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Abstract

We present 1st-grade, 2nd-grade, and 3rd-grade impacts for a 1st-grade intervention targeting the 

conceptual and procedural bases that support arithmetic. At-risk students (average age at pretest = 

6.5) were randomly assigned to 3 conditions: a control group (n = 224) and 2 variants of the 

intervention (same conceptual instruction but different forms of practice: speeded [n = 211] vs. 

non-speeded [n = 204]). Impacts on all 1st-grade content outcomes were significant and positive, 

but no follow-up impacts were significant. Many intervention children achieved average 

mathematics achievement at the end of 3rd grade, and prior math and reading assessment 

performance predicted which students will require sustained intervention. Finally, projecting 

impacts two years later based on non-experimental estimates of effects of 1st-grade math skills 

overestimates long-term intervention effects.
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Individual differences in mathematical competencies arise early and remain stable over time 

(Duncan et al., 2007; Fuchs et al., 2016), and are associated with quality of life and financial 

security in adulthood (Every Child a Chance Trust, 2009; Murnane et al., 2001; Ritchie & 

Bates, 2013). Given these long-term associations, there is a pressing need for programs that 

ameliorate the mathematical deficits of at-risk children and that sustain intervention gains 

throughout schooling and into adulthood. Many interventions produce substantial gains in 

academic competencies relative to conventional education programs (i.e., the control group 

or counterfactual condition); yet, follow-up studies of such successful interventions reveal 

that those effects diminish, or fade out, over time (Li et al., 2017). Here, we assessed the 

follow-up effects of an effective first-grade mathematics intervention one and two years later 

and sought to determine if child-level variables moderated fadeout. We begin with 

discussion of the factors that are thought to sustain intervention effects, and then turn to 

prior analyses of longitudinal effects of early mathematics interventions, before overviewing 

the foci and contributions of the present study.
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Factors That Support Persistence

Fadeout is a pattern in which the initial effect of an intervention on treated individuals 

(relative to individuals randomly assigned to a control group) diminishes after the end of the 

intervention. For academic interventions, a common finding is that the children assigned to 

the intervention group do not experience a net skill loss, but the control group catches up in 

the post-treatment period. A schematic depiction of this pattern is shown in Figure 1, along 

with a contrast that shows persistent intervention effects.

The ubiquity of intervention fadeout requires careful consideration of the factors that might 

underlie it and consideration of how to best address these factors. Bailey, Duncan, Odgers, 

and Yu (2017) proposed that three processes can help support the persistence of intervention 

effects. The first involves building student capacity on “trifecta” skills: those that are 

malleable, fundamental for future success, and unlikely to develop quickly in the 

counterfactual. Malleability pertains most directly to immediate intervention effects, without 

which persistence is not possible (except perhaps with unusual sleeper effects). Boosting 

academic outcomes of at-risk students, even in the short-term, usually requires an explicit 

instructional framework (Gersten et al., 2008). This framework differs from business-as-

usual classroom instruction by remediating delayed skills (e.g., whole-number knowledge) 

to consolidate the fundamental knowledge necessary for success on the intervention’s 

targeted skills (e.g., fractions knowledge); by incorporating instructional design to 

compensate for at-risk students’ limitations in linguistic, cognitive, or socio-emotional 

processing (e.g., using clear, direct language; relying on worked examples; increasing 

motivation, on-task behavior, and persistence in the face of academic challenge); and by 

providing smaller group size to ensure many opportunities to respond and receive corrective 

feedback (Fuchs, Fuchs, & Malone, 2017; Gersten et al., 2008). Most classroom instruction 

lacks these features (Doabler, Fien, Nelson, & Baker, 2012; Sood & Jitendra, 2007), without 

which the academic progress of at-risk students suffers (Kroesenbergen & Van Luit, 2003).

Whereas malleability pertains to immediate effects, persistence depends on additional 

factors. In particular, an intervention must target skills that are fundamental for future 
success. Interventions that result in substantive gains in fundamental skills should position 

intervention students to more fully benefit from subsequent classroom instruction. The basic 

idea is to provide an early lift via supplemental intervention, which then helps students to 

succeed in the regular classroom. Cunha and Heckman (2007) popularized the phrase skill 
begets skill to describe the processes through which early changes to children’s skills might 

lead to accumulating subsequent advantages to skill acquisition; Stanovich (1986) used the 

term Matthew Effect to capture how early competence increases engagement in and success 

with future education opportunities; and educators sometimes borrow inoculation effect 
from medicine (e.g., Ramey & Ramey, 1998). By whatever name, preparation for future 

learning is critical in mathematics, as fundamental skills are transparently reemployed in the 

service of later curricular targets.

Persistence also depends on the third of the trifecta skills: the unlikelihood that a skill will 

quickly develop under counterfactual conditions. The counterfactual is an alternative 

hypothetical scenario in which a child does not receive an intervention. It cannot be directly 
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observed, but can be approximated by randomly assigning children to a control group. These 

children may receive business-as-usual classroom practices and alternative interventions. At-

risk children experience poor arithmetic development in typical classroom settings (Fuchs et 

al., 2013), even though their not-at-risk peers enjoy rapid development in these same 

classrooms (Bailey, Littlefield, & Geary, 2012; Fuchs et al., 2013). Thus, first-grade 

arithmetic may meet the third criterion for status as a trifecta skill, at least for the duration of 

first-grade. However, under typical conditions, at-risk students do improve in their arithmetic 

skills in subsequent years (Geary et al., 2012). This potential for catch-up may present a 

challenge to the maintenance of intervention effects beyond first-grade.

Even in the face of malleability, fundamentality, and slow development for children who do 

not receive the intervention, fadeout may occur when schools do not provide the first-grade 

intervention students with explicit instructional support after intervention ends. This need for 

sustaining environments (e. g., Bailey et al., 2017; Ramey & Ramey, 1998) reflects the 

possibility that the conditions that created the initial risk (environmental circumstances or 

child-level variables) interfere with intervention students acquiring novel, more complex 

mathematical concepts or procedures, even when fundamental skills have been improved by 

an intervention. This problem may be particularly relevant to mathematics, because the 

mathematics curriculum includes periodic shifts to dramatically novel content (e.g., from 

additive to multiplicative concepts; from integers to rational numbers). Without explicit 

instructional support to navigate these shifts, persistence of intervention effects may be 

threatened, given at-risk learners’ need for explicit instruction (Gersten et al., 2008; 

Kroesenbergen & Van Luit, 2003).

A final plausible risk factor for fadeout is that selection for interventions is an ongoing and 

dynamic process, in which schools select students with weaker mathematics skill for later 

intervention (Balu et al., 2015). Thus, control students would be more likely to receive 

intervention in the immediate follow-up period while students who initially received 

intervention receive fewer follow-up services, on average. This would further account for a 

control group catch-up effect, not only on the remedial content but also on the material 

presented in the follow-up period.

Prior Studies on Longitudinal Effects of Math Interventions

In many intervention studies, participants are not followed beyond the end of the program 

(e.g., Duriak, Weissberg, Dymnicki, Taylor, & Schellinger, 2011; Smit, Verdurmen, 

Monshouwer, & Smit, 2008). When they are followed, fadeout is common. The typical 

finding is rapid declines in treatment effects soon after the program has ended and small to 

no long-term advantages relative to at-risk children who did not receive the intervention 

(Bailey et al., 2018; Li et al., 2017).

The same pattern emerged in two prior evaluations of early grade-school mathematics 

interventions that included follow-up testing at least 3 months after the intervention ended. 

Clarke et al. (2016) evaluated ROOTS, a kindergarten intervention focused on number sense 

and operations, delivered in 20-min sessions five days per week for approximately 10 weeks. 

Improvement from pretest to immediately after intervention was significantly stronger for 
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ROOTS students than the control group on four of five measures (ESs = 0.16–0.75); this 

included a commercial test of early mathematics achievement, where the ES was 0.31. 

However, in January of first grade, performance on a mathematics achievement test did not 

differ across conditions (ES=0.00).

Another first-grade intervention with follow-up assessed the effectiveness of Math Recovery, 

which was designed for daily implementation with 30-min sessions across 12 weeks (Smith, 

Cobb, Farran, Cordray, & Munter, 2013). Immediately after intervention, ESs (0.15 to 0.30) 

favored Math Recovery over the control group on arithmetic, concepts and applications, 

quantitative concepts, and math reasoning. By end of second grade, differences between the 

conditions were no longer significant (ESs = −0.02 – 0.09). All this suggests that “skills 

beget skills” and Matthew effects of mathematics intervention are not as strong, at least for 

the typical treated student, as might reasonably be predicted based on theories of 

mathematics learning.

Focus and Nature of Present Study’s Intervention and Immediate Effects

In the present analysis, we assessed potential fadeout effects for a first-grade intervention 

targeting the conceptual and procedural bases that support arithmetic (Fuchs et al., 2013). 

At-risk students were randomly assigned to three conditions: a control group and two 

variants of the intervention (same conceptual instruction but different forms of practice). 

Fuchs et al. reported immediate intervention effects (spring of first grade). We replicated 

those effects using a different set of statistical procedures and a larger set of pretest controls. 

Our major focus, however, was longitudinal effects through third grade.

The intervention incorporated several features that, in theory, should produce persistence. 

The intervention relied on an explicit instructional framework, and results demonstrated skill 

malleability in the intervention condition as well as inadequate learning in the control group. 

Immediate effects on arithmetic favored both variants of the intervention over control (ESs = 

0.87 and 0.51; Fuchs et al., 2013). Positive effects occurred as well on complex calculations, 

number knowledge, and word problems. Also, the intervention’s focus, children’s arithmetic 

skill, is empirically linked with future mathematics success, such as word problems (Fuchs 

et al., 2006), fractions (Jordan et al., 2013), and algebra (Fuchs et al., 2012; Tolar, 

Lederberg, & Fletcher, 2009). Arithmetic is also a robust predictor of overall mathematics 

learning through the end of fifth grade (Geary, 2011) and eventual mastery of high school 

algebra (National Advisory Mathematics Panel [NMAP], 2008).

At the same time, there were three major threats to persistence in the Fuchs et al. (2013) 

study. First, without intervention, the skilled use of the basic arithmetic targeted in the 

intervention develops rapidly. In one longitudinal study, a group of U.S. children increased 

their use of retrieval on an arithmetic strategy task by about half while improving their 

accuracy on these trials from approximately 60% to 80% from grade 1 to grade 2 (Bailey et 

al., 2012). Further, children at risk for persistently low mathematics achievement have been 

found to improve as much or more as their typically developing peers on some measures of 

arithmetic skill during this later period (Geary et al., 2012; Jordan et al., 2003). The second 

is the possibility that schools fail to provide intervention students access to sustained explicit 
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instructional support after the intervention ends. The third is the possibility that schools 

incorporate multitier systems of support (Balu et al., 2015), in which they select students 

with weaker mathematics skill for subsequent intervention. Thus, at-risk students who did 

not receive the initial intervention receive intervention in the immediate follow-up period, 

while students who initially received intervention do not receive such services. This would 

contribute to a catch-up effect.

Present Study’s Contributions

With the present analyses, we extended the literature on longitudinal effects of early grade-

school mathematics intervention in five ways. First, we examined longer-term (two years 

after intervention) effects than is typical in this literature. Because arithmetic skills remain 

important throughout third grade, it stands to reason that boosting first-grade arithmetic 

skills affects subsequent learning. Second, we relied on a variety of follow-up measures that 

reflect not just maintenance of first-grade skill but also accumulating effects on second- and 

third-grade curricular targets.

The third extension is that we incorporated a pretest battery of foundational mathematics 

competencies, reading performance, and cognitive and linguistic processes, which permitted 

us to consider moderating effects that potentially qualify the long-term effects of 

intervention. Relatedly, with the fourth extension, we explored whether and if so which 

pretest or end-of-intervention child-level variables forecast which children will need ongoing 

intervention. The first, second, and third extensions may provide insight into the processes 

by which fadeout effects occur, while the fourth provides insight into the developmental 

pathways associated with responsiveness versus unresponsiveness to intervention and offers 

a possible strategy for helping schools identify which students are in need of sustained 

intervention.

We targeted five potential moderators of long-term intervention effects. Four of these 

variables were measures of cognitive and linguistic processes associated with individual 

differences in mathematics development: working memory, listening comprehension, 

nonverbal reasoning, and processing speed (e.g., Fuchs, Geary, Fuchs, Compton, & Hamlett, 

2014; Fuchs, Gilbert, Powell, Cirino, Fuchs, Hamlett, Seethaler, & Tolar; 2015; Geary et al., 

2009; Swanson & Beebe-Frankenberger, 2004), factors for which increases in arithmetic 

fluency could plausibly compensate in children’s subsequent mathematics learning. The fifth 

variable, word-reading skill, was included given evidence of developmental parallels 

between early calculation and word reading (Chu, vanMarle, & Geary, 2016; Göbel, Watson, 

Lervåg, & Hulme, 2014; Koponen, Salmi, Eklund, & Aro, 2013), evidence that students 

with concurrent math and reading difficulty experience worse outcomes in each area than do 

peers with difficulty in one domain (Cirino et al., 2015; Willcutt et al., 2013), and prior 

evidence that such comorbidity is associated with less adequate response to generally 

effective intervention (Fuchs et al., 2013; Fuchs et al., 2004). We relied on these same five 

variables to investigate pathways associated with responsiveness versus unresponsiveness to 

intervention. Moreover, because we were interested in exploring a heuristic by which 

schools might identify students in need of sustained intervention via this logistic regression 
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approach, we included end-of-first-grade math outcomes (focused on first-grade math 

content) as additional predictors in the logistic regression.

The fifth extension addressed a methodological issue: the previously documented 

discrepancy in estimating long-term impact from regression analyses, projected from end-of-

intervention effects, versus the observed long-term impact (Bailey, Duncan, Watts, 

Clements, & Sarama, 2018; Bailey, Watts, Littlefield, & Geary, 2014). A possible 

explanation for such discrepancies is the lack of detailed sets of baseline control measures 

available in many longitudinal non-experimental datasets. The present analysis provides an 

opportunity to extend prior work with a rigorous set of pretest control measures, in a sample 

with which end-of-treatment impacts projected forward based on regression-derived 

estimates in the control group can be compared with observed intervention effects.

Method

For detailed information on study methods, see Fuchs et al. (2013) at https://

www.ncbi.nlm.nih.gov/pubmed/24065865.

The Vanderbilt University Institutional Review Board approved this study, which conforms 

to U. S. Federal Policy for the Protection of Human Subjects and the Declaration of 

Helsinki. Participating teachers and a parent or guardian of each participating child gave 

their informed consent prior to inclusion in the study; each participating child provided 

informed assent prior to their participation in the study. Children in 40 schools and 233 first-

grade classes (n = 2,806) were screened for risk for poor math outcomes using a latent factor 

cut-score across math applications, concepts, calculations, and word-reading assessments. 

(Note that the screening measures did not overlap with, i.e., were distinct from, pretest, 

posttest, and follow-up measures.) The cut-score corresponds to the 25th percentile on the 

Wide Range Achievement Test (WRAT)-Arithmetic (Wilkinson, 1993). Students with 

standard scores on both subtests of the Wechsler (1999) Abbreviated Intelligence Scale 

(WASI) <80 (n=59) or whose teachers identified them as non-English speakers (n=359) were 

excluded.

At-risk students were randomly assigned at the individual level, stratifying by pre-

intervention math scores and classrooms, to three conditions: mathematics intervention with 

speeded practice (n = 211), mathematics intervention with non-speeded practice (n = 204), 

and a control group (the school’s program; n = 224). Sample size for this analysis differs 

slightly from Fuchs et al. (2013) because those analyses were restricted to children with 

complete data on the full study battery.

Intervention sessions occurred for 16 weeks, 3 times per week, for 30 min per session. The 

first 25 min of each session were identical across intervention conditions: explicit instruction 

on the conceptual and procedural bases for first-grade arithmetic. The major emphases were 

numeral identification, quantities, number relations, arithmetic principles, number families, 

and decomposition of sets. To represent and contextualize mathematical ideas, number lines, 

manipulatives, games, and story problems were used. Near the end of the program, six 
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lessons focused on place value and 2-digit calculations with and without regrouping. See 

Table 1 in Fuchs et al. (2013) for an outline of content.

In the final 5 min of each session, speeded practice promoted strategic responding to 

arithmetic problems: retrieval of answers when students felt confident; otherwise, use of the 

efficient counting strategies taught in the lessons. Children immediately corrected errors via 

counting strategies. Children had 90 s to respond to flash cards and tried to beat that initial 

score in two additional trials. With non-speeded practice, children used relations and 

principles addressed in the first 25 min of lessons to solve arithmetic problems in the context 

of games, with the tutor immediately correcting errors.

The variables used in the present study are listed in the present report’s Table 1. In spring of 

first grade, intervention effects were assessed with five measures, each providing broad 

sampling of first-grade mathematics content. Transfer distance from the intervention differed 

across measures. In order of proximity, measures were Arithmetic Combinations (Fuchs, 

Hamlett, & Powell, 2003; adding and subtracting through sets of 12); Double-Digit 
Calculations (Fuchs, Hamlett, & Powell, 2003; 2-digit adding and subtracting with and 

without regrouping); Addition Strategy Assessment-Facts Correctly Retrieved (Geary et al., 

2007; simple addition problems answered quickly and correctly without indication of 

counting); Number Sets Test (Geary et al., 2009, Moore, vanMarle, & Geary, 2016; an 

integrative task of cardinality, subitizing, counting, numeral identification, symbolic and 

nonsymbolic quantity understanding, number decomposition, arithmetic principles), and 

Story Problems (Jordan & Hanich, 2000; combine, compare, and change word problems 

involving simple arithmetic). See Supplemental File for explanation of transfer distance.

To model longitudinal effects, three tasks indexing cross-grade mathematics content, with 

few relevant items at any one grade level, were administered at all four waves (pre and post 

in first grade and spring of second and third grade): Wide Range Achievement Test-
Arithmetic (Wilkinson, 1993; calculation problems spanning K-12), Number Line 
Estimation (Siegler & Booth, 2004; accuracy of placing numerals on a 0–100 number line), 

and KeyMath-Numeration (Connolly, 1998; numeration items spanning K-12). Two of the 

first-grade measures, Addition Strategy Assessment-Facts Correctly Retrieved (Geary et al., 

2007) and Number Sets Test (Geary et al., 2009), were also administered at each wave, 

because prior work indicates that fluent performance based on retrieval improves across 

grades 1 and 3 (Bailey et al., 2012). All these measures except Facts Correctly Retrieved 
were deemed distal to intervention.

To assess covariates and moderators at the start of first grade, teachers completed student 

demographic forms and the Attentive Behavior Rating Scale (Swanson et al., 2004). The 

following measures were administered to children: WASI-Matrix Reasoning (Wechsler, 

1999); Woodcock-Johnson III Visual Matching (Woodcock, McGrew, & Mather, 2001; a 

measure of processing speed); Woodcock Diagnostic Reading Battery (WDRB)-Listening 
Comprehension (Woodcock, 1997); Working Memory Test Battery for Children-Counting 
Recall (WMTB-C; Pickering & Gathercole, 2001; a working memory span test); and 

WRAT-Reading (Wilkinson, 1993; a word-reading test). See Supplemental File for 

description of all measures.
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Examiners were trained to criterion at each testing wave. Sessions were audio recorded; a 

random sample at each wave was coded for accuracy (>99%). Intervention sessions were 

audio recorded; a random sample at each wave was coded for accuracy (>97%). Testers were 

blind to students’ experimental conditions.

Results

Group Comparability

On 24 demographic and pretest variables, one group difference was statistically significant: 

A lower proportion of children in the non-speeded condition qualified for subsidized lunch 

than in the control group (.80 vs. .88, p = .03); see Supplemental File Table S1 for 

demographics, pretest performance, and attrition data by condition, along with tests of group 

differences. Given the lack of other group differences, including pretest math performance, 

this is likely a Type I error. Attrition was comparable and low across conditions: 4%−6% at 

grade 1 posttest, 11%−16% by grade 2 follow-up, and 13%−17% by grade 3 follow-up.

Intervention Impacts

The means and standard deviations (SDs) on math performance by wave and condition are in 

Supplementary Table S2. Few participants had missing data for cognitive pretests (< 1% for 

each group, for each test, except for attentive behavior; Table S1); models with full controls 

do not include these observations. We estimated intervention effects on spring-of-first-grade 

outcome measures using mixed effects regression in the lme4 package in R (Bates, 

Maechler, Bolker, & Walker, 2015), based on a model that included a large set of pretest 

controls and nested children in first-grade classrooms (the wide dispersion to second- and 

third-grade classrooms, along with their possible endogeneity to intervention status, makes 

clustering at these levels irrelevant). See Supplementary Table S3 for models including only 

demographic controls (using missing dummy variables for missing demographic 

observations). Because of the pretest balance across groups, estimates are robust across 

different sets of covariates, but they are more precisely estimated in the models with full 

pretest controls. So, we rely on models with full controls (see Table 2 note for a list). Table 2 

shows ESs expressed in control group SD units.

At spring of first grade, the speeded practice group significantly outperformed the control 

group on all five first-grade outcome measures (ES = 0.24 – 0.90) and on two of the three 

cross-grade outcome measures (ES = 0.14 – 0.30). The non-speeded practice condition 

significantly outperformed the control group all five first-grade outcomes (ES = 0.20 – 0.51) 

and on one of the three cross-grade outcomes (ESs = 0.06 – 0.29).

We estimated intervention effects in grades 2 and 3 using the same statistical approach with 

mixed effects models that included the same set of pretest controls and with children nested 

in first-grade classrooms. The outcomes were the two first-grade content measures for which 

continued growth is expected (Facts Correctly Retrieved and Number Sets) and the cross-

grade content measures assessed in spring of first grade. At grade 2 and 3 follow-up 

assessments, none of the 20 effects was significant, although five exceeded 0.10 control 

group SDs, with Facts Correctly Retrieved registering an ES of 0.16 at end of grade 2. The 
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study was not, however, powered to detect effects of this magnitude in the follow-up waves 

(note that an ES of 0.14 was statistically significant at posttest, but standard errors are 

slightly higher at follow-up waves due to modest attrition). Impacts on the five outcomes 

assessed at both the spring of first grade and the grade 2 follow-up faded to an average of 

37% of the spring of grade 1 unstandardized treatment effect in the speeded condition and 

34% in the non-speeded condition.

To explore whether diminished intervention gains were characterized better by the 

intervention groups’ net skill loss or by the control group’s accelerating growth, we plotted 

raw scores in Figure 2 for four of the five tests administered at all three outcome waves: 

Facts Correctly Retrieved, WRAT-Arithmetic, Number Line Estimation, and KeyMath-

Numeration. (Because the Number Sets Test is scored as within-year standardized hits and 

false alarms, scores are not comparable across years.)

To test for catch-up, we estimated mixed effects regression models between each 

consecutive pair of time points (pretest, posttest, grade 2, grade 3), with time, treatment 

group, and the interaction between time and treatment group as predictors. We focused on 

catchup effects for Facts Correctly Retrieved and WRAT-Arithmetic because group by time 

interactions for pre- and posttest were significant only for these measures (see slopes and 

interaction terms in Table S4; power to detect effects is weaker with these difference score 

analyses, without covariates, than for our main analyses in Table 2).

For Facts Correctly Retrieved, the speeded practice and non-speeded groups grew faster than 

the control group between pre- and posttest (difference in improvement scores for speeded 

practice vs. control and for non-speeded practice vs. control, respectively, of 1.4 and 0.9 

facts, both p < .01; Table S4). Between posttest and grade 2, the speeded and non-speeded 

practice groups grew less than the control group, the speeded practice group significantly so 

(respective difference in improvement scores of −0.8 and −0.3 facts, p = .049 and .457). Yet, 

between grades 2 and 3, differences in slope were not statistically significant (respective 

difference in improvement scores of −0.5 and −0.2 facts, p = .207 and .654).

For WRAT-Arithmetic, the pattern was similar. The speeded practice and non-speeded 

groups grew faster than the control group between pre- and posttest (respective difference in 

improvement scores between speeded vs. control and non-speeded vs. control of 1.1 and 1.1 

items, both p < .001; Tables S2 for means and S4 for inferential statistics). Between posttest 

and grade 2, the speeded and non-speeded groups grew less than the control group 

(respective difference in improvement scores of −0.8 and −1.0 items, both p < .01). Yet, 

between grades 2 and 3, group differences in growth were small and not statistically 

significant (respective difference in improvement scores of −0.2 and 0.3 items, p = .602 and .

472).

Thus, on both measures diminishing intervention effects were related to faster improvement 

in the control than intervention groups in the first but not the second year following the end 

of the intervention. Although the treatment impacts in spring of grades 2 and 3 did not reach 

statistical significance, they were positive on both these measures: At end of grade 2, on 

Facts Correctly Retrieved, an ES of 0.16 still favored the speeded group over control, and an 
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ES of 0.09 still favored the non-speeded group over control. On WRAT-Arithmetic, an ES 

of .09 still favored the speeded group over control. At end of grade 3, on WRAT, an ES of .

09 still favored the non-speeded group over control.

Moderation Analyses

To investigate moderators of intervention effects indexed at third grade, we added interaction 

terms (intervention effect × moderator) to the models investigating the main effects of 

intervention. Each moderator was assessed in a separate model to avoid problems with 

collinearity. Because the baseline moderators were not randomly assigned, these analyses 

are not strictly causal, but descriptive of differential impacts of the intervention across 

baseline child characteristics. Intervention by pretest child competency interaction 

coefficients appear in Table S5.

We identified one significant interaction: On the third-grade Number Sets Test, children with 

lower pretest working memory capacity benefitted more from math intervention with non-

speeded practice, compared to the control group, than did children with higher performance 

on these pretest competencies. This interaction is plotted in Figure S1. However, given the 

large number of moderation tests, this effect should be interpreted cautiously.

Forecasting Grade 3 Learning Difficulties

We next explored whether and if so which pretest or end-of-intervention (spring-of-first-

grade) child-level variables forecast which intervention students experience inadequate 

outcomes at grade 3. We defined adequate response as is often done in response-to-

intervention studies (e.g., Frijters, Lovett, Sevcik, & Morris, 2013; Fuchs, Sterba, Fuchs, & 

Malone, 2016): normalized performance, operationalized as an outcome standard score of 90 

or above. We ran these analyses using the third-grade WRAT-Arithmetic as the outcome 

which, although a transfer measure (indexing forms of calculations not addressed in 

intervention), more directly requires foundational skill in arithmetic than do the other two 

norm-referenced longitudinal outcome measures.

We first ran a logistic regression model in which responsiveness status was regressed on 

posttest arithmetic combinations, number line estimation, and story problems. In a second 

model, we added pretest arithmetic combinations, listening comprehension, reasoning, 

processing speed, working memory, and word reading. Then, models were compared using a 

χ2 test to evaluate equality between areas under the receiver operating characteristic curve 

(AUC, which indexes the model’s correct classification performance; 1.00 = perfect 

classification). Because students were nested in first-grade classrooms, coefficient standard 

errors were adjusted accordingly using the vce(cluster classroom) option in Stata’s logit 

command.

Results from Models 1 and 2 are shown in Table S6. In Model 1, posttest arithmetic 

combinations and number line accuracy were significant predictors of responsiveness status; 

AUC was .69. In Model 2, posttest arithmetic combinations, but not number line, remained 

significant. Word reading was the only significant pretest predictor, when controlling for 

other variables in the model; AUC was .73. The χ2 value comparing AUCs was 4.59 (p-

value = .03), indicating that Model 1 fit was significantly worse than Model 2. Thus, pretest 
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word reading added predictive value to posttest arithmetic combinations in determining end-

of-grade-3 responsiveness status.

To determine whether the set of significant predictors was comparably good at classifying 

third-grade status as the whole set of pre- and posttest variables, we ran a third model with 

only the significant predictors from Model 2. The comparison revealed no difference in the 

fit of Model 2 and Model 3, χ2 = 1.62 (p = .20). Thus, at-risk students who were relatively 

skilled at solving basic addition and subtraction problems at the end of first grade and who 

had stronger letter knowledge and word-reading skill at start of first grade were more 

responsive to intervention, as indicated by a greater likelihood they would score in the 

average or better range on a broad-based measure of calculation achievement at the end of 

third grade.

Comparing Regression-Projected versus Observed Longitudinal Effects

We used regression-based methods to estimate the effects of first-grade math skills on third-

grade math skills in the control group, and then used these and the first-grade intervention 

effects to estimate the projected intervention effects at the end of 3rd grade. If projected and 

observed intervention effects differ, then the estimated effects of early mathematical skills 

on later mathematical skills may not be useful for making predictions about the long-term 

effects of interventions. We first calculated composite scores for arithmetic (Facts Correctly 

Retrieved at all waves and Arithmetic Combinations at pre- and posttest), calculations 

(WRAT-Arithmetic at all waves and Double-Digit Calculations at pre- and posttest), word 

problems (Story Problems at pretest and posttest), and number understanding (Number Sets 

Test, Number Line Estimation, and KeyMath-Numeration at all waves).

Then, we calculated actual end-of-intervention (spring-of-first-grade) effects (relative to the 

control group) on each composite score (Figure 3, Panel A) and estimated the causal effect 

of 1 SD change in first-grade arithmetic, calculations, word problems, and number 

understanding on composites of third-grade arithmetic, calculations, and number 

understanding using only the control group (Figure 3, Panel B), controlling for a rich set of 

pretest covariates (see note on Figure 3). The latter are the predicted long-term advantages of 

being 1 SD above average on these measures at the end of first grade, controlling for 

baseline covariates, and without receiving the intervention. So, if an intervention resulted in 

a 1 SD gain in say arithmetic, then the average intervention student is predicted to have a 

0.37 SD advantage over the average control student in arithmetic at the end of 3rd grade 

(0.37 is from Figure 3, Panel B), assuming no other indirect effects of the intervention.

Following this logic, we projected intervention effects on children’s grade 3 calculations and 

number understanding by multiplying the estimates in Figure 3, Panel A by those in Figure 

3, Panel B, and summing the estimated indirect effects for each intervention. These 

projections are shown in Figure 3, Panel C. For example, the projected effect of the speeded 

practice condition on grade 3 arithmetic was computed by multiplying the effects of speeded 

practice on grade 1 posttest arithmetic, calculations, word problems, and number 

understanding (.57, .46, .21, .18; Figure 3, Panel A) by the estimated effects of the same 

grade 1 outcomes on grade 3 arithmetic (.37, −.06, .09, −.12; Figure 3, Panel B) and then 

adding these effects together (.21-.03+.02-.02=.18; Figure 3, Panel C).
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Based on the observed grade 1 posttest effects and the regression-based estimates of the 

effects of grade 1 posttest performance on grade 3 outcomes, our analysis projected that 

students in the speeded intervention condition would outperform the control group by .18 

SDs on grade 3 arithmetic; .20 SDs on grade 3 calculations; and .19 SDs on number 

understanding. The students in the non-speeded intervention condition were projected to 

score .10 SDs higher than the control group on grade 3 arithmetic; .17 SDs on grade 3 

calculations; and .11 SDs on number understanding. Finally, Panel D shows the observed 

intervention effects on grade 3 arithmetic, calculations, and number understanding were 

lower than the projected effects in all cases.

Projected versus actual impacts for each outcome are plotted in Figure 4. Projected impacts 

appear biased, given that actual effects are smaller than projected effects in every case. 

Further, estimates are not well calibrated to actual long-term effects: The comparisons with 

the largest projected effects do not show larger actual effects. The relation between predicted 

and actual impacts was weak (r = −.10); this correlation is based on only six pairs of 

projected and actual impacts and is therefore imprecisely estimated.

Discussion

We begin by discussing the immediate and longitudinal impacts of the intervention on tasks 

of varying transfer distance. We next consider the processes by which fadeout occurs and 

whether pre- or posttest (end-of-intervention) child-level variables may serve to identify 

which students will likely require ongoing intervention support. Finally, we address our 

methodological question concerning whether longitudinal effects of intervention can be 

predicted on the basis of posttest performance. We close with study limitations and overall 

conclusions about the persistence of intervention effects.

Immediate and Longitudinal Effects of Intervention

Using a larger set of pretest controls, we replicated and extended the post-intervention 

effects reported by Fuchs et al. (2013). Significant effects favored intervention over control 

on all five first-grade math outcomes for both intervention conditions. For the math 

intervention condition with speeded practice, the ES on arithmetic combinations, the 

outcome measure closest in proximity to the intervention’s focus was large (0.90). This was 

also the case for the measure with the next closest proximity, double-digit calculations with 

and without regrouping (ES = 0.80), even though this content was explicitly addressed in 

only six intervention lessons. On facts correctly retrieved, the next closest in proximity to the 

intervention, the ES was a moderate 0.42.

Corresponding figures in the non-speeded condition for these three measures were smaller 

but significant: on arithmetic, 0.44 (vs. 0.90); on double-digit calculations, 0.51 (vs. 0.80); 

and on facts correctly retrieved, 0.24 (vs. 0.42). Both practice conditions were designed to 

support retrieval but in different ways: speeded practice via strategic responding with recall 

or efficient counting strategies and many opportunities for forming correct associations 

between problem stems and answers; non-speeded practice by reinforcing relations and 

principles that serve as the basis of reasoning strategies that support retrieval. The pattern of 

smaller ESs for the non-speeded versus speeded practice group, largest on arithmetic 
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combinations and double-digit calculations, reproduces Fuchs et al.’s (2013) findings, in 

which speeded practice significantly outperformed non-speeded practice with respective ESs 

of 0.51 and 0.21 on the two outcomes.

Number sets was deemed farther transfer because strong performance requires the 

integration of skills across multiple dimensions of number knowledge and thus was novel 

(not taught or practiced during intervention). Here, the ES for speeded practice was 0.33 and 

0.20 for non-speeded practice. This advantage for speeded practice was unexpected because 

the sole focus of non-speeded practice was the conceptual and procedural bases for 

arithmetic. In any event, the similar impacts on the number sets test and addition fact 

retrieval are consistent with Moore et al.’s (2016) finding that fluency on the number sets 

test is related to children’s understanding of addition and subtraction. The results here 

suggest that fluency in these operations facilitates fluency in combining symbolic and 

nonsymbolic quantities (core skills assessed by the number sets test; Geary et al., 2009), 

although the results could also emerge because some number-sets items involve comparison 

of pairs to numerals (e.g., “3 4”) to the target (e.g., “5”). Fast and accurate retrieval of basic 

facts should facilitate performance on these items and thus boost overall number sets scores. 

On story problems, the most distal first-grade outcome, ESs were more similar across the 

two conditions (0.24 and 0.30).

The parent study was designed with additional waves of testing at end of grades 2 and 3, 

using three tasks tapping cross-grade math content. For longitudinal modeling purposes, the 

parent study also included these same measures at end of first grade, although first-grade 

effects on these measures were not expected to differ across conditions. Yet, on WRAT-

Arithmetic, which includes approximately six calculation items at the first-grade level but 

also taps kindergarten number knowledge, effects were significant and of nearly identical 

magnitude for both intervention conditions: 0.30 and 0.29. On KeyMath-Numeration, which 

has approximately three items at the first-grade level, effects were significant for the speeded 

practice condition (ES = 0.14) but not for the non-speeded practice condition (ES = 0.06). 

This echoes the end-of-first-grade number sets findings already discussed. On number line, 

effects were nonsignificant for both conditions (ES = 0.14 for the speeded condition; 0.06 

for the non-speeded condition), perhaps due to the measure’s focus on double-digit numbers 

(although we note that the ES of 0.14 was the same as for KeyMath-Numeration, where the 

effect was significant).

In these ways, the immediate effects of intervention provide the basis for two conclusions. 

First, explicit instruction on the core ideas, principles, and procedures of simple arithmetic 

has strong effects on at-risk students’ first-grade math learning, especially on but not limited 

to arithmetic and calculation outcomes. Second, conceptual math intervention with speeded 

practice, even for a small amount of intervention time (5 min of each 30 min session), plays 

a substantial role in improving outcomes over the same conceptual mathematics instruction 

but with non-speeded practice. This assumes that practice is delivered in the context of 

instruction on the conceptual bases of arithmetic, as in the Fuchs et al. (2013) study’s 

intervention.

Bailey et al. Page 13

Child Dev. Author manuscript; available in PMC 2020 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yet, despite convincing effects at first grade, there was little evidence that the effects of 

intervention persisted one or two years after the intervention ended. To index math targets 

expected for continued development across grades 2–3, follow-up assessments were 

restricted to two of the five tasks involving first-grade content: Facts Correctly Retrieved and 

Number Sets, where continued growth through third grade had previously been shown 

(Geary et al., 2012). At end of second grade, ESs on these respective measures were 0.16 

and 0.09 for math intervention with speeded practice and 0.09 and −0.03 for math 

intervention with non-speeded practice; at end of third grade, −0.01 and 0.12 for the speeded 

practice condition and 0.04 and 0.12 for non-speeded practice. Some of these ESs may be 

meaningful for education practice. The p-value of the 0.16 ES was a marginally significant .

089 (Table 2), suggesting that effects for math intervention with speeded practice may have 

persisted one year after intervention ended. By end of grade 3, however, the effect had faded 

(ES = 0.04, Table 2), with the graphed data (Figure 2) suggesting that performance reached 

an asymptote on the Facts Correctly Retrieved measure by end of second grade.

On the three follow-up cross-grade tests, WRAT-Arithmetic, Number Line, KeyMath-

Numeration, ESs were generally smaller: 0.08, 0.11, and .00 for speeded practice and 0.01, 

0.12, and 0.00 for non-speeded practice at end of second grade; 0.03, −0.02, and 0.0 for 

speeded practice and 0.08, 0.02, and 0.08 for non-speeded practice at end of third grade. For 

context, the average annual growth on nationally normed mathematics achievement tests 

declines from approximately 1 SD in the first-grade year to approximately .5 SD by the end 

of elementary school (Hill, Bloom, Black, & Lipsey, 2008). By comparison, the average of 

the intervention effects on the two cross-grade standardized mathematics assessments 

(WRAT-Arithmetic and KeyMath-Numeration) at the grade 2 and 3 follow-up waves was .

045 control group SD. Thus, as with prior math intervention studies at kindergarten (Clarke 

et al., 2016) and at first grade (Smith et al., 2013), interventions that provide at-risk children 

with a substantial and significant boost at the end of intervention fail to deliver the hoped-for 

persistence of effects.

Processes by Which Fadeout Occurs

To gain insight into the processes by which fadeout occurs, we return to the notion of trifecta 

skills needed to support persistence (Bailey et al., 2017). First, the intervention’s main focus, 

arithmetic, was clearly malleable. With an instructional framework rooted in explicit, 

systematic instructional design, at-risk intervention students’ arithmetic performance surged, 

even as arithmetic learning among at-risk first graders receiving the school’s typical program 

(this study’s control group) was limited. As established in prior work, arithmetic also fulfills 

the second dimension of trifecta skills, that is, it is foundational to higher-level mathematics 

(Fuchs et al., 2006; Fuchs et al., 2012; Geary, 2011; Jordan et al., 2013; NMAP, 2008). Still, 

fadeout occurred for one or several of three possible reasons.

The first is catch up: The at-risk children in the control group showed more rapid gains in 

arithmetic after the intervention ended then did children who participated in the 

interventions, consistent with previous studies (Clements et al., 2013; Elango, García, 

Heckman, & Hojman, 2015). Our results indicated that catch-up primarily occurred during 

the first year after the intervention ended.
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A second potential reason is the possibility that schools fail to provide intervention students 

access to sustained explicit instructional support after the intervention ends. In other words, 

the effectiveness of the interventions is related in part to the explicit supports built into the 

learning activities. If these same types of supports are not available in the regular classroom 

when intervention ends, then the ease of learning new mathematical material, even with 

enhanced foundational skills, may be impeded to that seen in the control group. 

Unfortunately, we did not have information on the types of instructional supports provided 

in the regular classrooms and thus we cannot directly assess this possibility.

We also assessed whether persistence of intervention effects was moderated by individual 

differences in students’ cognitive and linguistic processes. Such effects might be expected 

because children who have cognitive advantages generally show more rapid gains in 

mathematical achievement than their less apt peers (Bailey et al., 2014; Geary, Nicholas, Li, 

& Sun, 2017). But this is not what we found, possibly due to range restriction among the at-

risk groups. The exception was for the contrast involving the non-speeded intervention 

versus control on the third-grade number sets outcome; specifically, children with lower 
pretest working memory capacity outperformed control group students with similar pretest 

working memory. By contrast, third-grade effects between the non-speeded practice and 

control conditions were smaller for children with higher performance on pretest working 

memory.

The pattern of this interaction is similar to that found with a recent effective fractions 

intervention. There, conceptual fractions practice was particularly helpful for students with 

extremely limited working memory capacity, whereas speeded fractions practice produced 

stronger effects for students with more intact working memory resources (Fuchs et al., 

2014). However, as previously mentioned, the observed moderator effect should be 

interpreted cautiously given the large number of moderation tests.

The third threat to the persistence is the possibility that schools incorporate multitier systems 

of support (MTSS), in which they select students with weaker mathematics skill for 

subsequent intervention (Balu et al., 2015). Thus, students in the control group would be 

more likely to receive subsequent intervention than students in the intervention groups. This 

would contribute to the control group’s second-grade catch-up effect on math fact retrieval 

and complex calculations. The participating school district did in fact offer MTSS services 

during this period and based on end-of-first-grade performance would have identified more 

control group students than intervention students for second-grade MTSS intervention. 

Although this is a distinct possibility, the present study cannot directly test this hypothesis, 

because we lack data on school-delivered intervention during the follow-up period.

Child-Level Variables that Forecast Grade 3 Learning Difficulties

The present study adds to a growing body of evidence that intervention effects cannot be 

expected to persist over time for many children, even when strong and meaningful effects 

are found when intervention ends. An intervention with strong efficacy does not work for all 

children, but an intervention that suffers fadeout over time does not mean that all children 

fail to derive continued benefit. This is the case in the present study, where some children 

reached normalized performance, while others did not. For example, on the longitudinal 
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WRAT-Arithmetic measure, indexing simple and complex calculations, more than one-third 

of intervention students across the two conditions met the criterion for adequate response 

commonly applied in the response-to-intervention literature (Frijters et al., 2013; Fuchs et 

al., 2016) at end of third grade: normalized performance, with standard score of 90. We note 

that although dichotomizing continuous data has its drawbacks (Irwin & McClelland, 2003; 

MacCullum, Zhang, Preacher, & Rucker, 2002), school personnel are regularly called upon 

to make dichotomous service allocation decisions.

Our logistic regression analyses addressed the question of whether pretest or end-of-

intervention child-level variables serve to differentiate students who will and will not require 

sustained intervention. Two variables demonstrated predictive utility for classifying students 

who did and did not respond adequately on complex calculations two years later. End-of-

intervention arithmetic combinations skill was one of the two variables. In other words, 

students who demonstrated weaker response to the first-grade intervention were less likely 

to meet criteria for average or better math achievement at the end of third grade. This 

suggests that stronger foundational skill begets stronger math achievement. It also suggests 

the importance of monitoring progress over the course of intervention to designate a subset 

of children for more differentiated adjustments.

Start-of-first-grade letter knowledge and word reading offered additional predictive value, in 

line with prior work showing a relation between early literacy skills and later mathematics 

achievement (Chu et al., 2016; Göbel et al., 2014). Ease of learning words and memorizing 

basic arithmetic facts tends to co-occur (Geary, 1993; Koponen et al., 2013), potentially 

because they rely on the same brain and cognitive systems that support symbol and number 

and arithmetic fact learning (Holloway, Battista, Vogel, & Ansari, 2013; Yeo, Wilkey, & 

Price, 2017). That start-of-first-grade reading distinguished long-term responders and 

nonresponders to a strong first-grade mathematics intervention is also noteworthy: It echoes 

evidence indicating students with concurrent math and reading difficulty experience worse 

outcomes in each area than do peers with difficulty in one domain (Cirino et al., 2015; 

Willcutt et al., 2013) and that such comorbidity is associated with less adequate response to 

intervention (Fuchs et al., 2013; Fuchs et al., 2004).

The best and most parsimonious model classified 73% of students correctly. This value, 

along with the specific predictors identified in this model should be interpreted tentatively, 

pending replication. These results do, however, provide an innovative heuristic for using 

cross-domain child-level performance (e.g., reading and math) at different time points (e.g., 

before and after intervention) to identify children’s later responsiveness to intervention and 

to generate hypotheses about and deepen insight the variables that underlie at-risk learners’ 

post-intervention developmental trajectories.

Estimating Long-Term Impact from Regression Analyses

Finally, our approach addresses a methodological issue related to the usefulness of making 

predictions about the effects of interventions from non-experimental data; specifically, we 

focused on the previously documented difficulty in estimating long-term impacts, when 

estimates are projected via regression analyses using end-of-intervention impacts (Bailey et 

al., 2018; Bailey et al., 2014). A possible explanation for such discrepancies is the lack of 
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detailed sets of baseline control measures available in many longitudinal, non-experimental 

studies. The present analysis extends prior work with a rigorous set of pretest control 

measures, in a sample with which observed impacts can be compared with projections based 

on end-of-intervention impacts and regression-estimated persistence rates. We found that 

projected impacts systematically over-estimated observed impacts, replicating Bailey et al. 

(2018). Thus, given the implausibility of regularly collecting a battery of pretest controls 

more thorough than those included in the present study, regression control does not appear to 

provide an effective means for projecting the future benefits of successful interventions.

These findings contrast with quasi-experimental work (i.e., without random assignment to 

intervention and control groups) that successfully approximated effects of mathematics 

interventions (Dong & Lipsey, 2018; Shadish, Clark, & Steiner, 2008). A critical difference 

between these designs may be that participation in a controlled math intervention may be 

similar whether or not children are randomly assigned, while absolute levels of math skills 
may have different meanings in children who just received an effective early math 

intervention versus those who did not (Bailey et al., 2016). In particular, the same level of 

math skill may reflect greater underlying cognitive, developmental, and contextual 

advantages in children who did not receive an effective math intervention than in children 

who did. Models that account for potential differences between within- and between-child 

variation (for review, see Borsboom, Mellenbergh, & van Heerden, 2003) in math skills may 

yield more accurate predictions about the long-term patterns of impacts after effective math 

intervention ends. This problem is worthy of additional attention in cognitive developmental 

research to increase our ability to make useful predictions about long-term effects of 

interventions based on longitudinal non-experimental data. Additionally, these quantitative 

comparisons of experimental and non-experimental estimates of the same effects act as 

important checks on the validity of common research practices in child development.

Major Study Limitation and Conclusions

As noted, a major limitation is the absence of information on which students received 

school-delivered intervention during the follow-up period. The design of future intervention 

studies should include information on these interventions, especially in the year following 

the end of the intervention. Indeed, if the control group converges with the intervention 

group because schools are able to allocate more instruction to these children, the 

intervention’s positive effect would be observed by comparing all of the children in the 

classroom or school in which only some children received the intervention against similar 

children in other classrooms or schools. The possibility of universal education interventions 

generating more persistent effects has been discussed (Bailey et al., 2017; Greenberg & 

Abenavoli, 2017), although it is notable that fadeout following an effective mathematics 

intervention has been observed in studies that have randomly assigned children at the 

classroom (Clarke et al., 2016) and school (Bailey et al., 2018; Clements et al., 2013) levels.

With this caveat in mind, we draw the following conclusions. Diminishing longitudinal 

effects of effective kindergarten or first-grade math intervention, as revealed in prior work 

(Clarke et al., 2016; Smith et al., 2013) and in the present study, raise questions about 
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whether early prevention is sufficient to support long-term outcomes in children who 

manifest substantial math delays early in school.

The present study contained five outcome measures, more than a prior mathematics 

intervention study with a 6-month follow-up (Clarke et al., 2016) and the same number as in 

Smith et al. (2013) with a 1-year follow-up. The present study also included content targeted 

in first grade and across grades. Still, we cannot conclusively rule out the possibility that the 

intervention led to lasting effects on measures not given at the follow-up waves.

The extent to which these findings generalize to other types of interventions, target skills, 

and age groups is not well understood. The finding that intervention effects declined to 

approximately 1/3 their initial size after the first year is similar to findings from prior 

comparisons of fadeout effects across multiple studies of academic interventions in early 

childhood and the early school years (Bailey et al., 2018; Li et al., 2017). It is less clear if 

this pattern generalizes well to interventions targeting older children. We predict that the 

general finding that pretest academic skills can be used to predict which students need 

persistent intervention will generalize to other contexts. However, the exact regression 

weights, proportions of at-risk children in need of persistent intervention based on these 

criteria, and predictors may be sensitive to how low performance is defined and how 

participants are screened for eligibility into the intervention.

Our results suggest that although early prevention, in the form of math intervention provided 

in first grade, is probably necessary, it is not sufficient. Instead, sustained intervention, 

designed to capitalize on the benefits derived from effective early prevention services, is 

necessary for a subset of students who receive first-grade intervention. Our analyses indicate 

this may be the case for nearly two-thirds of children who receive effective first-grade 

intervention. Therefore, randomized controlled trials are needed to examine whether early 

intervention combined with sustained intervention produces stronger long-term outcomes 

than early or later intervention alone. If so, one important challenge is to identify the subset 

of early intervention students who require sustained intervention, and the present study 

demonstrates potential for such a post-intervention screening process using post-intervention 

math scores as well as pre-intervention reading skill. Future work should continue to 

improve the accuracy and investigate the robustness of such methods for forecasting need for 

sustained intervention.
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Figure 1: Schematic of Fadeout and Persistence Patterns in Childhood Interventions
The left panel depicts full fadeout, while the right panel depicts persistence at 100% of the 

level of the treatment effect at posttest. Importantly, as is commonly observed in childhood 

interventions, the treatment group does not experience net skill loss from posttest to follow-

up, even when fadeout is complete.
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Figure 2: Raw Score Means across Waves by Group
Means are unadjusted for covariates; bars are standard errors. PAE = Percent absolute error, 

which was reverse-scored, with higher number representing stronger performance.
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Figure 3: Calculation of Projected vs. Observed Effects of Treatments on Grade 3 Follow-up 
Outcomes
Panels A and D show effects relative to control group on standardized outcome measures, 

with full controls from models in Table 2. Effects in Panel B are estimated with full controls 

using data from the control group only. Projected effects in Panel C are the sum of the 

products of the effects in Panel A for each treatment and the estimated effects in Panel B. In 

all models, children are nested in grade 1 classrooms.
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Figure 4: Scatterplot of Projected by Observed Impacts of Treatments on Grade 3 Follow-up 
Outcomes
Projected impacts are from Figure 3, Panel C. Actual impacts are from Figure 3, Panel D. 

Unbiased prediction would yield similar errors on either side of the line with intercept 0 and 

slope 1. Calibrated prediction would be indicated by a correlation between predicted and 

observed effects. Error bars are standard errors.
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Table 1:

Variable List

Variable type Variable List

Demographics Age at pretest, Sex (1=male), Free or reduced price lunch, Special 
education, Race and ethnicity, English Learner status

Pretests: General Processing Nonverbal Reasoning, Processing Speed, WM-Listening Recall, WM-
Counting Recall, Attentive Behavior, Listening Comprehension

Pretest: Reading WRAT-Reading

Mathematics: First-Grade Content (only collected in fall and 
spring of First-Grade)

Arithmetic Combinations, Double-Digit Calculation, Story Problems

Mathematics: First-Grade Content (collected at every wave) Facts Correctly Retrieved, Number Sets

Mathematics: Cross-Grade Content (collected at every wave) WRAT-Arithmetic, Number Line, KeyMath-Numeration

Note: For details about scoring, see Supplementary Materials. For variable means by group at all waves, see Tables S1 and S2
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Table 2:

Experimental Impacts at Spring of First Grade and Follow-up Waves

Speeded vs. Control Non-Speeded vs. Control

Outcomes Estimate (S.E.) p Standardized Estimate Estimate (S.E.) p Standardized Estimate

Spring of Grade 1

    First-Grade Content

        Arithmetic Combinations 10.50 (.92) <.001 .90 5.15 (.94) <.001 .44

        Double-Digit Calculations 2.26 (.27) <.001 .80 1.46 (.27) <.001 .51

        Facts Correctly Retrieved 1.42 (.30) <.001 .42 .83 (.31) .007 .24

        Number Sets .40 (.10) <.001 .33 .25 (.10) .010 .20

        Story Problems .54 (.19) .006 .24 .68 (.20) <.001 .30

    Cross-Grade Content

        WRAT Arithmetic 4.66 (.95) <.001 .30 4.53 (.96) <.001 .29

        Number Line 1.00 (.61) .100 .14 .46 (.62) .455 .06

        KeyMath-Numeration 1.44 (.72) .046 .14 .60 (.73) .412 .06

Spring of Grade 2

    First-Grade Content

        Facts Correctly Retrieved .62 (.37) .089 .16 .35 (.37) .351 .09

        Number Sets .14 (.13) .282 .09 −.05 (.14) .708 −.03

    Cross-Grade Content

        WRAT-Arithmetic 1.16 (1.08) .283 .08 .08 (1.10) .868 .01

        Number Line .81 (.63) .200 .11 .89 (.64) .167 .12

        KeyMath-Numeration .00 (.75) .999 .00 −.03 (.77) .970 .00

Spring of Grade 3

    First-Grade Content

        Facts Correctly Retrieved −.03 (.37) .942 −.01 .13 (.37) .721 .04

        Number Sets .21 (.15) .152 .12 .22 (.15) .140 .12

    Cross-Grade Content

        WRAT-Arithmetic .39 (1.25) .753 .03 1.16 (1.26) .356 .08

        Number Line −.10 (.53) .845 −.02 .12 (.53) .823 .02

        KeyMath-Numeration .83 (.83) .313 .08 .90 (.83) .283 .08

Note: Covariates include the same test at pretest, pretest KeyMath-Numeration, WRAT Reading, Matrix Reasoning, Cross Out, Listening Recall, 
and Counting Recall, along with ethnicity, sex, subsidized lunch status. Missing demographic variables are coded as missing dummy variables. 
Participants are nested in grade 1 classrooms. Standardized effects are in control group standard deviation units. Number line is reverse coded, so 
higher scores indicate stronger performance.
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