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Abstract
The understanding that differences in biological epistasis may impact disease risk, diagnosis, or disease management stands in 
wide contrast to the unavailability of widely accepted large-scale epistasis analysis protocols. Several choices in the analysis 
workflow will impact false-positive and false-negative rates. One of these choices relates to the exploitation of particular 
modelling or testing strategies. The strengths and limitations of these need to be well understood, as well as the contexts in 
which these hold. This will contribute to determining the potentially complementary value of epistasis detection workflows 
and is expected to increase replication success with biological relevance. In this contribution, we take a recently introduced 
regression-based epistasis detection tool as a leading example to review the key elements that need to be considered to fully 
appreciate the value of analytical epistasis detection performance assessments. We point out unresolved hurdles and give 
our perspectives towards overcoming these.

Introduction

Genome-wide association studies (GWAS) have allowed for 
greater understanding of the genetic contributions to com-
plex traits and the mapping of disease susceptibility loci. 
However, the initial paradigm of focusing a study on one 
SNP at a time or on a selection of candidate genes has lim-
ited our ability to identify novel genes underlying suscepti-
bility to human disease. Likewise, it has not been efficient 
in the detection of genetic factors that may be depending on 
interactions with the other genes (epistasis) or environmental 
stimuli. The term “epistasis” was first described by Wil-
liam Bateson (1907), referring to the suppression of gene 
expression at one locus by a gene at another locus. Fisher’s 
definition of epistasis (Fisher 1918) indicates deviations 
from additivity in the effect of alleles at different loci with 
respect to their contribution to a quantitative phenotype, 
which was shown not to be equivalent to Bateson’s definition 

(Norton and Pearson 1976). Nowadays, the term “epista-
sis” is broadly used to refer to interactions between genes in 
which the contribution of one gene to a phenotype depends 
on the genetic background of the organism under study. A 
further distinction is made between biological epistasis and 
statistical epistasis: Biological epistasis [or physiological 
epistasis (Sackton and Hartl 2016)] can be seen as a result of 
physical interactions among biomolecules within gene regu-
latory networks and biochemical pathways in an individual 
(Moore and Williams 2005), whereas statistical epistasis 
assumes deviations from multi-locus additive genetic effects 
in a mathematical model for a phenotype. For more details 
about epistasis, its meaning, related concepts, and general 
discussions about analytic issues, we refer to educational 
work published since 2002, including (Moore and Williams 
2005; Cordell 2002, 2009; Phillips 2008; Van Steen 2012; 
Wei et al. 2014; Ritchie and Van Steen 2018).

Even though the proportion of heritability that is due 
to epistasis for complex traits in humans remains hard to 
estimate to date [see for a discussion in (Sackton and Hartl 
2016)], there is no doubt that epistasis plays a role in human 
complex genetics. One role is in personalized medicine 
where differences in biological epistasis may impact disease 
risk, diagnosis, or disease management [see, for instance, 
(Moore and Williams 2009), epistasis in drug resistance 
(Duraisingh and Refour 2005; Kim et al. 2011; Wilson et al. 
2016), and epistasis in Alzheimer’s disease (Gusareva et al. 
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2014) with a discussion about biological translation (Ebbert 
et al. 2015)]. This understanding stands in wide contrast to 
the unavailability of a widely accepted protocol to perform 
a Genome-Wide Association Interaction Study (GWAIS). 
The lack of such a standardized detailed workflow can be 
explained by the many difficulties involved in performing 
large-scale epistasis screening and in inferring biological 
evidence from statistical findings (Gusareva and Van Steen 
2014; Bessonov et al. 2015). One of these involves the 
selection of the best analytic model to maximize the detec-
tion of multiple epistasis signals with biological relevance. 
Notably, modelling or statistical testing only involves one 
component of an entire GWAI analysis protocol (Gusareva 
and Van Steen 2014). Far too often, GWAI analysis proce-
dures related to data cleansing/quality control (QC), missing 
observations, population structure control, effect encoding, 
and multiple testing are simply taken over from the GWAS 
scene. However, too little SNP variation will hamper sta-
tistical GWAI power, too high (distant) LD may induce 
redundant epistasis (Moore et al. 2006), additive encoding 
schemes will elevate type I error rates and augment the num-
ber of false-positive GWAI findings, and complex dependen-
cies between interaction test statistics will affect the perfor-
mance of multiple testing strategies typically employed in 
the context of GWA studies (Gusareva and Van Steen 2014). 
Whether or not a (newly) introduced GWAI analytic strat-
egy can be promoted over another strategy in real-life data 
applications will largely depend on the degree to which all 
of the above, as a minimum, is taken into account in formal 
performance assessments on synthetic data.

In this contribution, we take a recently suggested novel 
epistasis detection tool (Frånberg et al. 2015), based on 
the most commonly used regression paradigm, as a lead-
ing example, and suggest different contexts to help interpret 
performance assessments of large-scale epistasis screening 
approaches. There was no particular reason to have selected 
the work of Frånberg et al. (2015); there are ample publi-
cations on regression-based epistasis methods which could 
have equally likely served our purpose [e.g., BOOST (Wan 
et al. 2010), EPIBLASTER (Kam-Thong et al. 2011), FRGE-
pistasis using functional regression (Zhang et al. 2014) and 
epistasis detection with penalized regression (Slim et al. 
2018)].

Multi‑stage epistasis screening: an example

In their paper, Frånberg et al. (2015) display an interest-
ing novel multi-stage epistasis screening approach based 
on likelihood ratio tests derived from regression models. 
The idea is to increase the power of a GWAI study by 
investigating two strategies that can be combined. The first 
allows for flexible incorporation of different trait scales. 

The second aims to reduce the multiple testing problem 
via a series of hypothesis testing that involves simpler 
models than a full interaction model with two SNPs, say 
SNP1 and SNP2. In particular, the full model relates to 
HA: g

(
p12

)
= � + �1SNP1 + �2SNP2 + �12SNP1 ∗ SNP2, 

in which p12 represents the mean response conditional on 
SNP1 and SNP2 that are encoded as 0, 1, 2, and in which g(.) 
represents an appropriate link function. The simpler models 
are the intercept-only model (H1: g

(
p12

)
= �) , the main-

effect models for SNP1 (H2: g
(
p12

)
= � + �1SNP1) and for 

SNP2 (H3: g
(
p12

)
= � + �2SNP2) and the additive model 

including both SNP1 and SNP2 in the absence of an inter-
action term (H4: g

(
p12

)
= � + �1SNP1 + �2SNP2 ). Rather 

than performing the so-called conditional model building 
that would imply starting with no SNPs in the model, then 
testing the addition of each SNP separately or jointly in the 
model, and finally testing for interaction between SNP1 and 
SNP2, Frånberg et al. consecutively test Hi (i = 1,2,3,4) vs 
HA, in this order. In other words, it is the full model that is 
constantly being tested for against a variety of “null” models. 
The multi-stage procedure obviously comes with a correc-
tive method to maintain type I error rates. Two such correc-
tive methods are proposed: a so-called static one, in which, 
at each stage, a pre-estimated number of tests is used in a 
Bonferroni type of family-wise error rate (FWER) control, 
and a so-called adaptive one, in which the aforementioned 
estimate is replaced by the actual number of tests performed 
at each stage. The motivation behind their strategy is that 
when an SNP pair’s relationship to a trait can adequately 
be described by a simple model, there is no need to make 
the model more complex. In this case, the SNP pair can be 
excluded from the epistasis screening panel, hereby relaxing 
the computational and multiple testing burden.

The aforementioned work involves one of the few syn-
thetic data studies that considers the inclusion of a large 
variety of penetrance tables since the publication of Li and 
Reich in (2000). Two-locus models for biallelic SNPs are 
typically represented by three-by-three penetrance tables. 
Each entry (“penetrance”) refers to the probability of being 
affected with disease, for a specific (1 out of 9) 2-locus geno-
type combination. The assumption of full penetrance (i.e., 
all entries in the penetrance table are either 1 or 0) is relaxed 
via controlling the total heritability due to the two loci under 
investigation (Culverhouse et al. 2002). In addition, Frånberg 
et al. (2015) are among the first to propose and evaluate a 
test statistic that is invariant to a variety of scales relating 
genotype to phenotype, showing the expected power advan-
tages of their method over some mainstream analyses based 
on a regression framework. The latter is important as it is 
a known fact in epidemiology that interactions may appear 
or disappear depending on the measurement scale used to 
describe the outcome of interest (Greenland and Rothman 
1998).
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How to evaluate a novel epistasis screening 
tool?

Some attention points are worth mentioning when evaluat-
ing a novel epistasis detection method (see Fig. 1). These 
relate to setting up a comprehensive simulation study as well 
as interpreting its results and assessing the impact of the 
method for the community.

Heritability and frequency spectrum of genetic 
variants

In Frånberg et al.(2015), for a pre-specified heritability, 
non-zero penetrances were set to the same value, and power 
results were summarized over all the considered models, 
without distinguishing between purely epistatic models or 
epistasis models with main effects. In fact, Frånberg et al. 
use total heritability H2 as a summary measure of all the 
genetic effects in a two-locus model, with H2 defined as 
follows: H2 =

1

P(1−P)

∑2

i=0

∑2

j=0
Prob

�
Gij

�
(Prob

�
D�Gij

�
− P)

2 
and Prob

(
Gij

)
 the frequency of the 2-locus genotype com-

bination SNP1 = i and SNP2 = j (i,j = 0,1,2), and P and 

Prob
(
D|Gij

)
 denoting the disease prevalence and penetrance 

of the disease, respectively. However, quantifying the 
strength of simulated marginal and interaction effects in 
terms of heritability gives an added value as it contributes 
to a better assessment of the relative importance of main 
and interaction effects in the data. For instance, following 
(Winham et al. 2012), the heritability H2

I
due to the interac-

tion effect of SNP1 and SNP2 can be defined as the portion 
of H2 that cannot be attributed to the marginal effects of 
SNP1 and SNP2: H2

I
= H2 − H2

M,SNP1
− H2

M,SNP2
 in which 

the heritability H2

M,SNP1
due to SNP1 only can be defined as 

H2

M,SNP1
=

1

P(1−P)
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2 , and the heritability H2

M,SNP2
due to SNP2 

alone can be defined similar to H2

M,SNP1
 . These definitions 

imply that the actual heritability due to the interaction may 
be much smaller than the lowest total heritability of 0.005 
that Frånberg et al. considered for their synthetic data gen-
eration. This probably explains the large cases-plus-controls 
sample sizes of 4000, 6000, and 8000 included in their 
study to achieve appreciable power, with any of the consid-
ered analytic epistasis detection strategies. Notably, realistic 

Fig. 1   Minimal number of attention points to consider when evaluat-
ing a novel analytic tool on real-life or synthetic data. All of these 
affect power, which can be defined at different levels and may involve 

interpreting analysis results derived from SNPs, genes, or pathways 
as units of epistasis analysis
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scenarios can be formulated directly at the trait level (i.e., 
in terms of expected trait values) or at the variance scale 
(i.e., in terms of variance decomposition). The two formula-
tions are equivalent, yet there is a tendency for the trait-
level formulation (penetrance tables and risk of affection) 
to be omnipresent in case–control studies and the variance 
decomposition formulation in quantitative trait settings. The 
latter formulation explicitly allows one to control the pro-
portion of epistatic and environmental variance to total 
genetic variance (Mahachie John et al. 2011a).

Variable selection and filtering

Key to the outcome of any GWAI screening is the a priori 
variable selection step. For instance, Frånberg and col-
leagues (Frånberg et al. 2015) assume three such variable 
selection schemes on their real-life data application using 
the adaptive version of their multi-stage approach: no selec-
tion, selection based on main effects evidence from GWAS, 
selection based on significant interactions via omics experi-
ments. Care has to be taken when considering main effects 
resulting from classic GWA studies into the multi-stage 
strategy. These main effects are the result of H2/H3 vs 
H1 testing, which is different from H2/H3 testing vs HA 
in (Frånberg et al. 2015). A plethora of variable selection 
approaches exist, not to be confused with variable extrac-
tion approaches (Van Steen 2012). Whereas the last typically 
involves a change in the representation of the original vari-
ables via aggregation or projection steps (such as principal 
components), the first simply involves selecting a subset 
of the original variables for subsequent analyses. Machine 
learners further make a distinction between those variable 
selection methods that (a) choose relevant subsets independ-
ent of the subsequent analysis method (aka filter methods), 
(b) choose subsets of variables as part of the learning pro-
cedure (aka embedded methods), or (c) perform variable 
selection according to their usefulness to a given predictor 
(aka wrapper methods). Examples of, respectively, filter, 
embedded, and wrapper methods include (a) significant 
main effects or nearest-neighbor-based filtering (Gola and 
König 2016), (b) regression with regularization (Park and 
Hastie 2008), or (c) stepwise regression (Guyon and Elis-
seeff 2003). More specifically, in the context of large-scale 
epistasis screening, reducing the computational complex-
ity by filtering the genetic variants to a smaller subset with 
prior biological knowledge or by pre-processing the data 
using any statistical or computational method to identify 
those variants with the highest likelihood of being associated 
with the endpoint can be advantageous (Sun et al. 2014). 
One of the more promising approaches is based on the Relief 
family of machine-learning algorithms (Moore 2015) that 
are able to weight variants involved in non-additive inter-
actions without performing a combinatorial search. The 

Spatially Uniform ReliefF (SURF) method was designed 
specifically for modelling epistasis (Greene et al. 2009a) 
and has been used in conjunction with approaches such as 
Multifactor Dimensionality Reduction (MDR) (Collins et al. 
2013). However, there is also a price to pay when adopting 
filtering algorithms: they may eliminate true causal variants 
from the search pool. For additional examples of filtering 
approaches in the context of epistasis, and a discussion, we 
refer to (Van Steen 2012).

Often observed, as was also the case for the real-life data 
application in (Frånberg et al. 2015), little overlap exists 
in significant epistasis findings derived from different a 
priori variable selection procedures. Though, regardless of 
whether a priori knowledge is used or not as part of the 
GWAI protocol, the actual underlying biology of the prob-
lem never changes. Hence, how to interpret these differ-
ences? Which selection procedure best fits the underlying 
biological truth? Bessonov et al. (2015) made an attempt to 
answer such questions. Using prior biological information 
seemed to give more overlap in statistical epistasis findings 
between the GWAI protocols applied to real-life data com-
pared to exhaustive GWAI protocols, suggesting that, if the 
prior information is reliable and there truly is epistasis in 
line with this prior knowledge, the alternative hypothesis 
space is narrowed down and genuine epistasis effects are 
more likely to be highlighted by different analysis strate-
gies or GWAI protocols. Also in (Bessonov et al. 2015) (see 
Fig. 2 therein), no overlap was found between exhaustive and 
non-exhaustive screening protocols, suggesting that a large 
number of epistasis findings may get lost in the multiple 
testing correction, the latter being a correction with no bio-
logical connotation. In turn, when looking at multiple test-
ing strategies that potentially generate additional significant 
results when more SNPs are added (such as permutation-
based MaxT as part of MB-MDR (Van Lishout et al. 2015), 
in contrast to Bonferroni correction in combination with the 
BOOST regression models (Wan et al. 2010), it seems that 
some significant epistasis findings via exhaustive screening 
protocols should be genuine, but may never be identified via 
restrictive searches in the way that these are currently being 
performed (Bessonov et al. 2015).

Intrinsic properties of the chosen modelling 
paradigm

Frånberg’s choice to build a screening strategy on the 
regression paradigm is understandable because of its ease 
of implementation and wide-spread use. However, regres-
sion modelling in GWAIS comes at a cost. Often, there is 
no direct correspondence between the interaction effects 
in regression models and underlying penetrance tables 
representing epistasis effects (North et al. 2005). Relevant 
regression parameter estimates and derived interaction tests 



297Human Genetics (2019) 138:293–305	

1 3

are typically not robust to model misspecification and high-
dimensional confounding (Vansteelandt et al. 2008, 2012). 
It can give rise to inflated false-positive rates and reduced 
power, caused by the presence of sparse data and multiple 
testing issues, even in small simulated data sets only includ-
ing 10 SNPs (Vermeulen et al. 2007). Furthermore, interac-
tion terms in regression modelling can interchangeably be 
interpreted as effect modifier terms, whereas “interactions” 
and “effect modification” can be shown to be conceptually 
different (VanderWeele 2009; Knol and VanderWeele 2012). 
Some of the aforementioned problems are exacerbated when 
high-order interactions (order > 2) are the target.

To deal with some of the aforementioned issues related 
to the classic regression framework, and aiming to further 
improve the power of gene-interaction studies with SNPs, 
Hastie and Park (2008) proposed a penalized regression 
strategy: a variation on logistic regression with a size con-
straint on the L2-norm of the regression coefficients (exclud-
ing the intercept). Quadratic regularization overcomes col-
linearity among the SNPs, and thus, high-order interactions 
are easily accommodated. In their approach, each SNP level 
is coded by a dummy variable (binary encoding) with direct 
interpretation. Variables are selected using a forward step-
wise procedure based on a cost-complexity statistic. Inter-
action terms may enter the model in the presence of only 
one constituent variable [i.e., asymmetric hierarchy (Fried-
man 1991)]. To avoid large main effect coefficients to be 
broken into sums of small interaction components, particu-
larly for large values of the quadratic penalty parameter, the 
authors suggest to use a forward stage-wise variable selec-
tion procedure, only penalizing the coefficients for the newly 
selected variable. Although the penalized logistic regression 
approach was shown to outperform non-regression-based 
methods such as MDR (Ritchie et al. 2001), especially in 
the presence of multiple sets of significant SNPs, the strat-
egy was never widely used by the epistasis community, 
in contrast to MDR. One explanation is the focus of the 
epistasis community on pairwise SNP interactions (mainly 
a pragmatic decision due to limited numbers of samples), 
for which the benefits of penalized logistic regression over 
classic logistic regression may be less pronounced. Another 
explanation is the extra-computational costs involved in tun-
ing the penalization parameter, especially when based on 
cross-validation procedures and considering genome-wide 
screening contexts. There is some noteworthy similarity 
between the penalized logistic regression approach of Hastie 
and Park (2008) and the strategy proposed by Frånberg et al. 
(2015): both involve a component of testing for parsimony, 
where an interaction term is accepted in the model if one 
or both components are already in the model and if it pro-
vides a better fit to the data. As Hastie and Park state, the 
implemented penalized regression framework can be further 
relaxed to include interaction terms, although this was never 

implemented nor formally evaluated. Such an asymmetric 
hierarchy would be in contrast to the hierarchical model 
building in (Frånberg et al. 2015).

Power estimation

Achieving consistent power over a variety of epistasis mod-
els is important as different SNP pairs may have different 
underlying genetic epistasis architectures, all of which we 
would like to identify. Power exceedance plots can be used to 
visualize the power performance of a method. In such plots, 
the x-axis refers to thresholds for power to detect epista-
sis and the y-axis refers to probabilities of the method’s 
power exceeding a threshold. The power exceedance plots 
depicted in (Frånberg et al. 2015) seem to indicate that, with 
consecutive testing of H1 vs HA, H2 vs HA, H3 vs HA 
and H4 vs HA, and adopting scale-invariant test statistics, 
consistent power advantages can be obtained. Which of the 
multi-stage approach or the scale-invariant test statistic is 
most responsible for explaining these advantages remains 
unclear. Exceedence plots are not widely used in epistasis 
contexts. A possible reason is the computational burden 
involved in creating them. The latter might also explain why 
a less computational expensive multi-stage approach than 
the advocated adaptive approach was considered for these 
plots in (Frånberg et al. 2015). On a side note, the proposed 
scale-invariant statistic by Frånberg et al. (2015) is based on 
the intersection–union principle which computes the final 
p value of H4 vs HA testing as the maximum of p values 
over different scales. It remains debatable which outcome 
transformations to consider and/or whether it is reasonable 
to allow that a single transformation, not leading to a rejec-
tion of H4, removes the SNP pair as pointer towards pos-
sible biological epistasis. Several scale transformations for 
binary outcomes can be considered, such as the entire Guer-
rero and Johnson (1982) family of power transformations, 
which can be seen as an extension to dichotomous outcomes 
of the Box–Cox power transformation family for continu-
ous outcomes (Box and Cox 1964). Alternative to deciding 
upon which transformations to consider in the aforemen-
tioned scale-invariant stage-wise approach, it may be worth 
considering direct testing for removable SNP × SNP inter-
actions, where a removable interaction is one that can be 
eliminated from the regression model by appropriate Guer-
rero and Johnson transformation of the outcome (Satagopan 
and Elston 2013). Only those pairs that do not withstand the 
first stage test for removable interaction are eligible for the 
second-stage interaction testing. How to optimally balance 
between type I and type II errors in this context warrants 
further investigation.

The power simulation settings considered in (Frånberg 
et al. 2015) not only assume fixed (static) stage weight cor-
rections but also do not involve the generation of null SNPs. 
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Actually generating null SNPs with variable minor allele 
frequencies (MAFs) would distinguish between power and 
“specific power”. Specific power would refer to the prob-
ability to identify the actual causal SNP pairs and no other 
pairs (Cattaert et al. 2011), whereas power refers to the prob-
ability to identify the actual causal SNP pairs, possibly sup-
plemented with false-positive interaction pairs. To minimize 
costs related to experimental validation studies, it is essential 
to have clear views about the false positives generated by a 
GWAI strategy, apart from being able to identify the true 
causal SNP pair(s).

When evaluating the performance of epistasis tools, it 
is always good to look at the range of MAFs considered 
in the simulation studies. For instance, was it fixed at 0.03 
(Frånberg et al. 2015) or were MAFs allowed to vary within 
[0.01–0.50]? Were causal SNP pairs assumed to have equal 
or different MAFs? Whereas, in classic GWA contexts, 
the minimum MAF is typically as low as 0.01, in GWAIS, 
it is often bounded below by MAF = 0.05 (Gusareva and 
Van Steen 2014). The latter is to avoid that there are too 
high numbers of multi-locus genotype combinations with 
no or very limited number of observations, jeopardizing 
large-sample statistics properties. Notably, Frånberg et al. 
aim to achieve the same by considering SNP combinations 
for which the “product of MAFs” is less than 0.04 in their 
real-life data application; a rather unconventional threshold. 
Under the assumption of locus independence, this threshold 
gives rise to a minimum probability of 0.0016 to observe an 
individual with two copies of the minor allele at two loci. 
Only a handful of studies explore the performance of tools 
for low-frequency variants (i.e. 0.01 ≤ MAF  ≤0.05) or rare 
variants. For low-frequency variants, for instance, the W test 
particularly performs well (in terms of power, non-specific) 
under scenarios of weak or moderate (i.e., 0.2 < LD r2 ≤ 0.8) 
and high LD (i.e., LD r2 > 0.8) (Wang et al. 2016). How-
ever, these authors did not reveal data on specific power, 
nor about the percentage of replicates in which the causal 
SNP pair was top ranked. This is a pity, especially in view of 
the LD-dependent scenarios which they considered. For rare 
variants, an exploratory study suggested a dramatic increase 
in false-positive epistasis findings when adopting epistasis 
detection strategies based on MDR-inspired dimensionality 
reduction (Mahachie John et al. 2011b). Binning and aggre-
gation within a genetic unit (usually a gene), as adopted in 
rare variant exome analyses, may offer a solution (Fouladi 
et al. 2015), though more work is needed to better deal with 
the often unacceptable type I errors observed in rare variant 
association testing (Dering et al. 2014). Similar concerns are 
likely to apply for GWAIS that involve uncommon variants. 
Most likely, integration over multiple omics resources are 
needed to obtain genetic unit aggregates while maintaining 
adequate type I error control and acceptable power in large-
scale whole-genome epistasis studies (Van Steen and Malats 

2015). Lessons learned from rare variant association testing 
include that the selection of omics features to include in the 
aggregates will be critical (Zhang 2015).

Prior to looking at power performances of a strategy, it is 
advisable to investigate the strategy’s ability to control type I 
error. The static stage-wise method of (Frånberg et al. 2015) 
appears to have a tendency of being over-conservative, com-
pared to the other considered modelling approaches based 
on logistic regression or MB-MDR and including the adap-
tive stage-wise method of Frånberg and colleagues. Using 
Bradley’s liberal criterion of robustness (Bradley 1978) 
[which states that the empirical Type I error rate should be 
in the interval (0.025, 0.075) under the assumption that the 
true significance level is 0.05], the adaptive strategy is still 
overly conservative in the absence of any association, in the 
presence of a single main effect, and in the presence of two 
main associations with log or logit links. Interestingly, in 
the realistic scenarios with multiple main effects (10, 20, 
or 30 main effects) additively impacting disease risk on a 
logit scale, the adaptive stage-wise approach of (Frånberg 
et al. 2015) applied to 4000 cases and 4000 controls is overly 
liberal (empirical type I error > 0.13). Note that the adap-
tive strategy was shown to adequately control FWER under 
“asymptotic conditions”. In addition, restricting attention 
to SNPs with MAFs ≥ 0.2 may be too restrictive, as some 
epistasis strategies such as W test and MB-MDR perform 
well for MAFs as low as 0.05 and sometimes even as low as 
0.01 for particular simulation scenarios (Wang et al. 2016). 
The question thus emerges whether the, sometimes, liberal 
behaviour of the adaptive approach may elevate false-posi-
tive epistasis findings in real-life data applications. Finally, 
in (Frånberg et  al. 2015), the highest type I error rates 
for logistic regression-based and MB-MDR testing were 
observed for the simulation models that link disease prob-
ability (and even more severe, disease odds) directly to two 
main effects in an additive way. This is not surprising as 
both logistic regression testing and MB-MDR for case–con-
trol designs involve the inclusion of main associations for 
outcomes considered on a logit scale. In addition, for fixed 
main effects parameters in a linear predictor, the proportion 
of the outcome variance explained will be highly dependent 
on the outcome scale.

Multiple testing corrections

Multiple testing corrections are essential to keep type I 
errors under control, yet may negatively impact the power 
of a GWAI study (Bessonov et al. 2015). Despite the asser-
tions of the authors, the multiple testing burden employed 
in (Frånberg et al. 2015) can be considered to be more 
expensive than in the initial setting of exhaustively testing 
for interactions, as the number of H1 vs HA tests coincides 
with the number of SNP pairs to interrogate, and such testing 
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only involves the first stage of the four-stage GWAI proce-
dure. Testing H1 vs HA is more powerful than testing H4 vs 
HA, yet it may also falsely point towards the full interaction 
model. This may be the case in the presence of strong main 
effects, and thus, testing H1 vs HA should be interpreted 
merely as evidence towards a more complex model than the 
intercept-only model. Often, choices about multiple testing 
but also choices about variable selection schemes or interac-
tion testing itself are driven by pragmatism due to the inad-
equacy of available IT infrastructure and, thus, the inability 
to implement too computational intensive strategies. This 
may lead to choosing suboptimal GWAI analysis protocols. 
Ongoing efforts to increase the computational efficiency 
of approaches should diminish making such choices in the 
future. For instance, some genome-wide testing approaches 
for epistasis are particularly suitable for implementation 
on graphics processing units (GPUs) as powerful parallel 
processing units (Greene et al. 2010; Gonzalez-Dominguez 
et al. 2015; Putz et al. 2013; Kam-Thong et al. 2012; Hu 
et al. 2010). Not all hardwares are equipped with the neces-
sary GPUs though in which case cloud computing (Wang 
et al. 2011) may offer a way out. However, cloud comput-
ing infrastructure does not offer unlimited resources, and 
thus, in some cases, hardware-oriented solutions, such as 
those based on FPGA architecture, may be worthwhile to 
look into, when possible (Gundlach et al. 2016). Although 
this would definitely help to make permutation-based minP 
multiple testing strategies feasible for GWAIS, it does not 
resolve the need to develop statistically more refined mul-
tiple testing correction techniques, which better take into 
account complex dependencies between all the performed 
tests. Inspiration can be retrieved from GWAS and Link-
age Analysis practices where a variety of multiple testing 
methods have been developed that can accommodate corre-
lated hypothesis testing, e.g., using the concept of effective 
sample size (Nyholt 2004; Moskvina and Schmidt 2008), 
by exploiting haplotype block structure (Nicodemus et al. 
2005), or via adaptive exploitation of the dependence struc-
ture among hypotheses (Sun and Cai 2009), among others. 
In either case, to be able to make a complete assessment of 
the practical utility of a new GWAI screening method, mini-
mal knowledge about (estimated) computation times with 
the tool, in a variety of settings, is essential.

Linkage disequilibrium

Linkage disequilibrium (LD) in ancestral and admixed popu-
lations are key parameters driving the inconsistent regres-
sion models (Martin et al. 2018). Although the considered 
synthetic data sample sizes in (Frånberg et al. 2015) are 
becoming increasingly available in real life, samples of such 
sizes most likely cannot be assumed to be homogeneous. In 
fact, large- or fine-scale population structure (for instance 

due to differences in genetic ancestry) may be present. This 
structure needs to be accounted for in the association analy-
ses to avoid increased false positives. In addition, structural 
differences between populations may be highly complex and 
non-linear (Alanis-Lobato et al. 2015). Whereas a modest 
number of linear PCs (typically ≤ 10) are sufficient to han-
dle confounding in GWAS due to shared genetic ancestry, 
non-linear corrections may be necessary in GWAIS [work 
in progress—(Abegaz et al. 2018)].

LD between markers may not only induce dependencies 
between epistasis test hypotheses, it may also give rise to 
multicollinearity in regression-based approaches. Such mul-
ticollinearity can be defined as the existence of high multiple 
correlation when one of the variables is regressed on the oth-
ers (Belsley et al. 1980). Basically, the source of multicollin-
earity can be sample-based or structural (Dohoo et al. 1996). 
The last source refers to multicollinearity induced after 
data collection, for instance, by introducing power terms in 
regression models. This form of multicollinearity is easily 
tackled, by mean-centering variables before taking powers 
(Glantz and Slinker 1990). The first source refers to the col-
lected variables themselves being correlated. These correla-
tions can comprise biologically meaningful dependencies 
or they can be an artefact of the acquired sample. Although 
multicollinearity can be seen as a data problem rather than 
a statistical problem, it may complicate statistical analyses. 
Indeed, the inclusion of SNPs with non-negligible LD in 
regression models may give rise to harmful multicollinear-
ity (e.g., incorrect regression parameter estimates with large 
standard errors, leading to deflated test statistics) (Van Steen 
and Molenberghs 2012). Thus, special attention is required 
when testing H4 vs HA. For this reason, developers of novel 
epistasis strategies often assume no LD between markers 
in their synthetic data analyses. In addition, Frånberg et al. 
assumed markers to be at least 1 Mbp away from each other 
in their real-life data analysis. The latter does not necessarily 
remove highly correlated SNPs in the sample. In general, 
more elaborate approaches exist to prune genetic marker 
panels based on LD. Often such pruning is performed via 
sliding windows, as implemented in the PLINK software 
(Purcell et al. 2007). Again, long-distance correlations may 
still exist and may cause redundant epistasis or deflated/
inflated parameter variance estimates leading to erroneous 
model selection. Some epistasis detection tools explicitly 
use LD to enhance power, building upon the assertion that 
interaction between two loci can create different LD pat-
terns in disease and control populations (Wang et al. 2010). 
Examples of such tools include the fast-epistasis module 
in PLINK 1.9 (Purcell et al. 2007), EPIBLASTER (Kam-
Thong et al. 2011), iLOC (Piriyapongsa et al. 2012), and 
the adjusted Wu test as implemented in CASSI (Ueki and 
Cordell 2012). LD may also impact multiple testing proce-
dures as it may induce complex dependencies between tested 
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hypotheses. For instance, the popular Bonferroni control of 
FWER ( �Bonf =

�

m
 , with m the total number of hypothesis 

tests and � usually set to 0.05) can be quite conservative 
for large numbers of possibly dependent tests, at the cost of 
increasing the number of false negatives (Goeman and Solari 
2014). Positive dependent tests, as defined by Benjamini and 
Yekutieli (2001), may be induced by LD between markers, 
and thus, FDR control may be more appropriate than FWER 
control. Unfortunately, FDR methods typically start to break 
down in large-scale GWAI settings with the complex LD 
dependencies between markers. Even in GWAS, the power 
over Bonferroni is minimal, especially when multiple sig-
nals are assumed to be present in the data and the aim is to 
identify them jointly (Van Steen et al. 2005). Computation-
ally demanding permutation-based approaches that account 
for multiple testing, such as the Westfall and Young step-
down maxT implemented in (Van Lishout et al. 2013), can 
guarantee the strong control of the FWER under the subset 
pivotality assumption and weak control otherwise (Westfall 
and Young 1993). Subset pivotality may be jeopardized by 
interdependencies between markers. Weak control, referring 
to control of the Type I error rate under the complete null 
hypothesis only (i.e. all nulls true), may not be satisfactory. 
Hence, it is no surprise that—to date—there is no consen-
sus about the most advantageous LD pruning threshold, bal-
ancing between optimal power and adequate false-positive 
control (Gusareva and Van Steen 2014). As a direct conse-
quence, more work is needed to adequately capture pairwise 
interactions within a gene, as also these type of interactions 
may be of biological or clinical importance (Jorgenson and 
Witte 2006; Lehner 2011).

Epistasis versus two‑locus effect

A central challenge of any statistical or computational mod-
elling approach is determining whether a significant result 
is due to additive effects, non-additive effects, or both. This 
can sometimes be difficult to disentangle for methods such 
as machine learning. One approach is to use the entropy-
based methods to measure how much information about 
the endpoint is due to the synergistic effects of the variants 
after subtracting the marginal effects (Moore and Hu 2015). 
Another approach is to use permutation testing to specifi-
cally test the linear null hypothesis of additive effects. Such 
an explicit test for epistasis can be realized by randomizing 
the genotypes for each variant independently, within cases 
and controls separately, such that the interactions are disen-
tangled but the genotype frequencies and thus the marginal 
effects are preserved (88). This approach has been extended 
and applied to machine-learning methods such as random 
forests (Li et al. 2016).

From replication and validation 
toward translation

All of the above may complicate replicating GWAI results, 
especially at the SNP level (Gusareva and Van Steen 2014). 
Epistasis models can be highly sensitive to changes in allele 
or genotype frequency across data sets derived from different 
populations or across data sets that differ due to sampling 
inconsistencies (Greene et al. 2009b). In fact, power to rep-
licate a genetic association can drop from more than 0.80 to 
less than 0.20 over a very narrow range of allele frequency 
change. This can greatly complicate the reproducibility 
of epistasis results. One approach is to resample the sub-
jects from the replication data set, such that the multi-locus 
genotype frequencies match those from the detection data 
set. Such resampling approaches can dramatically improve 
the power to replicate epistasis results (Piette and Moore 
2017), but need to be explored in more detail. Changing 
pre-selection schemes of markers (e.g., using prior biologi-
cal knowledge), LD pruning or multiple testing criteriums, 
apart from the actual test statistics, can further impact the 
GWAI analysis results (Bessonov et al. 2015).

How important replication may be as a gold standard, 
even when evidence of replication in independent cohorts 
can be established (Evans et al. 2011), it may not be clear 
whether it really concerns a true positive or merely a false-
positive replication (Bessonov et al. 2015). False-positive 
replication of epistasis above and beyond main effects may 
be induced by adopting the GWAI analysis protocols that 
cannot well differentiate between strong main effects and 
joint two-locus effects. Careful reflection should be given 
to choosing between hypothesis-free or hypothesis-driven 
GWAI screening, especially when adequate IT infrastruc-
tures are available. Both choices may give rise to non-over-
lapping epistasis findings, whereas the underlying biologi-
cal context obviously remains the same. In contrast, when 
markers are filtered using reliable prior biological knowl-
edge (Ritchie 2011), hereby narrowing down the alternative 
hypothesis space of possible epistasis models, chances may 
improve to see increased overlap between various GWAI 
workflows (Bessonov et  al. 2015). Furthermore, pilot 
research seems to indicate that the impact of inadequate 
correction for population structure, potentially non-linear in 
nature, may be much more devastating in terms of increased 
false positives

and type I errors for GWAIS as compared to GWAS 
(personal communications). This imposes extra-analytic 
challenges and inhibits reproducibility. Whether or not 
gene-based epistasis can facilitate the reproducible identi-
fication of epistasis findings needs to be shown: It is often 
forgotten that confounding due to shared genetic ancestry 
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or population admixture can act at both the SNP level and 
aggregated gene level (de Leeuw et al. 2016).

The path from genome to clinical outcome is character-
ized by complex wiring and cascades of actions and interac-
tions. The presence and relevance of a potential biological 
gene–gene interaction, identified via statistical SNP × SNP 
interaction pointers, can only be verified via the experimen-
tal follow-up. This may include transcriptome analysis to 
investigate the co-expression of genes in particular tissues, 
immunofluorescence and confocal microscopy to confirm 
the presence of gene pairs in specific human cells as well 
as their colocalization in common cellular compartments, 
immunoprecipitation analysis to confirm physical interaction 
between genes in real biological systems, protein docking, 
and molecular dynamics experiments to increase insights 
into the actual mechanisms of the physical gene interactions 
(Gusareva et al. 2018). Validation procedures may also rely 
in part on a systematic epistasis literature review and struc-
tured knowledge from databases that integrates data from 
a variety of experimental platforms: e.g., cytoscape giving 
the integrated models of biomolecular interaction networks 
(Shannon et al. 2003), ConsensusPathDB using an integrated 
collection of molecular interactions in humans and model 
organisms (Shannon et al. 2003), GeneMANIA allowing 
to assess functional gene similarity via genomics and pro-
teomics (Montojo et al. 2014), BioGraph for unsupervised 
biomedical knowledge discovery via automated hypothesis 
generation (Liekens et al. 2011), and IMP considering func-
tional contexts of gene–gene networks from multiple organ-
isms (Wong et al. 2015), to name but a few. Alternatively, 
methods are developed that lead to the improved biologi-
cal insights, as is expected by integrating omics data or by 
building statistical epistasis networks from GWAI results. In 
such networks, nodes represent genes and (weighted) edges 
represent (the strength of) statistical gene–gene interactions 
(Lareau and McKinney 2015). The approach ideally assumes 
SNP-to-gene conversions or having aggregated information 
about a gene (Fouladi et al. 2015). It is a promising approach 
as it allows the detection of higher order (> 2) interac-
tions by closely investigating genetic attributes that cluster 
together in the network (Hu et al.2013b). At the same time, 
it enhances the interpretation of statistical GWAI findings 
via exploitation of advanced network visualization tools (Hu 
et al. 2013a). In addition, networks are particularly handy 
for data integration purposes (e.g., by overlaying a statistical 
epistasis network with gene expression or protein interac-
tion networks), or to investigate influential distorting factors 
and conditions of network instability or directionality (e.g., 
microbiome perturbations to human genome and interac-
tome and causal network methodology).

GWAI findings obtained via statistical thinking may be 
hard to replicate, interpreting them, and thus, linking them 
to biological relevant processes is at least as tough. Part 

of the problem is related to the fact that different mean-
ings have been given to epistasis over time. Compositional 
epistasis is said to be present when the effect of a genetic 
factor at one locus is masked by a variant at another locus 
and, therefore, links to the traditional definition of epistasis 
(Phillips 1998). The definition of epistasis being used in 
modern systems biology coincides with an extended version 
of compositional epistasis (Phillips 2008). Unfortunately, 
compositional epistasis is not equivalent to the presence 
of an interaction in a statistical model, but formal testing 
frameworks exist to detect it (VanderWeele and Laird 2011). 
Another part of the problem relates to the underdevelopment 
of translational tools that can be applied to GWAI results. 
For example, in GWAS, it is common to assist the interpre-
tation of findings using enrichment methods that focus on 
genes in pathways. For GWAIS, restricting attention to gene 
sets linked to SNPs that appear in a list of top (statistically 
significant) SNP × SNP interactions seems to be limiting, 
as it does not directly use the discovered pairwise epistasis 
signals and most often uses distance-mapping rather than 
functional mapping of SNPs to genes. However, turning 
to statistical epistasis networks and analyzing those using 
network theory have been shown to increase interpretabil-
ity (see before). Alternatively, combined network analysis 
and gene-interaction enrichment strategies (Liu et al. 2012) 
may be adapted to facilitate GWAI interpretation. In gen-
eral, effective protocols are needed to help elucidating the 
functional repercussions of epistasis (Gusareva et al. 2014; 
Ebbert et al. 2015).

Closing remarks

Because of the complexity of the problem being tackled, 
different viewpoints and analytic GWAI approaches exist. 
There is a need to further invest in understanding which 
strategies are best able to highlight particular genetic epista-
sis architectures, so as to develop ensemble approaches with 
optimal performance in large-scale genome-wide epistasis 
screening studies. This process would be greatly acceler-
ated by making reference synthetic data sets available to 
the scientific community; data sets that are rich enough to 
embrace different degrees of complexity observed in real-
life data, such as pathway interactions, non-genetic inter-
ferences, (non-linear) associations, and fixed and random 
dependencies between samples. The generation of such 
simulated data, for which the ground truth is known, is cen-
tral to the development of new statistical and computational 
methods for detecting and characterizing epistasis. Data sets 
of minimal complexity can be obtained using parametric 
statistical models with a defined interaction term of a cer-
tain effect size. They can also be obtained using penetrance 
functions that define the probability for disease for different 
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multi-locus genotype combinations that minimize marginal 
effects. Several methods and software have been developed 
for this purpose including the Genetic Architecture Model 
Emulator for Testing and Evaluating Software (GAMETES) 
that is also able to simulate genetic heterogeneity (Urbano-
wicz et al. 2012) and simulate varying degrees of detection 
difficulty (Urbanowicz et al. 2012a, b). Although effective, it 
is not always easy to tie probability-based simulation meth-
ods to biological concepts. To address this concern, methods 
such as Heuristic Identification of Biological Architectures 
for simulating Complex Hierarchical Interactions (HIBA-
CHI) and associated software can be considered (Moore 
et al. 2015). The approach facilitates the development of 
mathematical models of epistasis based on biological 
mechanisms such as gene transcription and protein–protein 
interactions. Biology-based approaches may facilitate the 
development of epistasis modelling methods that are easier 
to interpret. Standard operating procedures are underway to 
replicate and validate GWAI results, along with appropriate 
definitions for these. We need better experimental methods 
for confirming statistical models of epistasis in animal mod-
els or in human cell culture.

Finally, moving from localization to function will be 
essential to explain molecular mechanisms playing a syner-
getic role in human complex diseases. Although there is still 
a long way to go before epistasis findings can be brought into 
clinical practice, our practical and theoretical experience has 
shown that, by taking advantage of various methodologies 
and by examining data from different angles, it is feasible 
to reveal strong evidence for biological gene interactions 
derived from genome-wide SNP panels.
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