
Ischemia Reperfusion Injury in Liver Transplantation: Cellular 
and Molecular mechanisms

Wasim A. Dar, MD, Ph.D.1, Elise Sullivan, MD2, John S. Bynon, MD1, Holger Eltzschig, MD2, 
and Cynthia Ju, Ph.D.2

1.Department of Surgery, McGovern Medical School at UT Health, Houston, TX

2.Department of Anesthesia, McGovern Medical School at UT Health, Houston, TX

Abstract

Liver disease causing end organ failure is a growing cause of mortality. In most cases, the only 

therapy is liver transplantation. However liver transplantation is a complex undertaking and its 

success is dependent on a number of factors. In particular, liver transplantation is subject to the 

risks of ischemia-reperfusion injury (IRI). Liver IRI has significant effects on the function of a 

liver after transplantation. The cellular and molecular mechanisms governing IRI in liver 

transplantation are numerous. They involve multiple cells types such as liver sinusoidal endothelial 

cells, hepatocytes, Kupffer cells, neutrophils, and platelets acting via an interconnected network of 

molecular pathways such as activation of toll-like receptor signaling, alterations in micro-RNA 

expression, production of ROS, regulation of autophagy, and activation of hypoxia-inducible 

factors. Interestingly, the cellular and molecular events in liver IRI can be correlated with clinical 

risk factors for IRI in liver transplantation such as donor organ steatosis, ischemic times, donor 

age, and donor and recipient coagulopathy. Thus, understanding the relationship of the clinical risk 

factors for liver IRI to the cellular and molecular mechanisms that govern it are critical to higher 

levels of success after liver transplantation. This in turn will help in the discovery of therapeutics 

for IRI in liver transplantation--a process that will lead to improved outcomes for patients 

suffering from end stage liver disease.
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Introduction:

Liver disease represents a growing cause of mortality worldwide. Up to 25% of the world’s 

population has risk factors for liver disease including viral infection, alcohol abuse, and non-

alcoholic steatohepatitis (NASH). The high prevalence of risk factors has contributed to the 

rising incidence of primary liver cancer, which causes more than 800,000 deaths per year.1
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In most instances, the only therapy for end-stage liver disease is liver transplantation. 

However, liver transplantation carries with it the risks of ischemia-reperfusion injury (IRI). 

IRI is defined as tissue injury that occurs when the blood supply to organs is interrupted and 

then returns.2 Liver IRI has significant effects on liver function and causes systemic injury.3 

The liver-specific and systemic effects of IRI have important implications for the practice of 

liver transplantation.4

Patients awaiting liver transplant are at risk for IRI due to alterations in the balance between 

pro-coagulant and anti-coagulant processes. Patients with chronic liver injury are more 

susceptible to unregulated coagulation due to lack of matrix metalloproteinases, increased 

pro-thrombotic factors, and hypoalbuminemia.5

Organ procurement results in both cold and warm IRI. The severity of IRI in liver 

transplantation is affected by characteristics of the donor organ such as donor age, organ fat 

content, and brain death. Thus, organs at high risk for IRI, when put into recipients primed 

for ischemic injury, can lead to a potentially catastrophic scenario. Understanding IRI is, 

therefore, critical to success in liver transplantation.6

Liver IRI involves many cellular compartments. Liver sinusoidal endothelial cells and 

hepatocytes are targets of IRI-induced cell death. Early IRI-induced cell death is a result of 

metabolic disturbances and ATP depletion. Following reperfusion, neutrophils and 

macrophages are activated and accumulate in the liver. These cells exacerbate IRI through 

secretion of paracrine and autocrine signals such as reactive oxygen species (ROS) and 

inflammatory cytokines. Finally, hepatic stellate cells (HSC) become activated in IRI and 

promote long-term recovery from IRI, which can manifest as allograft fibrosis.7,8

The molecular pathways involved in IRI are similarly multifaceted. Release of inflammatory 

cytokines and chemokines results in activation of neutrophils and macrophages, promoting 

tissue destruction. Lipid peroxidation, ROS, and release of damage associated molecular 

patterns (DAMPS) during hepatocyte injury amplify the destructive activity of neutrophils 

and macrophages.9,10

Other molecular pathways regulate IRI after it is initiated. Autophagy can limit production 

of ROS. Hypoxia inducible factors (HIF) sense tissue hypoxia and help maintain neutrophil 

viability and promote macrophage activation. HIF are also critical in promoting tissue 

recovery through regulation of stem cell niches and matrix metalloproteinases (MMP).11,12

In short, hepatic IRI worsens the survival of patients needing liver transplants. It reduces the 

pool of organs available for transplant as some may suffer severe IRI if used. Those patients 

who experience severe IRI in their allografts have poor graft function and survival after liver 

transplantation. Thus, understanding the mechanisms of IRI in liver transplantation is critical 

to designing effective therapeutics. Effective therapeutics in turn will improve patient 

outcomes after liver transplantation and provide patients with liver disease a superior chance 

at survival (Figure 1).
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Clinical Context of IRI in Liver Transplantation

Recipient Challenges—The risks of IRI in liver transplantation are present in the 

transplant recipient and the organ donor (Figure 2). Transplant recipients suffer from chronic 

liver injury, i.e. cirrhotics. Cirrhotics demonstrate altered coagulation profiles. Superficially, 

this appears to indicate impaired coagulation, but deeper investigation reveals a pro-

thrombotic state.13 Clinically this manifests as increased rates of deep venous and portal 

vein thrombosis in cirrhotics as compared to patients without liver disease.14,15

The pro-thrombotic profile of cirrhotics increases the risk of IRI before and after liver 

transplantation; up to 30% of cirrhotics may have thrombosis of the portal vein, the 

dominant blood supply to the liver. This may cause the patient awaiting a liver transplant to 

have IRI in their native liver, thus priming them for more severe IRI after liver 

transplantation.16 In the post-operative period, the pro-thrombotic state of the cirrhotic 

patient is a risk factor for thrombosis of vessels to the newly transplanted liver. This likely 

contributes to the risk of hepatic artery thrombosis that occurs in 5–7% of patients after liver 

transplant.17

The mechanisms of this pro-thrombotic state are multifactorial. Blood flow in cirrhotics is 

more turbulent due to increased resistance within the liver parenchyma.18 Liver cirrhosis 

leads to decreased production of the anti-coagulant proteins C and S.19 Cirrhotics have 

chronic nutritional deficiency leading to low albumin levels. Low serum albumin is 

associated with an increased risk of thrombosis.13

Of particular interest in cirrhotics is the imbalance between von Willebrand factor (VWF) 

and ADAMTS13. In homeostasis, VWF in vascular endothelium promotes platelet 

aggregation and clotting while ADAMTS13, produced by HSC, cleaves the multimeric form 

of VWF inhibiting its activity.20 Cirrhosis results in increased VWF in the hepatic sinusoids.
21 This, coupled with decreased ADAMTS13, leads to platelet aggregation and 

microthrombi formation in cirrhotic livers. Microthrombotic injury increases the risk of IRI 

in cirrhotic livers, especially at times of physiologic stress. This correlates with the 

observation that the imbalance of VWF and ADAMTS13 increases as the severity of liver 

disease increases.22

The impaired ratio also affects recipients post liver transplant. Donor livers release large 

amounts of multimeric VWF further depleting already low levels of ADAMTS13. In turn, 

this increases generation of micothrombi in the liver, contributing to hepatic IRI and 

increasing the risk of acute rejection.23

Patients with NASH have additional risk factors for thrombosis. NASH is correlated with 

obesity.24 Obesity is associated with increased levels of plasminogen activator inhibitor-1.25 

Thus, patients who are transplanted for NASH may not only be at risk for microthombotic 

complications in the liver due to an altered VWF/ADAMTS13 ratio, but could also be at 

increased risk for macrothrombotic complications due to altered regulation of the 

coagulation cascade.26
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Donor Challenges—Donor related risk factors contribute to the severity of IRI in liver 

transplantation (Figure 2). Liver steatosis, older donor age, prolonged ischemic time, and 

nature of organ recovery are risk factors for increased hepatic IRI. Severe IRI is the cause of 

increased primary non-function of these categories of liver allografts. Liver donors with 

these risk factors have been labeled as “marginal.” However, due to the high risk of mortality 

while awaiting a liver transplant, there is increased demand for using these “marginal” 

organs.27

Steatosis of the donor liver is a strong predictor of graft function after liver transplant. 

Patients transplanted with livers with greater than 30% macrosteatosis have higher 

transaminases, decreased synthetic function, and higher rates of non-function of the liver 

after transplant. These complications are a result of more severe IRI in steatotic livers.28,29

Prolonged cold ischemic time is also a risk factor for poor allograft function. Currently, 

donor livers are preserved cold in solutions that slow down cellular respiration. However, as 

ischemic time accumulates, ATP stores are slowly depleted leading to large deficits of 

metabolic precursors once normal levels of cellular respiration are restored at reperfusion. 

This leads to cell death. Prolonged cold ischemic time is an additive threat for severe IRI in 

steatotic livers.30

Due to limited supply of available organs from heart-beating donors, there has been an 

increase in the number organs recovered from non-heart beating donors (NHBD). These 

represent up to 15% of all allografts used for liver transplantation in the United States.31 

Livers from NHBD donors are subject to IRI from warm and cold ischemia. As opposed to 

heart-beating donors, NHBD have lack of blood flow prior to cold storage. This period of 

warm ischemia results in arrest of oxygen delivery, rapid depletion of ATP stores, blood 

stasis, and activation of the coagulation cascade.32 NHBD donor livers demonstrate 

increased levels of ceramide18, a pro-apoptotic activator correlating with increased cell 

death from IRI. VWF is also elevated in NHBD donor livers indicating higher risk of 

microthrombi formation and loss of sinusoidal blood flow contributing to ongoing IRI 

during organ recovery.33,34

Increasing donor age is a risk factor for IRI in liver transplantation. Livers from donors over 

the age of 70 experience more injury at prolonged cold ischemic times as compared to livers 

from younger donors. Older livers have a higher chance of severe IRI due to smaller 

volumes and less total blood flow. At the molecular level, older donors have fewer and less 

functional mitochondria making them more susceptible to depletion of ATP during cold 

storage and warm reperfusion. This results in increased production of ROS and activators of 

cell death. Homeostatic regulation of this process is altered as older livers have a muted 

stress response as manifest by diminished amounts of heat-shock protein 70.35–37

Brain Death and IRI—Donor organs are recovered from persons with brain death. Brain 

death is an inflammatory state that primes organs during the recovery phase for more severe 

IRI during reperfusion. End-organs in persons with brain death show increased accumulation 

of neutrophils, increased platelet deposition, and activation of Fas-FasL dependent apoptotic 

pathways. IRI is further primed in brain death by increased production of ROS and pro-
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inflammatory cytokines such as TNF-alpha. Finally, adhesion molecules such as ICAM-1 

increase in expression along the vascular endothelium in response to brain death. This 

results in immune cell infiltration into tissues with concomitant end organ injury.38

The negative effects of brain death are amplified in marginal liver donors. Take, for example, 

steatotic livers. These livers suffer more severe IRI due to lipid peroxidation of the fat 

droplets in hepatocytes after reperfusion. This leads to increased production of ROS. Lipid 

accumulation also increases the amount of and metabolism of cholesterol in mitochondria in 

the liver leading to dysregulation of immune signaling pathways, such as those mediated by 

TLR4. This results in increased inflammatory cytokine production.39–41

Increased production of pro-inflammatory cytokines, such as IL-6 and TNF-alpha, activates 

the immune system. Activation of the immune system after IRI in steatotic livers leads to 

accumulation of neutrophils and macrophages at areas of fat deposition. Activation of these 

cell populations promotes production of ROS that exacerbate tissue damage.29,30

Thus, given that in brain death liver injury occurs via similar pathways as in IRI, it is no 

surprise steatotic livers have increased parenchymal injury in the setting of brain death as 

compared to non-steatotic livers. Mechanistically, as in IRI, this involves decrease in 

antioxidants, increase in ROS, alterations in TLR4 signaling, and reduction in heaptic 

microcirculation.42,43 Although data in other marginal liver donors regarding the effects of 

brain death are limited it is likely that brain death primes them for more severe IRI, thus, 

negatively affecting outcomes after liver transplantation.

Cellular Mechanisms of Liver IRI

Liver Sinusoidal Endothelial cells—Liver sinusoidal endothelial cells (LSEC) line the 

vascular endothelium of the liver. They control vascular tone and thereby blood flow and 

delivery of nutrients and oxygen to hepatocytes. Expression of cell adhesion molecules on 

LSEC is upregulated in hepatic injury allowing them to play a key role in accumulation, 

activation, and modulation of the cellular response to hepatic IRI. Thus, normal LSEC 

function is important to protecting the liver from the disruptions in homeostasis after IRI.44

LSEC are highly susceptible to injury during static cold preservation.45 Due to ATP 

depletion during cold storage, active transmembrane transport of ions is disrupted (Figure 3). 

This leads to cell swelling and mitochondrial dysfunction.46 Intensity of LSEC injury is 

increased by lack of active blood flow across the sinusoids during static cold storage.47

Upon reperfusion, damaged LSEC incur further injury. ROS derived from lack of energy 

sources for cellular respiration quickly reduce free radical scavengers. Lack of NO 

production from the injured LSEC, depletion of NO stores and the unopposed activity of 

vasoconstrictors such as thromboxane A2 cause an increase of vascular tone and reduction 

of blood flow to hepatocytes.48–50 Activated LSEC express vascular adhesion molecules 

such as P-selectin allowing for platelet adhesion and activation. Platelet adhesion to LSEC 

induces LSEC cell death as well as causing congestion and thrombus formation in the liver 

microcirculation.51,52 The cumulative effect of these processes worsens IRI in transplant 

allografts (Figure 3).
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Kupffer Cells—Kupffer Cells (KC) are resident liver macrophages derived from erythro-

myeloid progenitors in the fetal liver.53 During normal liver function, KC are central to a 

tolerogenic response as the liver is exposed to numerous circulating antigens. In 

homeostasis, KC scavenge circulating antigens passing through the liver, present them to T-

cells, and induce expansion of tolerogenic T-cells. This leads to production of 

immunosuppressive cytokines such as IL-10.54

During liver injury, KC lose this tolerogenic profile and instead promote inflammation and 

injury.55 During IRI in liver transplantation, injury to LSEC and hepatocytes releases 

damage-associated molecular pattern molecules (DAMPS) such as high mobility group 

box-1 (HMGB1), free fatty acids (FFA), and heat shock proteins (HSP). KC recognize these 

injury signals through expression of toll-like receptors 3, 4, and 9. Activation of TLR’s, 

especially TLR4, drive cytokine production in KC toward an inflammatory phenotype.56

Pro-inflammatory cytokines secreted by KC during IRI include IL-1-beta, TNF-alpha, IFN-

gamma, and IL-12. IL-1-beta and TNF-alpha induce upregulation of the adhesion molecules 

CD11b/CD18a (Mac-1) on neutrophils and intracellular adhesion molecule-1 (ICAM-1) on 

LSEC to promote neutrophil adhesion and extravasation into the liver parenchyma.57 These 

same cytokines drive release of ROS from neutrophils causing further tissue injury.58

TNF-alpha secretion from KC in IRI induces the upregulation of P-selectin on LSEC to 

promote platelet adhesion and activation. It also promotes chemokine secretion from KC 

during liver injury.59 Release of the chemokines CXCL1, −2, and −3, results in increased 

migration of neutrophils into the injured liver tissue (Figure 3). This amplifies recruitment 

and adhesion of neutrophils to LSEC and also promotes further activation of KC.60

Hepatocytes—Hepatocytes experience direct injury during IRI. (Figure 3). The 

respiratory chain in hepatocytes in IRI is disrupted due to lack of oxygen, impaired delivery 

of nutritional substrates, and depletion of residual ATP. Mitochondria deprived of O2 and 

glucose cannot replenish ATP supplies. This causes accumulation of toxic substances such 

as lactate.61 Further, active ionic transporters are disrupted leading to cell swelling and 

membrane damage.62

Although accumulation of ATP by-products such as AMP and activation of cAMP 

dependent protein kinase can protect against hepatic IRI, ultimately the disruption of cellular 

respiration results in production of ROS from mitochondria and tissue damage.41 During 

reperfusion, reintroduction of O2 does not restore normal respiratory chain function but 

rather exacerbates ROS production due to impaired mitochondrial function.39 Injured 

hepatocytes go on to release DAMPS that usher in a self-perpetuating inflammatory cycle of 

which LSEC and KC are the central regulators.63

Neutrophils—If LSEC and KC are central regulators of IRI in the liver, neutrophils 

represent the main actor in causing injury. Neutrophils are rapidly recruited to the liver after 

reperfusion. IRI causes activation of complement which leads to production of the 

chemotactic agents C3a and C5a. Neutrophils respond to C3a and C5a by infiltrating the 

liver after reperfusion.64
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Once in the liver, chemokines secreted by activated KC, such as CXCL1 and CXCL2 

(human CXCL8) create a chemoattractant gradient that is detected by neutrophils. 

Chemotaxis driven by chemokines brings neutrophils into liver sinusoids.65 Chemokines 

also bind to glycosoamino-glycans on the vascular surface of LSEC such that when 

neutrophils reach that location, chemokine-chemokine receptor interactions lead to 

activation of integrins and binding of neutrophils via the integrin Mac-1 to ICAM-1 on the 

sinusoidal endothelium.66

Once in the injured liver, neutrophils respond to the inflammatory signals therein. HMBG-1 

and DNA released from damaged hepatocytes induces release of ROS from neutrophils.67 

DNA from damaged hepatocytes activates TLR9 on neutrophils enhancing their production 

of ROS and secretion of chemokines such as CXCL1 and 2. This is mediated by TLR9 via 

activation of NF-κB.68,69

Activation of TLR9 in neutrophils results in their rapid degranulation during liver injury. 

Expression of TLR9 at the cell surface of neutrophils as opposed to endosomal expression 

leads to faster binding of DNA fragments to TLR9. This accelerates signaling via TLR9.70 

Accelerated signaling via TLR9 amplifies tissue damage caused by neutrophils after hepatic 

IRI (Figure 3). Ongoing tissue damage creates a positive feedback loop in which neutrophil 

recruitment, migration, and tissue infiltration is promoted through further release of signals 

of tissue injury such as DAMPS, DNA, chemokines, and cytokines.71 In liver 

transplantation, modulating neutrophil activity is likely to improve allograft function.

Platelets—Platelet aggregation during hepatic IRI represents an important mechanism by 

which IRI is potentiated after liver transplantation.72 LSEC injury causes increased adhesion 

of platelets through upregulation of P-selectin. Increased platelet adhesion mechanically 

limits sinusoidal blood flow exacerbating ischemia; subsequent activation of other pathways 

amplifies this effect (Figure 3).51,52

LSEC express CD39 on their luminal surface. CD39 regulates the effect of ATP products on 

platelets. During homeostasis, CD39 cleaves ATP and ADP to AMP, limiting platelet 

activation. In IRI, as LSEC are injured, CD39 activity declines and ADP increases.73 ADP is 

a potent inducer of platelet activation and aggregation. Activated platelets release a variety 

of cytokines which 1. Affect vascular tone—thomboxane A2 (TXA2) and serotonin, 2. 

Regulate local thrombosis—plasminogen activator inhibitor-1 (PAI-1), and 3. Induce fibrosis

—transforming growth factor-beta (TGF-beta).74–76

This process is termed extravasated platelet aggregation (EPA).72 LSEC injury induces 

vasoconstriction in the sinusoids.44 Platelet adhesion and aggregation increases leading to 

platelet activation and migration into the subendothelial space. With platelet activation 

comes sinusoidal vasoconstriction via TXA2 and serotonin.49,52 Thrombus degradation is 

inhibited by PAI-1; progression of platelet aggregation during EPA causes them to secrete 

TGF-beta.75,76 Secretion of TGF-beta induces a transition from the acute phase of IRI 

toward chronic remodeling of the liver allograft. TGF-beta activates HSC which results in 

collagen deposition and the initiation of graft fibrosis.77
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Hepatic Stellate Cells—HSC reside in the perisinusoidal space and are central regulators 

of hepatic fibrosis.78 During homeostasis, HSC suppress excess inflammatory responses to 

hepatic injury. In this setting, HSC cause apoptosis of reactive T-cells, expand regulatory T-

cell populations, and secrete antioxidants to scavenge ROS.79,80 However, severe injury 

leads to constitutive activation of HSC with negative consequences for parenchymal 

recovery.77

TNF-alpha, NO, and IL-6 released during IRI from KC activate HSC. Activated HSC 

undergo transformation to a myofibroblast phenotype. Immediate consequences of HSC 

activation are release of MMP, chemokines, and inflammatory cytokines which lead to ECM 

destruction, ingress of platelets and neutrophils, and further activation of HSC.8 HSC also 

contribute to endothelial vasoconstriction through secretion of endothelin-1 (ET-1).81

Long term consequences of HSC activation are deposition of ECM and fibrosis of the liver 

parenchyma.77 As noted above, this process is initiated through EPA with TGF-beta being 

the stimulator of persistent HSC activity after IRI.72 This affect is attenuated when the 

number of HSC in the liver are reduced in experimental models of IRI.8,82

Molecular Mechanisms of IRI

Autophagy—Autophagy is the process by which cells remove mis-folded, damaged, and 

over-age proteins and organelles through transport into lysosomes.83 There is some 

contradictory data regarding the effects of autophagy in liver IRI but in the context of liver 

transplantation, the balance favors regulated autophagy as a protective mechanism to limit 

injury.11,84

IRI in warm ischemia leads to rapid depletion of ATP and oxygen. Mitochondria in 

hepatocytes are overwhelmed by ROS. Loss of substrates for oxidative phosphorylation 

leads to increased mitochondrial permeability, especially in the reperfusion phase.85,86 This 

increases production of ROS and leads to further necrotic damage to hepatocytes.

Autophagy is protective in this setting as it leads to shuttling of damaged mitochondria into 

the autophagosome, limiting production of ROS.87 Evidence of this pathway is seen when 

expression of autophagosome localizing protein Beclin 1 is impaired leading to increased 

hepatocyte death.88,89 Overexpression of Beclin 1 or induction of autophagy through mTOR 

inhibitors such as rapamycin (in combination with delivery of ROS scavengers such as 

hydrogen sulfide) reduces IRI-induced hepatocyte death.11,90

The negative effects of older donor age and increased donor steatosis on hepatic IRI can be 

limited through upregulation of autophagy. Aging leads to decreased autophagy and 

increased hepatocyte injury after IRI. Activation of the PPAR-gamma nuclear receptor 

increases autophagy and limits hepatocyte damage after IRI. This effect is more pronounced 

in younger mice and diminished in older mice.91 Similarly, induction of autophagy through 

the HMG-CoA reductase inhibitor simvastatin reduces IRI in steatotic livers.45,92

The benefits of simvastatin are likely mediated through LSEC. In LSEC, injury from IRI is 

ameliorated by upregulating autophagy. Treating LSEC subject to static cold storage with 
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simvastatin induces expression of the vasoprotective transcription factor KLF-2 (Kruppel-

like factor 2). This prevents the arrest of autophagy that occurs during reperfusion and 

decreases LSEC death in IRI.45,93

As opposed to regulated autophagy, unregulated autophagy, may be detrimental to recovery 

from IRI. More severe hepatocyte necrosis is seen in correlation with increased autophagy as 

represented by higher levels of expression of the autophagosome related protein LC3-II.94 

Further, HMGB1 released during IRI is a competitive binder of Beclin 1 and its binding to 

Beclin 1 induces autophagy. The protective effects of reduction of HMGB1 secretion after 

IRI may relate to decreased autophagy when lower levels of HMGB1 are present.95 Thus, 

although autophagy appears primarily protective in hepatic IRI and liver transplantation, 

these data suggest that manipulation of autophagy in liver transplantation should be 

undertaken with caution to avoid an unregulated response.

Hypoxia Inducible Factors—Hypoxia inducible factors (HIF) are heterodimeric 

transcription factors whose effects are directly tied to levels of oxygen present in tissue.96 

HIF are stabilized in the presence of hypoxia.97 After hepatic IRI, stabilized HIF enter the 

nucleus and induce transcription of genes involved in cellular metabolism (Glut-1, PDK-1), 

angiogenesis (VEGF, NOS), and cytoprotection (Hmox-1, HSP) to ameliorate IRI induced 

hepatocyte injury and cell death.98–100

HIF have a constitutive beta subunit and a variant, oxygen sensing alpha subunit.96 Of the 

three known HIF alpha isoforms, HIF1-alpha is the best characterized in terms of its role in 

hepatic IRI. Inhibitors of prolyl hydroxylation of HIF, which targets it for destruction, 

appear to mitigate IR injury by increasing the amount of activated HIF1-alpha.98,101 

Similarly, the positive effects of ischemic preconditioning on hepatic IRI appear to involve 

increased activation of HIF1-alpha.102

Data regarding the role of HIF2-alpha in hepatic IRI is limited. However, the growing 

amount of information regarding the role of HIF2-alpha in the development and homeostasis 

of the gastrointestinal tract may provide insight into its potential role in hepatic IRI.103 

HIF2-alpha has selective expression in the endothelium of the GI tract.104 In macrophages, 

HIF2-alpha appears to be associated with an M2 phenotype. Reciprocally, Th2 type 

cytokines appear to increase HIF2-alpha expression.105 In neutrophils, HIF2-alpha promotes 

survival of neutrophils. In inflammatory bowel disease models, increased HIF2-alpha 

expression leads to increased tissue inflammation caused by neutrophils. Suppression of 

HIF2-alpha causes apoptosis of neutrophils and decreased inflammation.106

HIF2-alpha also regulates stem cell niches. HIF2-alpha knockout mice are genetically lethal 

with defects in vascular and mitochondrial development.107 In intestinal development, HIF2-

alpha regulates stem cell niches through regulation of Oct4 and its downstream targets Sox2 
and Nanog.108,109 Finally, evidence from hemopoietic stem cell development demonstrates 

HIF2-alpha is important for robust pluripotency of those stem cell populations.110

Further speculation regarding the role of HIF2-alpha in hepatic IRI comes from study of 

other diseases affecting the GI tract. In inflammatory bowel disease HIF2-alpha has a role in 
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initiation and recovery from ischemic injury. Chronic activation of HIF2-alpha via NF-kappa 

B leads to colitis. Conversely, HIF2-alpha activation after ischemic injury from radiation 

leads to epithelial cell regeneration via VEGF pathways.111,112

Energy metabolism is an important part of initiation and recovery from IRI. Recent reports 

suggest HIF2-alpha regulates energy metabolism in the liver both in the context of insulin 

response and fatty acid metabolism.9 HIF2-alpha is a necessary component of the insulin 

response mediated by VEGF in the liver. Fat deposition and steatohepatitis in the liver are 

increased in the absence of HIF2-alpha.113,114

Lastly, HIF2-alpha may also regulate long term recovery from IRI through control of 

expression of MMP and collagen prolyl hydroxylases. HIF2-alpha is the major 

transcriptional regulator of these genes.115 As a corollary, activation of HIF2-alpha in the 

liver is sufficient to cause liver fibrosis.116

Based on these findings, one can speculate on the role of HIF2-alpha in hepatic IRI (Figure 

4). Hypoxia in IRI would stabilize HIF2-alpha. HIF2-alpha expression would be increased in 

LSEC, KC, and neutrophils contributing to inflammation via increased vasoconstriction 

through decreased NO, enhanced production of cytokines, promotion of macrophage 

polarization, and enhanced survival of neutrophils. HIF2-alpha would also contribute to 

recovery from IRI by stabilizing the stem cell niche in hepatocytes. Finally, HIF2-alpha 

could affect the long-term architecture and function of the liver after IRI via remodeling of 

the ECM through regulation of MMP and collagen hydroxylases (Figure 4). Given the 

potential effects HIF2-alpha could have in heaptic IRI, further investigation in this area is 

warranted.

MicroRNA—MicroRNA’s (miRNA) are single stranded, non-coding RNA’s which 

modulate gene expression via translational repression of target mRNAs.117 MiRNA 

expression has been linked to regulation of a number of cellular processes that affect hepatic 

IRI. These include promotion of inflammation, cellular regeneration, and autophagy.118

MiRNA 122 is the most abundant miRNA in the liver, representing 70% of the total.119 In 

miRNA-122 knock out mice, there are increased levels of monocytes and neutrophils. 

Further, loss of miRNA-122 leads to increased expression of the chemokine CCL2, which 

promotes migration of macrophage and neutrophil to the liver.120 After prolonged IRI, 

miRNA-122 levels are reduced in liver tissue but elevated in serum of patients with liver 

injury suggesting miRNA-122 is important in maintaining normal liver function and is 

released into the serum due to hepatocyte death after IRI.118

Other miRNAs upregulated in hepatic IRI include miRNA-34a, miRNA-17, and 

miRNA-155. MiRNA-34a appears to regulate the effect of ROS by decreasing expression of 

antioxidants after IRI and increasing apoptosis through upregulation of p53.121 Increased 

miRNA-34a decreases expression of Nrf2 a key molecule that promotes production of 

antioxidants. MiRNA-34a stabilizes and promotes increased expression of p53 resulting in 

increased liver injury after hepatic IRI, suggesting a multifaceted role for it in promotion and 

recovery from ischemic liver injury.122,123
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MiRNA-17 is increased after hepatic IRI. It appears to regulate autophagy: increased 

miRNA-17 correlates with increased numbers of autophagosomes. Excess expression of 

miRNA-17 leads to unregulated autophagy and to decreased hepatocyte viability via 

increased release of caspases. MiRNA-17 controls autophagy through transcriptional 

regulation of STAT-3, a known inhibitor of autophagy. MiRNA-17 binds to the 3’ UTR of 

STAT-3 repressing its transcription.124

MiRNA-155 regulates the response of KC after IRI. MiRNA-155 deficient mice have less 

liver injury after IRI with decreased expression of CD80, CD86 and MHC class II on KC. 

Further, KC in these mice produced IL-10 which improved the viability of hepatocytes. 

Elimination of miRNA-155 negative KC led to increased injury after hepatic ischemia.125

Other miRNAs involved in apoptosis and regeneration show down- or up-regulation in 

expression respectively after hepatic IRI. Downregulated miRNAs involved in apoptosis 

include miRNA-200b and miRNA-183. Upregulated miRNAs involved in liver regeneration 

include miRNA-27a, −494, −1224, and −149.126 These findings indicate an important role 

for miRNA in the regulation of hepatic IRI.

Reactive oxygen species and inflammatory cytokines—In the ischemic phase of 

IRI, reducing substances are consumed and anaerobic metabolism dominates. In reperfusion, 

oxygen is reintroduced and due to the need for reducing substances, excess oxygen free 

radicals are produced. Oxygen free radicals cause direct cellular damage and induce an 

inflammatory response. In liver IRI, they induce release of HMGB1 and activate NF-kappa-

B.127 This leads to production of a number of cytokines such as IL-1alpha and beta, IL-2, 

IL-3, IL-6, IL-8, and TNF-alpha and beta.128 Production of cytokines and release of ROS, 

HMBG1 and DAMP from damaged hepatocytes leads to neutrophil recruitment and KC 

activation.9 Thus ROS are critical initiators of the injury response (Figure 5).

This is relevant in donors livers which are steatotic or are from NHBD. In steatotic livers, 

excess fat deposited in the hepatocytes is a target for peroxidation.129,130 Lipid peroxidation 

generates ROS and amplifies hepatic IRI.131 First, lipid peroxidation depletes NAD+ and 

increases the NADH/NAD+ ratio to promote production of superoxide free radicals.132 

Second, to regulate this, mitochondria express mitochondrial uncoupling protein 2 (UCP2). 

UCP2 causes a leak in the proton gradient in cellular respiration to reduce ATP production. 

This has detrimental effects as rapid reduction of energy stores leads to further hepatocyte 

death due to loss of membrane integrity.133

In NHBD, the effects of ROS are more pronounced because of extended periods of warm 

ischemia. This leads to a rapid depletion of ATP and switch to anaerobic respiration. 

Subsequently, ROS production after reperfusion is greater and more pronounced leading to 

increased cellular injury.33 These mechanisms help explain the clinical observation as to 

why steatotic allografts and those from NHBD are at higher risk for early allograft 

dysfunction (Figure 5).

Recent data also indicates that a broad class of metabolic signaling molecules associated but 

not exclusive to adipose tissue, i.e. adipokines, affect liver regeneration after IRI. Some of 
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the more well-known members of this family include IL-6, adiponectin, and leptin. In a 

comprehensive review, Peralta and colleagues examined the available data regarding 

adipokines and concluded that there was sufficient evidence to suggest that these molecules 

had a role in liver regeneration after IRI, particularly IL-6, but that more data in partial 

ischemia and steatotic liver injury models was required to clearly establish the positive or 

negative effects of the more than 600 adipokines known to date.134

Gut-Liver Axis of Injury—An emerging area of interest in liver IRI is the effect of the 

intestinal microbiome on liver injury. Clamping the portal circulation in murine models of 

liver IRI leads to impaired gut-barrier function and increased translocation of bacteria and 

bacterial debris into the portal circulation. This leads to activation of TLR4, promoting the 

inflammatory cascade after reperfusion and increasing liver injury. Removal of bacteria, 

abrogation of TLR4 signaling, and remote ischemic preconditioning all reduced the negative 

effects of the disruption of gut microbiome on liver IRI.135 In particular, remote ischemic 

preconditioning restores gut barrier function and normal composition of microbiota in these 

models.136 Thus, modulation of the gut-liver axis may provide new therapeutic avenues to 

treat IRI in liver transplantation.

Therapeutics for Hepatic IRI

Therapeutic strategies to limit IRI in liver transplantation generally fall into the following 

categories. 1. Reducing effects of ROS 2. Modulation of the cytokine response 3. Blocking 

activation of the immune system and 4. Improving organ preservation (Table 1).

Using free radical scavengers to limit IRI in liver transplantation is an elegant idea that 

unfortunately has not been clinically effective. Much effort has focused on the use of N-

acetyl-cysteine (NAC), a glutathione precursor, as a free radical scavenger.137 NAC use in 

acetaminophen overdose has shown promise, but its effectiveness in liver transplantation is 

less clear.138 In NHBD, NAC was thought to be effective in reducing the injurious 

consequences of IRI on bile ducts, but this data has not been reproducible.139,140 Use of free 

radical scavengers and antioxidants such as S-adenosyl-methionine and Vitamin E has 

shown no clinical value in liver transplantation.141

A complex network of cytokine expression underlies the response to hepatic IRI. 

Modulating the cytokine response would be a logical way to blunt the effects of hepatic IRI 

in liver transplantation. To this end, both blocking cytokines produced during IRI and 

administration of cytokines to counter those released during IRI have been proposed as 

therapeutic strategies.

Prostaglandins E-1 and I2 experimentally promote vasodilation of the liver microcirculation. 

Unfortunately, neither has shown promise in clinical trials. PGE-2 administration in liver 

transplantation has no effect on the rates of allograft dysfunction or patient survival.142 Data 

for the effectiveness of PGI-2 is similarly lacking.143

TNF-alpha is a central cytokine in hepatic IRI. There are a number of anti-TNF-alpha 

biologic agents available for use. Unfortunately, none of these biologics has shown promise 
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in liver transplantation. This may be due to the fact that TNF-alpha is essential for 

regeneration of the liver after IRI and blocking it eliminates its beneficial effects.144

Blockade of the immune system has been practiced in liver transplantation for some time 

with the use of steroids as part of an immunosuppressive regimen. Steroids suppress 

transcription of cytokines in immune cells.145 Steroids likely attenuate hepatic IRI, but the 

severity of IRI in steatotic, NHBD, and older livers, suggest steroids alone are not sufficient 

as a therapy.146

An intriguing direct strategy involves use of gadolinium chloride to inhibit KC activation. 

This drug has shown promise in animal models of liver transplantation where administration 

of gadolinium chloride reduced markers of liver injury and improved hepatic blood flow.
60,147 Unfortunately at this time no correlative human data exists.

Finally, strategies to improve organ preservation have gained favor in recent years. Initial 

attempts to precondition liver allografts prior to cold preservation with brief periods of 

ischemia were found not be successful.148 However, the use of ex vivo perfusion has 

demonstrated reduction in liver injury.149 The concept underlying hypothermic ex vivo 

perfusion is that flow through the liver sinusoids limits LSEC injury. In normothermic ex 

vivo perfusion, the liver is preserved under normal physiologic conditions. Ongoing clinical 

trials are attempting to answer whether this reduction in liver injury has benefits in terms of 

early and late graft function and patient survival. Further, there is interest in extending these 

trials to preserve marginal liver allografts (Table 1). Early data suggests that ex vivo 

perfusion would have substantial benefit in reducing IRI in this setting although the 

mechanisms for this are yet to be fully elucidated.150

Conclusion

Hepatic IRI represents a barrier to the use of organs available for transplant. The risk of 

early and late graft dysfunction of donor livers is directly related to hepatic IRI. Therefore 

understanding the mechanisms of hepatic IRI and development of therapeutics are of 

enormous importance in reducing the mortality of patients awaiting liver transplant. This 

will allow more organs to be used and reduce the dysfunction of those organs once 

transplanted.
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VWF von Willebrand factor

NASH non-alcoholic steatohepatitis

NHBD non heart beating donor

LSEC liver sinusoidal endothelial cells

KC Kupffer cells

ROS reactive oxygen species

HSC hepatic stellate cell
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Key Points

IRI negatively affects allograft function after liver transplant

The cellular and molecular mechanisms of IRI in liver transplantation can be 

correlated with clinical risk factors for IRI in donors and recipients

Developing therapies to ameliorate IRI in liver transplantation is critical to 

improving patient survival
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Figure 1: Risk factors and sequelae of hepatic IRI in liver transplant patients.
Factors such as use of marginal donor organs due to donor scarcity and critical donor 

hemodynamics, including NHBBD donors, can increase the risk of hepatic IRI. Higher 

levels of hepatic IRI consequently contribute to poor outcomes, including rejection, 

recurrence of liver disease, and liver regeneration.
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Figure 2: Surgical, Donor, and Recipient factors that contribute to risk of IRI.
(1) Risks of IRI inherent to liver transplantation include: organwide ischemia during 

clamping and resection of donor organ, cold storage, re-anastomosis and circulation of 

widespread inflammatory factors, increased ischemic time. (2) Donor Liver risk factors can 

increase the severity of IRI: small allograft, advanced age, especially age >70, donor fatty 

liver, especially macrosteatosis > 30%, cause of donor death, NHBBD donor, use of 

marginal organs due to donor scarcity. (3) Recipient risk factors can further increase the 

severity of IRI: cirrhosis or hepatic fibrosis induced coagulopathy, nutritional coagulopathy, 

portal vein or hepatic artery thrombosis, altered VWF:ADAMTS13 ratio, history of NASH.
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Figure 3: Cellular and molecular IRI pathway: A focus on the roles of Kupffer cells, 
macrophages, neutrophils, and platelets.
(1) IRI damage to LSECs and hepatocytes causes cell death and release of inflammatory 

cytokines IL-1 beta, IL-6, and TNF-alpha, TGF-beta, as well as DAMPS (HMGB1, FFA, 

and HSB), DNA fragments, and complement. (2) DAMPs cause KC to increase KC TLR 

activation, inhibit immunosuppressive IL-10 production, and increase KC cytokine 

production toward inflammatory phenotype. Inflammatory type KC release: (3) CXCL8, 

which amplifies recruitment and adhesion of neutrophils to LSEC; and (4) IL-1-beta, TNF-

alpha, IFN-gamma, and IL-12. Together, the factors released from IRI damage to LSECs and 

hepatocytes, as well as those released by inflammatory KCs, (5) induce migration of 

neutrophils early in IRI and of macrophages late in IRI. (6) These factors also serve to 

promote further neutrophil adhesion and extravasation into the liver parenchyma via CD11b/

CD18a on neutrophils and ICAM-1 on LSEC, while promoting platelet adhesion and 

activation via upregulation of P-selectin on LSEC. (7) Activated platelets release cytokines 
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that affect vascular tone (TXA2 and serotonin), regulate local thrombosis (PAI-1), and 

induce fibrosis (TGF beta). (8) Simultaneously, neutrophils and macrophages cause further 

tissue injury and cellular destruction, through release of ROS and other destructive factors.

Dar et al. Page 26

Liver Int. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Cellular and molecular IRI pathway: A focus on the role of HIF.
(1) Hepatic IRI results in stabilization of HIF, which (2) enter the nucleus and induces 

transcription of genes in multiple pathways such as cellular metabolism (Glut-1, PDK-1), 

angiogenesis (VEGF, NOS), and cytoprotection (Hmox-1, HSP) to (3) ameliorate IRI 

induced hepatocyte injury and cell death.
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Figure 5: Cellular and molecular IRI pathway: A focus on the roles of HSC, adiposity, and ROS.
(1) IRI damage to hepatocytes and LSECs causes cell death and release of inflammatory 

cytokines IL-1 beta, IL-6, and TNF-alpha, DAMPS, HMGB1, TGF-beta, FFA, and HSB, as 

well as DNA fragments, which cause (2a) KC to lose tolerogenic profile and increasing 

cytokine production in KC toward inflammatory phenotype and (2b) hepatic stellate cell 

(HSC) activation. (3) KC activation is associated with increased KC cytokine production, 

which further recruits HSCs. The activation and recruitment of HSC to areas of IRI results in 

(4) ingress of platelets and neutrophils, (5) MMP release, ECM destruction, and endothelial 

vasoconstriction through ET-1. Together, this results in collagen deposition and graft 

fibrosis, increasing the risk of graft failure, morbidity, and mortality. (6) After organ 

reperfusion, lipid peroxidation due to high levels of steatosis causes release of ROS and 

DAMPs. This results in increased release of IL6 and TNF-alpha, resulting in further acute 
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liver injury, ineffective autophagy, early graft dysfunction or non-function, and increased 

long-term fibrosis.
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Table 1.

Current Clinical Trials for Prevention of Ischemia Reperfusion Injury in Liver Transplantation

Trial Name Intervention Type Description Sponsor

Efficacy and Safety Pilot Study of 
Reparixin for Early Allograft 
Dysfunction Prevention in 
Orthotopic Liver Transplantation 
Patients

Pharmacotherapy Use of Reparixin (CXCL8/IL-8) 
inhibitor to prevent IR injury in liver 
transplantation

Dompé Farmaceutici S.p.A 
(multicenter)

Safety and Efficacy of Treprostinil 
in Ischemia and Reperfusion Injury 
in Adult Orthotopic Liver 
Transplantation

Pharmacotherapy Use of Treprostinil (prostacyclin 
analogue) to prevent IR injury in liver 
transplantation

University of Pittsburgh

Omega 3 Lipid Emulsions and Liver 
Transplantation

Pharmacotherapy Perioperative Omega 3 rich lipid 
infusions to prevent IR injury in living 
donor liver transplantation

Mansoura University

YSPSL for Prevention of Ischemic 
Reperfusion Injury in Patients 
Undergoing Cadaveric Orthotopic 
Liver Transplantation

Pharmacotherapy P-selectin Ig infusion during reperfusion 
of liver allograft to prevent IR injury 
during liver transplantation

UCLA Medical Center

Intermittent Portal and Graft Purge 
in Living Donor Liver 
Transplantation

Ischemic Preconditioning Intermittent portal clamping during 
reperfusion of living donor liver 
transplantation

Mansoura University

Liver Protection of RIPC in 
Pediatric Living Donor Liver 
Transplantation

Ischemic Preconditioning Donor and Recipient distant (limb) 
ischemic preconditioning to reduce IR 
injury in pediatric liver transplantation

Renji Hospital Shanghai

Efficacy Evaluation of 
Normothermic Perfusion Machine 
Preservation in Liver Transplant 
Using Very Old Donors

Ex Vivo Perfusion Ex Vivo normothermic perfusion of 
older/marginal liver allografts to prevent 
IR injury in liver transplantation

Azienda Ospedaliero, 
Universitaria Pisana

Hypothermic Oxygenated Perfusion 
(HOPE) of human liver allografts

Ex Vivo Perfusion Hypothermic perfusion with oxygenated 
perfusate after cold storage to prevent IR 
Injury in liver transplantation

Universisty of Zurich 
(multicenter)

Dual Hypothermic Oxygenated 
Perfusion of DCD Liver Grafts 
(HOPE-DCD) in Preventing Biliary 
Complications After Transplantation

Ex Vivo Perfusion Hypothermic perfusion with oxygenated 
perfusate via portal vein and aorta of 
DCD livers to prevent IR Injury in liver 
transplantation

University Medical Center 
Groningen (multicenter)

HOPE for Human Extended Criteria 
and Donation After Brain Death 
Donor (ECD-DBD) Liver Allografts

Ex Vivo Perfusion Hypothermic perfusion with oxygenated 
perfusate after cold storage of ECD 
livers to prevent IR Injury in liver 
transplantation

University of Aachen 
(multicenter)

Using Ex-vivo Normothermic 
Machine Perfusion With the 
Organox Metra™ Device to Store 
Human Livers for Transplantation

Ex Vivo Perfusion Normothermic machine perfusion of 
liver allografts after procurement and 
prior to implantation to prevent IR injury 
in liver transplantation

OrganOx (multicenter, 
Europe, United States and 
Canada)
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