could reach the global 
maximum load of evidence. Importantly, all 530 SZgenes 
were supported by at least 2 lines of evidence (figure S1). 
We also conducted a systematic evaluation of the evi-
dence (Supplementary material), particularly for GWAS, 
Pascal, DEG, and PMID (figures S2, S3, and S4). Our 
results indicated that each of them contributed a unique 
part of genes in the consensus SZgene sets. Thus, we 
chose to keep all 8 lines in our analyses.

Validation of SZgenes: Tissue Specificity

By examining the tissue-specific gene expression patterns, 
we found SZgenes tended to be significantly expressed in 
brain and nerve (figure 3D). We utilized expression data 
for 27 tissues from GTEx36 and performed a 1-sided t test 
for each tissue to compare the z scores of SZgenes and 
non-SZgenes. As shown in figures 3D and S5, SZgenes 
showed statistically significant difference in several tis-
sues, including brain (P =  [6.5 × 10−11 – 3.3 × 10−4] for 
9 SZgene sets) and nerve (P = [2.4 × 10−4 – 1.4 × 10−3]). 
Importantly, although blood samples were widely used 
in schizophrenia research, SZgenes showed no difference 
in blood compared with non-SZgenes, highlighting the 
importance of tissue-specific expression profile in study-
ing disease genes. Similarly, although SZgenes had high 
z scores in testis, our significance test eliminated testis 
from the tissue list in which SZgenes showed significant 
specificity, as SZgenes did not have significantly higher z 
scores than those of non-SZgenes (figure 3E).

As our genes were prefiltered as “brain-expressed 
genes,” we conducted additional analyses to ensure that 
the prefiltering criteria did not confound the tissue-spe-
cific patterns we observed. Specifically, we performed 
the t test in following 4 ways: (1) compare SZgenes with 
other genes in the transcriptome; (2) compare SZgenes 
with other genes in the evidence data matrix; (3) com-
pare SZgenes with other genes in the transcriptome, while 
requiring each gene to have an average Reads Per Kilobase 

of transcript per Million mapped reads (RPKM) > 1 in 
the tissue of investigation (a similar criterion as we used to 
define brain-expressed genes); and (4) compare SZgenes 
with other genes in the evidence data matrix, while requir-
ing each gene to have an average RPKM > 1 in the tissue 
of investigation. In addition, for each test, we conducted a 
randomization test by randomly selecting the same num-
ber of genes from the evidence data matrix. An empirical 
P value was calculated as the number of random sets that 
had a P value lower than the actual P value. As shown in 
table S5, in all the tests, brain is the only tissue in which 
our SZgenes showed significant tissue-specific expression.

We further explored the brain region specificity of 
SZgenes (figure  3F). The nine SZgene sets showed 
increased specificity in gene expression data from brain 
regions (cerebellum, cerebellar hemisphere, frontal cor-
tex (BA9), and cortex datasets), which had been implied 
in schizophrenia previously. However, the difference 
between SZgenes and non-SZgenes was not statistically 
significant in most regions, implying that the region spec-
ificity might not be prominent (see the section “Lack of 
Regional Variability”).

We performed a cell-type specific expression anal-
ysis45 of the 530 consensus SZgenes. We found these 
SZgenes were significantly enriched in Ntsr+ neu-
rons of cortex (P  =  6.24  ×  10−4, adjusted PBH  =  .007), 
Drd1+ medium spiny neurons of striatum (P = 2.47 × 10−4, 
PBH = .004), and Drd2+ medium spiny neurons of stria-
tum (P = 5.20 × 10−5, PBH = .002) (figure S10).

Validation of SZgenes: Protein–Protein Interaction

Examination of protein–protein interaction (PPI) data 
revealed that SZgenes interacted with each other more 
frequently than by chance. We and others have previously 
shown that schizophrenia genes, eg, those harboring 
DNMs, tended to interact with each other more closely 
than with other genes in human PPI networks.46 For 
each SZgene set, we recorded the number of interactions 
among SZgenes and resampled 10 000 random gene sets, 
each matching the SZgenes in size. The number of ran-
dom gene sets that had interactions exceeding the actual 
number of interactions was used to calculate an empirical 
P value. We performed this analysis using 3 independent 
human PPI networks: a combined network of STRING 
and HPRD,47 HumanNet v.1,48 and PathwayCommons.49 
These networks have been utilized in the analysis of 
GWAS data or other common diseases,48 each with dif-
ferent focuses (table S6). Strikingly, SZgenes showed sig-
nificantly more PPIs than those from random gene sets in 
all 3 networks (table 1).

Developmental Gene Expression Patterns of SZgenes

To explore the expression patterns of SZgenes dur-
ing brain development, we used 2 datasets of normal 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
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brain tissue from BrainSpan (multiple regions)37 and 
BrainCloud (prefrontal cortex).28 We conducted 2-stage 
(before and after birth) and 3-stage (before birth, infancy, 
and childhood to adulthood) analyses.

2-Stage Expression Patterns.  SZgenes showed overrep-
resentation of genes with more dramatic changes before 
and after birth (figure 4A). To quantitatively assess the 
pattern, we used Wilcoxon rank-sum test (1 sided) to 
compare SZgenes and other genes respectively in 2 sce-
narios: genes that were overexpressed after birth (β > 
0)  and genes that were overexpressed before birth (β < 
0). In either case, we tested if  SZgenes had β values fur-
ther apart from 0 (ie, large |β| values). As shown in fig-
ure 4A, using BrainSpan data, we observed an increased 
proportion of genes with large |β| values on both sides, 
represented by the increased shoulders on both sides. 
This is in line with previous studies that reported genes 
with prenatal transcript abundance in several psychiat-
ric diseases, including intellectual disability and autism 
disorder.38 The same pattern was validated using the 
BrainCloud data (figure  S6). Because a larger |β| value 
reflects stronger change, these results implied that these 
SZgenes would act on their roles through expression dur-
ing brain development.

3-Stage Expression Patterns.  The development of 
human brain starts in fetal life and continues several 
years after birth. Through hierarchical cluster analysis 
of all samples from the BrainSpan dataset, we defined 3 
developmental stages: fetal development (stage 1, age < 
0), infancy (stage 2, age ≤ 2), and childhood to adulthood 
(stage 3, age > 2) (figure S7). We compared the median 
gene expression of each SZgene in each of the 3 stages, 
resulting in 6 expression clusters (figure 4B). In clusters 
I, II, and III, gene expression increased from stage 1 to 
stage 2, and then increased (cluster I), decreased (clus-
ter II), or further decreased (cluster III) from stage 2 to 
stage 3. In contrast, in clusters IV, V, and VI, gene expres-
sion decreased from stage 1 to stage 2, and then decreased 
(cluster IV), increased (cluster V), or further increased 
(VI) from stage 2 to stage 3.  The temporal expression 
pattern was largely validated using the independent 
BrainCloud dataset (figure  4B, bottom panel). Among 
the 6 clusters, the majority of genes (≥62%) in 3 clusters 
(I, II, IV) were found with at least 1 probe with the same 
pattern whereas genes in the other 3 clusters had repro-
ducible patterns in 47% (cluster V), 33% (cluster VI), and 
38% (cluster III) genes. For each cluster, we chose 2 exam-
ple SZgenes to demonstrate the expression changes over 
development stages (figure 4C).

Lack of Regional Variability

The BrainSpan data represents 4 major brain regions: 
subcortical regions (SC), sensorimotor regions (SM), T
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Fig. 4.  Expression and functional characterization of schizophrenia candidate genes (SZgenes). (A) Density plot of 2-stage gene 
expression pattern for SZgenes using the BrainSpan dataset. β value (x-axis) was obtained by comparison of expression before and 
after birth. A positive β value indicates the gene has higher expression after birth than before birth. One-sided t test was performed 
for genes with positive β values and genes with negative β values. (B) Six classes of expression patterns (I–VI) of SZgenes. x-axis: 
developmental stages: before birth (b.b), infancy (age ≤ 2), and childhood to adulthood (age > 2). y-axis: expression intensity. The top 
panel showed the expression pattern using the BrainSpan data (RNA-sequencing), with each line indicating 1 gene. The bottom panel 
showed the expression pattern using the BrainCloud data (microarray data), with each line indicating 1 probe. In the bottom panel, 
#genes (A) indicates the number of genes from the corresponding cluster in the BrainSpan data (top panel) that were also available in 
the BrainCloud data, and #genes (M) indicates the number of genes showing the matched expression pattern in the BrainCloud data 
(highlighted as red lines). (C) Example genes for each class using the BrainSpan data. Each dot represents a gene in a sample; dot color 
indicates stages. (D) Functional gene set enrichment analysis. PSD: postsynaptic densities. NRC: N-methyl-d-aspartate receptor complex. 
PSP: postsynaptic proteome. Details of the gene sets are provided in table S3. Only gene sets with significant enrichment in any of the 9 
SZgene sets (P < .05, Bonferroni method) were shown.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
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frontal cortex (FC), and temporal–parietal cortex (TP). 
In our examination of the developmental expression pat-
tern in each of the 4 regions, we found different brain 
regions displayed similar trends (figure S8). Those genes 
in the 6 clusters showed no significant change of expres-
sion in these brain regions except marginal significance in 
FC (using all genes: PFC = .11, PSC = .34, PSM = .63, and 
PTP =  .16; using genes with variance > 0.05: PFC =  .27, 
PSC = .30, PSM = .66, and PTP = .48; χ2 test). Two clusters 
had the strongest change: cluster I, where genes showed 
continuous increase during all 3 stages of lifespan, and 
cluster IV, where genes showed continuous decrease dur-
ing all 3 stages. These results were consistent with our 
analysis using GTEx data (figure 3F), where SZgenes did 
not show statistical significance among brain regions, al-
though region-specific trend was observed.

Gene Set Enrichment Analysis

Enrichment analysis using customized functional gene 
sets (table  S3, Supplementary material) revealed that 
SZgenes were consistently enriched in G-protein-coupled 
receptor (GPCR) signaling, postsynaptic density (PSD) 
gene groups, N-methyl-d-aspartate receptor complex, 
ligand-gated ion signaling, potential synaptic genes,50,51 
and fragile X mental retardation protein (FMRP) tar-
gets52,53 (figure 4D). In particular, SZgenes were enriched 
in a set of FMRP targets (n = 780 genes) generated using 
mouse brain52 but not in an independent set of FMRP 
targets from cultured human embryonic kidney cells 
(HEK293, n = 899).53 Another group of interest was the 
composite set, which comprised 1796 genes that were 
implied in schizophrenia in previous studies.29 On the 
contrary, single dimensional data did not show many 
enrichment results (table S7), with a few functional gene 
sets associated with ≥2 types of omics data, such as vari-
ous PSD complex, synaptosome, and FMRP genes.

During the revision of this work, a transcriptome-wide 
association study (TWAS) was published that integrated 
the analysis of GWAS, gene expression, splicing, and 
chromatin variation to identify genes whose expression 
is genetically correlated with schizophrenia.54 We com-
pared SZgenes with the 157 TWAS-significant genes and 
found that 35.7% (56 of 157) of the TWAS genes were 
included in our SZgenes, indicating a high recovery rate 
(P = 4.12 × 10−30, FET; figure S9).

Discussion

The past decade has overseen an incredible growth of 
genomic data for schizophrenia and other psychiatric 
disorders. Yet an effective integration and cross talk has 
been lacking for the heterogeneous omics data. We pre-
sented a systematic catalog of schizophrenia-associated 
variants and genes and a comprehensive multidimen-
sional analysis to prioritize SZgenes, which leveraged 

on association evidence ranging in genetics, epigenetics, 
transcriptomics, and functional annotations. The result-
ant SZgenes had intensive association evidence. Their 
complex expression patterns and other characteristics 
provided insights for our understanding of the patholog-
ical architecture underlying schizophrenia. The proposed 
method, MegaOR, combines multidimensional omics 
data in an unbiased fashion and is applicable to many 
other complex diseases with heterogeneous data.

Among the SZgenes, we observed many well-studied 
candidates for schizophrenia, such as Gamma Amino 
Butyric Acid (GABA) receptors (GABBR1, GABBR2, 
GABRA2, GABRA5, GABRB3, and GABRG2), G-protein 
receptors (GNAO1, GRK5, and GRM3), genes in the 
major histocompatibility complex (MHC) region, and 
neuron-related genes (NRG1, NRG3, NRGN, NRXN1, 
NT5C2, and NTRK3). GABA is the main inhibitory neu-
rotransmitter in the mammalian central nervous system. 
GABA receptor genes and the GABAergic system have 
long been considered as being involved in schizophre-
nia, autism, and other psychiatric disorders.55 Six GABA 
receptor genes in our SZgenes all had PPascal < .05 and are 
located in 5 different chromosomes, indicating that these 
genes represented independent genetic association signals. 
In addition, novel candidate genes were also observed 
that have not been studied in schizophrenia before. For 
example, NREP (neuronal regeneration-related pro-
tein) was implied by GWAS hit and eQTL support 
(PSherlock = 1.55 × 10−5); GPM6B (glycoprotein M6B) was 
a DEG and had eQTL support (PSherlock = 1.53 × 10−3).

Our characterization of the SZgenes provided insights 
into the convergent molecular processes in schizophrenia. 
SZgenes were found to undergo dramatic changes dur-
ing brain development, interact with each other more fre-
quently than by chance, and converge on functional gene 
sets that are of high interest in schizophrenia. The expres-
sion pattern of SZgenes reinforced the importance of 
studying disease genes in the context of disease-relevant 
tissues with temporal and spatial information. Although 
schizophrenia mainly occurs in adults, the enrichment of 
SZgenes with increased load of disturbance before and 
after birth implies that the risk factors may function in 
the early stages of patients’ life, an observation that was 
similarly reported in other psychiatric disorders.56 One 
limitation of our work is that the multi-omics data we 
used are still limited. For example, we only used DEGs 
from 2 datasets whereas more data could be included.26 
In addition, further strategies can be developed to better 
validate the SZgenes.

Data dependence remains a challenge in multi-omics 
integrative analysis. In our work, GWAS, Pascal, and 
Sherlock were not completely independent from each 
other. GWAS top hits were collected from a number of 
GWAS, including the PGC GWAS data, which were used 
for Pascal and Sherlock results. When we counted once 
for overlapping genes, we found that the results would 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby085#supplementary-data
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miss many important genes (figure S9). In complex dis-
ease such as schizophrenia, independence of data sources 
would be very hard to achieve, leading to a substantial 
reduction of the data content.

In summary, we provide a comprehensive catalog 
of schizophrenia risk genes based on a novel conver-
gent analysis of the currently available data from many 
sources. These genes further supported the polygenic and 
neurodevelopment models in schizophrenia, but they 
may act as early as in fetal development stages.

Supplementary material

Supplementary materials include a detailed description 
of the multidimensional data, the method, and an evalu-
ation of the evidence body.
Supplementary material is available at Schizophrenia 
Bulletin online.
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