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Abstract

Background: Affymetrix oligonucleotide arrays simultaneously measure the abundances of
thousands of mRNAs in biological samples. Comparability of array results is necessary for the
creation of large-scale gene expression databases. The standard strategy for normalizing
oligonucleotide array readouts has practical drawbacks. We describe alternative normalization
procedures for oligonucleotide arrays based on a common pool of known biotin-labeled cRNAs
spiked into each hybridization. 

Results: We first explore the conditions for validity of the ‘constant mean assumption’, the key
assumption underlying current normalization methods. We introduce ‘frequency normalization’, a
‘spike-in’-based normalization method which estimates array sensitivity, reduces background noise
and allows comparison between array designs. This approach does not rely on the constant mean
assumption and so can be effective in conditions where standard procedures fail. We also define
‘scaled frequency’, a hybrid normalization method relying on both spiked transcripts and the
constant mean assumption while maintaining all other advantages of frequency normalization. We
compare these two procedures to a standard global normalization method using experimental
data. We also use simulated data to estimate accuracy and investigate the effects of noise. We find
that scaled frequency is as reproducible and accurate as global normalization while offering several
practical advantages. 

Conclusions: Scaled frequency quantitation is a convenient, reproducible technique that performs as
well as global normalization on serial experiments with the same array design, while offering several
additional features. Specifically, the scaled-frequency method enables the comparison of expression
measurements across different array designs, yields estimates of absolute message abundance in cRNA
and determines the sensitivity of individual arrays.
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Background
Affymetrix oligonucleotide arrays (referred to here as

oligonucleotide arrays) are widely used to measure the abun-

dance of mRNA molecules in biological samples [1]. The

investigator isolates total and/or polyadenylated RNA from

cells or tissues, generates the corresponding complementary

DNA (cDNA), transcribes complementary RNA (cRNA) from

the cDNA template, and then hybridizes the cRNA to the
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array [2]. There is a significant amount of assay noise associ-

ated with readouts from oligonucleotide arrays (for example

[3,4]). For these arrays we have found additive and multi-

plicative noise affecting individual gene readouts (typically

5-20%), as well as multiplicative noise affecting entire arrays

(often above 20%). As defined here, normalization attempts

to correct for only the latter type of noise. The primary

sources of this array-level noise are between-array variation

in overall performance (due to inconsistencies in array fabri-

cation, staining and scanning), and between-cRNA variation

(as independently prepared cRNAs have variable purity

and/or fluorescently-labeled mass fractions). Because these

sources of variation contribute so significantly to array read-

outs, normalization is a critical first step in any analysis of

gene expression data.

Most current normalization procedures for oligonucleotide

arrays are global approaches, based on normalization of the

overall mean or median array intensity to a common stan-

dard (for example [5-7]). Spiked standards have also been

used to normalize cDNA [8] and oligonucleotide [9-11]

arrays. All these techniques are inherently linear; there have

been recent reports of nonlinear normalizations for cDNA

[12], oligonucleotide [13,14] and other [15] arrays. Few

detailed comparisons of oligonucleotide-array normalization

procedures have been reported, however [13].

For oligonucleotide arrays, the normalization implemented

in the Affymetrix GeneChipTM software (Affymetrix, Santa

Clara, CA) is by far the most commonly used (for example

[1,16]). In this approach, the mean hybridization intensities

(the ‘average differences’ (AD)) of all probe sets on each

array are scaled to an arbitrary, fixed level [17]. In the rest of

this paper, we refer to this procedure as ‘global normaliza-

tion’ or scaled average difference (ADs). In practice, there are

at least three limitations to this method. Of these, the first

two relate to the normalization itself, and the last relates to

the practical utility of the normalized readouts.

First, global normalization makes no attempt to absolutely

quantify mRNA abundances. Readouts are normalized to an

arbitrary scale, which may vary from one operator to another

or between experiments. In contrast, previous experiments

with spiked controls [1] and comparisons with serial analysis

of gene expression (SAGE) [18] have shown that array

response can be proportional to true transcript abundance,

suggesting that absolute quantitation of transcripts is feasi-

ble. If sufficiently accurate, such an absolute scale for all

array readouts could facilitate comparisons across large,

diverse gene expression databases.

Second, global normalization implicitly assumes that the

mean expression level of all monitored mRNAs is constant.

The validity of this assumption depends on the number and

biological characteristics of genes monitored by an array.

For smaller arrays that monitor a limited set of mRNAs, this

assumption is invalid and may result in erroneous normal-

ization. Ideally, a quantitation method for arrays would be

effective even in cases where this ‘constant mean’ hypothesis

does not hold.

Third, as typically applied, global normalization does not

deal well with transcripts expressed at low copy numbers. In

a typical Affymetrix GeneChip assay, many low-abundance

transcripts are present at levels below the sensitivity of

detection of the array (typically about 1:100,000 mRNAs).

Measurements for such mRNAs are not only noisy but are

sometimes negative, due to cross-hybridization to mismatch

probes [1]. Negative intensity values are meaningless and

problematic because they cannot be log-transformed, a

manipulation that is a common prelude to downstream

analysis of array data. Simply discarding negative values is

objectionable as it can lead to missed observations of biolog-

ically significant upregulation. An automated normalization

method that handles noisy and negative measurements and

responds to variable array sensitivity is desirable, especially

in a high-throughput setting.

The primary criterion for any alternative to global normal-

ization is that it should expand the investigator’s ability to

compare diverse array experiments done at different times

in different laboratories. In this paper, we describe alterna-

tive procedures that seek to quantitate array results in terms

of transcripts per unit cRNA. We chose cRNA quantitation

because it meets the primary criterion, and for several addi-

tional reasons.

First, cRNA quantitation is easily applied to array experi-

ments using small amounts of starting total RNA that are

difficult to quantitate accurately. Second, the spike

reagents described here for cRNA quantitation can be used

to specifically monitor the performance of individual

arrays. Third, in our experience, the reproducibility, accu-

racy and scientific value of cRNA quantitation are at least

as good as those of alternative techniques, such as proce-

dures to quantitate transcripts per cell, transcripts per

mass of input material, transcripts per total RNA or tran-

scripts per polyadenylated RNA.

We evaluated two alternatives to the standard global nor-

malization scheme which we term ‘frequency’ (F) and ‘scaled

frequency’ (Fs) normalization. These normalization proce-

dures are based on the presence of a common pool of biotin-

labeled transcripts of known concentrations spiked into each

hybridization. Constructs for generating the control reagents

are available through the American Type Culture Collection

(ATCC); accession numbers are given in Table 1. We describe

how scaled frequency normalization can be used to estimate

message abundance in cRNA, compute a chip sensitivity

metric and provide a natural scale for damping spurious

signals from below-sensitivity mRNAs. Using previously

published replicated experimental hybridizations and new
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simulated data, we compare the reproducibility and accuracy

of frequency, scaled frequency and global normalization.

Our results suggest that scaled frequency normalization is a

useful strategy for oligonucleotide array data and has impor-

tant advantages over current approaches.

Results and discussion
The constant-mean assumption
A key assumption underlying global normalization is that

the mean expression level on an array should be the same for

all samples and all arrays. This assumption is distinct from

the additional implicit assumption that the fraction of

polyadenylated mRNA per total RNA is constant. One can

certainly construct special cases where the constant-mean

assumption is invalid. One example would be using a small

array containing only genes from a single pathway in an

experiment that studies variable induction of that pathway.

However, it is unclear how well even more general array

experiments satisfy this assumption. 

To evaluate the constant-mean assumption we examined

the coefficient of variation (CV) of the mean expression level

of variable-sized mRNA sets across samples covering

widely divergent developmental stages of the nematode

Caenorhabditis elegans. We constructed the largest possible

subset of our data that included only matched triplets of the

A, B and C array designs (see Materials and methods). The

subset comprised 39 chip hybridzations, 13 of each design,

covering all developmental stages. This dataset represents a

relatively strong test of the constant mean assumption,

because very large biological modulation of many mRNAs

occurs across the dataset. As the C. elegans arrays monitor

around 98% of all predicted C. elegans mRNAs, and the sum

of the relative expression levels of all expressed genes must

be constant by definition, global normalization is well justi-

fied for the dataset as a whole. Thus, the 13 experimental

hybridizations of each array design were globally normal-

ized, and subsets of the 19,031 total mRNAs monitored by

the arrays were selected at random. For each subset, the CV

of the mean expression level of the subset across all 13

hybridizations was computed. Subsets ranged in size from 10

to 19,031 genes (0.05% to 100% of this transcriptome)

(Figure 1). The CV of the mean expression level is below 7%

for any set of mRNAs larger than roughly 10% of the total. As

this CV is no larger than the typical contribution of other

noise sources in the readout, we conclude that the constant-

mean assumption can be supported for arrays that monitor

on the order of 20-100% of a transcriptome. This is typical of

current commercial arrays for several bacteria, yeast, mouse

and human. 

Table 1

Spike-in transcript pool

Spiked ATCC Affymetrix Final Final 
transcript accession gene concentration concentration 

number qualifier (pmol) (ppm)

DAPM 87826 AFFX-DapX-M_at 30 950

DAP5 87827 AFFX-DapX-5_at 10 317

CRE5 87832 AFFX-CreX-5_at 5 158

BIOB5 87825 AFFX-BioB-5_at 2.5 79

BIOD3 87830 AFFX-BioDn-3_at 1.2 38

BIOB3 87828 AFFX-BioB-3_at 0.6 19

CRE3 87835 AFFX-CreX-3_at 0.4 13

BIOC5 87833 AFFX-BioC-5_at 0.3 10

BIOC3 87834 AFFX-BioC-3_at 0.2 6

DAP3 87831 AFFX-DapX-3_at 0.15 5

BIOBM 87829 AFFX-BioB-M_at 0.1 3

Spike-in transcript pool. The 11 spiked transcripts and their final
concentrations in the hybridization cocktails are listed. The Affymetrix
gene qualifier column indicates the name of the probe set on Affymetrix
arrays that monitors each spiked transcript.

Figure 1
When to use constant-mean normalization. The constant-
mean assumption adds little noise for array designs with
sufficiently large numbers of randomly selected genes.
Assuming that the mean expression on arrays in a dataset
would indeed be constant for an array monitoring the entire
transcriptome, we chose random subsets of genes of each
possible size and computed the CV of the mean expression
level for hypothetical arrays monitoring just those subsets of
genes. For arrays measuring more than about 10% of the
genes, the level of variability introduced is not significantly
larger than other sources of array variability, so
normalization using the constant-mean assumption is
reasonable. With fewer genes, the noise introduced by
making this assumption grows dramatically, so other
normalization methods may be desirable. Note that if there
is bias in the selection of genes on the array, this effect may
be much stronger. 
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These results only apply when genes monitored by an array

are randomly selected with respect to their expression char-

acteristics. The example noted above (all genes on an array

from a single pathway) is an extreme case of nonrandom

selection. Other common ways of selecting genes for arrays

may also violate this assumption, including selection based

on matches in specific cDNA libraries. 

Nonrandom selection of even large mRNA sets for individual

arrays can also lead to between-array inconsistencies in

mean expression level. For example, consider the case of two

arrays, each monitoring a large, equal percentage (> 20%) of

a transcriptome, where the first array monitors mRNAs with

confirmed cDNA library matches, and the other array moni-

tors mRNAs whose sequences are based on lower-quality

expressed sequence tag (EST) sequence matches or compu-

tational gene predictions. While the constant mean assump-

tion is justified for each array in isolation, comparison of

globally normalized expression levels between the two arrays

will give erroneous results because the mean expression

level of transcripts on the first array is higher than that on

the second.

Spike-in based normalization
The limitations of global normalization suggest the use of

spiked transcripts to normalize array data. Our ‘spike-in’

normalization method, which we call ‘frequency normaliza-

tion’, uses spiked transcripts for two purposes. First, they

allow us to calibrate the arrays, transforming AD to cRNA

frequency (F) estimates quoted in transcripts per million.

Second, the spiked transcripts enable us to estimate the

minimum detectable frequency on the array (the ‘array sen-

sitivity’ value). The array sensitivity is useful as a quality-

control metric for individual hybridizations and is also used

to adjust signals from low-level transcripts. Specifically, fre-

quency values below the array sensitivity are averaged with

the sensitivity estimate to generate ‘damped’ frequencies

that lie between 50% and 100% of the array sensitivity. This

adjustment introduces a small systematic error into the

damped data, but in return it eliminates problematic nega-

tive values and retains low-level readings that can be biologi-

cally informative in the context of additional experiments.

Figure 2 shows a typical plot of the spiked transcript readout

from a single hybridization containing 2 �g of cRNA and a

corresponding amount of spike-in transcripts. The specific

hybridization intensity (AD) value for each of the 11 spike-in

controls is plotted as a function of transcript frequency in

units of transcripts per million. The points are fitted with a

generalized linear model that is then used as a calibration

curve to compute frequencies from the AD values of the

other genes on the array. Using logistic regression, we define

the chip sensitivity as the frequency where we estimate a

gene to have a 70% probability of being called ‘Present’. We

will use the capitalized terms ‘Absolute Decision’, ‘Present’,

‘Absent’ and ‘Marginal’ when referring to a specific value

that is calculated by the Affymetrix GeneChip software

(described in Materials and methods). In Figure 2, the verti-

cal line at a frequency of 4.5 indicates the computed sensitiv-

ity estimate for this array.

Fitting a power law model (AD = kFn) to the data in Figure 2

yields the exponent n = 0.93. This indicates mild curvature

in the response, consistent with progressive saturation of

array readout for the highest abundance mRNAs. Experi-

ments using 0.1 to 10 �g cRNA per hybridization with corre-

sponding amounts of spike-in transcripts, as well as high

and low gain settings on the scanner, indicated that readout

saturation (not hybridization saturation) accounted for most

of the observed curvature in the spike-in response. The use

of approximately 1 �g cRNA in each hybridization, or

reduced scanner gain, largely eliminated saturation with no

penalty in sensitivity.

Scaled frequency normalization
Frequency normalization is appealing theoretically and effec-

tive even when the constant-mean assumption is known to be

invalid. However, our experience suggests that frequency

estimates might be biased by experimental limitations on the

4 Genome Biology Vol 2 No 12 Hill et al.

Figure 2
The calibration model for frequency normalization. Eleven
control transcripts are spiked into the hybridization solution
at known concentrations, and the absolute difference (AD)
measurements for these controls are plotted against their
known frequencies. P and A represent Present and Absent
calls, respectively, from Affymetrix GeneChip software.
Hybridization response in average difference (AD) is
approximately proportional to transcript abundance. The
solid fitted line is a linear model with intercept zero, which
is used to calculate frequencies for all other transcripts on
the array. The vertical line at 4.5 ppm represents the
calculated limit of detection for this particular array;
frequencies below that level are damped to avoid attributing
significance to expression differences caused by assay noise. 
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accuracy with which control transcripts can be spiked into

cRNA. Specifically, because of the combination of small

fluid-handling uncertainties and potentially larger variation

in the purity of cRNA preparations, the actual ratio of the

spiked transcripts to cDNA-template-derived cRNAs might

be significantly skewed from one array to another. One

source of variable impurities in cRNA preparations could be

oligo(dT)-primer-dependent cRNA product [19]. Such cRNA

impurities would result in erroneous normalization in which

all readouts from one array would be systematically higher

or lower than those from another array. We use the term

‘spike-skew’ to denote this multiplicative skew in frequency

values among multiple hybridizations. One expected

symptom of spike-skew would be replicate hybridization

readouts that are highly correlated but have widely divergent

mean expression levels.

We developed the hybrid scaled frequency (Fs) normaliza-

tion method to mitigate the effects of spike-skew. Fs normal-

ization is based on the principle of removing technical

variation in the ratio of spiked transcripts to cDNA-template-

derived cRNAs, by averaging the response to spiked cRNAs

over multiple hybridizations. To compute Fs values, globally

scaled average differences are first computed for all arrays in

a set. This initial step implicitly makes the constant-mean

assumption. A calibration function is then computed by

fitting a single linear model to the scaled average differences

of all spiked cRNAs on all the arrays in the dataset, pooled

together. Individual array sensitivities are still computed as

described above, and the same damping of low-end frequen-

cies is carried out using the sensitivity values for each array. 

To compare F and Fs metrics, consider an experimental set

of ten arrays. To compute F values, ten linear models are

fitted to the ten distinct, unscaled AD responses to the

spiked cRNAs, yielding ten different calibration factors, one

for each array. In contrast, when computing Fs values, a

single linear model is fitted to the pooled spike response

curve consisting of 10 x 11 = 121 globally scaled AD values,

and a single calibration factor generated for all ten arrays. If

there was no technical variation in the ratio of spiked tran-

scripts to cDNA-template-derived cRNAs in the ten experi-

ments, both approaches would give the same quantitation,

up to a random error term arising from the difference

between fitting ten 11-point responses versus a single

121-point response. If, in one of the ten arrays, the ratio of

spiked transcripts to cDNA-template-derived cRNAs is dif-

ferent for technical reasons, then spike response for that

array will be skewed, and the F-metric readout for that array

will be skewed relative to the other nine arrays. In contrast,

such a skewed array will only affect the Fs metric to the

extent that the single skewed response shifts the fit to the

pooled spike response. The skew for the single problematic

array will be removed because all arrays in the set will be

scaled and calibrated with a single factor. In other words, Fs

values are estimates of transcript abundance in cRNA, based

on the average response to the spiked cRNAs over multiple

hybridizations and on the sensitivity of each individual array.

F values provide the same estimate, but based solely on the

response to spiked cRNAs in a single array hybridization.

Comparison of normalization methods: reproducibility
We compared the performance of four metrics: AD; globally

normalized AD (ADs); frequency (F); and scaled frequency

(Fs). The basis for comparison was experimental data con-

sisting of four sets of replicated hybridizations (each n = 3 or

4) of the same array design (the C. elegans A array). Perfor-

mance of each metric was measured by the median absolute

coefficient of variation (MEDACV) of probe sets across the

replicated hybridizations. MEDACV is a measure of repro-

ducibility for which a value of zero indicates perfect agree-

ment of all transcript readouts in a set of replicated

hybridizations. We compared MEDACV for two classes of

mRNAs: those called Present in at least 50% of replicated

hybridizations (referred to as ‘Present’ mRNAs), and those

Present in fewer than 50% of the replicated hybridizations

(referred to as ‘Absent’ mRNAs). All metrics showed higher

(worse) MEDACVs for the low-abundance Absent mRNAs

than for the higher-abundance Present mRNAs (Figure 3), as

expected from the presence of background noise on the

arrays. For Present genes, ADs was more reproducible than

AD, as expected. Scaled frequency (Fs) was as reproducible as

ADs for Present genes in all replicate sets, and yielded trivially

higher reproducibility than ADs for Absent mRNAs, owing to

damping of background noise. Frequency appeared equiva-

lent to Fs and ADs in the first set of experiments (the 0-hour

timepoint) but had a higher MEDACV than Fs in the other

three replicate sets. We also computed Pearson correlation

coefficients for the same replicate readouts. Unlike MEDACV,

correlation coefficients between replicate readouts were

similar for all metrics (in the range from 0.978-0.996).

To better understand the reasons for the markedly different

MEDACV performances of the four metrics on experimental

replicates, we performed simulations. These simulations

incorporated several adjustable noise parameters. We esti-

mated values for these parameters iteratively, based on

experimental data (see Materials and methods). The similar-

ity in the CV distributions of experimental and simulated

data indicated that, for our purposes, the simulations reca-

pitulated the major error properties of real array data

(Figure 4).

We tested if spike-skew could account for the relatively high

CV of frequency in three of the four replicate sets (Figure 3) by

comparing experimental data to simulated data with known

levels of spike-skew. To approximate spike-skew, the concen-

tration of the spike-in transcripts in simulations was multi-

plied by a random noise term. Over a series of simulations, we

varied the standard deviation of the noise term from 0 to 40%

to model the effect of increasing spike-skew. MEDACV values
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were then computed from the simulation results in the same

way as for the experimental data in Figure 3. 

As expected, only frequency was sensitive to spike-skew

(Figure 5). The Fs metric, which uses a single standard curve

pooled from each dataset to normalize all arrays in that

dataset, effectively eliminated spike-skew effects. In the sim-

ulations, a spike-skew level of 20% led to MEDACV values

for frequency in simulated replicates that were much higher

than those of ADs or Fs. These results were highly reminis-

cent of the 36, 48 and 60 hour experimental replicate sets

(compare Figures 5 and 3).

Taken together, the experimental data and the simulations

suggest that spike-skews of roughly 20% can explain the

sometimes inferior MEDACV (but consistently high inter-

replicate correlation coefficients) of the frequency metric.

Comparisons across array designs
We next considered the reproducibility of readouts of the

same mRNA on different array designs. For this analysis, we

selected the three mRNAs that were monitored by identical

probe sets on each of the A, B, and C array designs and were

called Present in all hybridizations of the 0 hour cRNA

sample. The observed CV of the ADs metric was in all cases

6 Genome Biology Vol 2 No 12 Hill et al.

Figure 3
Reproducibility of four normalization methods. For each of four developmental stages in a C. elegans data set (0, 36, 48 and
60 h, see [10]), the figure shows the median absolute coefficient of variation (MEDACV) for each normalization method, for
genes that are primarily Absent or primarily Present in replicate hybridizations. For Absent genes, frequency methods have
lower MEDACV than AD methods because of the damping of low-end noise. For Present genes, Fs and ADs are roughly
equivalent and outperform the unscaled methods in all cases. Numbers of replicate hybridizations were three (36 h sample)
or four (0, 48, 60 h samples).
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larger than that of the F or Fs metric, and was greater than

0.55 for all three mRNAs, indicating very poor agreement of

readouts from different array designs when global normal-

ization was used (Figure 6). In contrast, the CVs of both F

and Fs metrics were lower, with CVs for Fs in particular aver-

aging 0.19 (range 0.13-0.29). The mRNA K11C4.5 was

expressed at > 10-fold lower levels than either of the other

two mRNAs, and thus had higher CV values for both F and

Fs than the other two mRNAs. Comparison of the across-

array-design CVs to the within-array-design CVs for the

three transcripts in Figure 6 indicates that the reproducibil-

ity of ADs was substantially poorer when comparing across

array designs rather than within arrays. Specifically, ADs

across-array CV was 3.2- to 6.4-fold higher than the within-

array CV. In contrast, the across-array CV for Fs was only

1.3- to 1.6-fold higher than the corresponding within-array

CV (Table 2).

The reason for the poor agreement of ADs readouts across

distinct designs was that the mRNAs monitored by the A

array are, on average, expressed at higher levels than those

on the B or C array, as confirmed by two independent lines

of evidence. First, the mRNAs on the A array were inten-

tionally selected because they were represented in

C. elegans cDNA libraries, whereas the B and C array

genes (many of them computational predictions) were

generally not represented in cDNA libraries. Second, A

array mRNAs were more likely than B or C array mRNAs

to be detected in the developmental time course by the

Affymetrix Absolute Decision metric [10]. Because of this

systematic difference between gene sets, the mean AD of

all A array genes was substantially higher than that of the

genes on the B or C arrays. The ADs metric scales data

under the assumption that mean expression levels for all

arrays should be equal. Therefore, ADs values for genes on

the B and C arrays were inappropriately inflated relative

to ADs values from the A array. 

Comparison of normalization methods: accuracy
Normalization methods should accurately measure true bio-

logical variation. We tested the accuracy of the four methods

using simulated data. As a baseline we chose the experimen-

tal data from one of the 0-hour replicates on the A array. We

generated 19 simulated experimental conditions to produce
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Figure 4
Noise distributions (CV) for the experimental and simulated data sets. (a) 0-hour dataset; (b) simulated dataset. Simulation
noise parameters were iteratively estimated from the real data (see Materials and methods). The resulting distributions were
sufficiently similar to allow the use of simulations to explore the effects of different sorts of noise on normalization methods.
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20 raw average difference values for each of 6,617 genes. For

each of the four metrics, computed fold-changes between the

modulated condition and the baseline (considering only

messages called Present) were compared to the true fold-

changes. Accuracy was defined as the fraction of computed

fold-changes that were accurate within twofold, and deter-

mined for assumed levels of spike-skew from 10-40% (per-

centage is the ratio of standard deviation (SD) to mean of the

random spike-skew term in the simulation). Three simula-

tions were carried out at each level of assumed spike-skew.

ADs and Fs metrics performed equally well and best overall,

with accuracies above 99% regardless of spike-skew. As

expected, frequency was the only metric with a significant

dependence on the level of spike-skew. At 10% spike-skew,

frequency accuracy was (mean � SD) 0.9951 � 0.0006, at

20%, 0.96 � 0.02, and at 40%, 0.82 � 0.06. For comparison,

the accuracy of AD was 0.88 � 0.07 at 10% spike-skew, and

did not change significantly at higher spike-skew levels. 

We stress that the overall accuracy levels reported here are

highly dependent on adjustable parameters in our simula-

tion model (see Materials and methods). Nevertheless, the

simulations demonstrate that at levels of spike-skew consis-

tent with our experience, scaled frequency is as accurate as

globally normalized ADs; this observation is robust to

changes in the model parameters.

8 Genome Biology Vol 2 No 12 Hill et al.

Figure 5
Reproducibility of normalization methods for different degrees of spike-skew in simulated data. The SD of the random
multiplicative spike-skew term in the simulations was adjusted from 0.1 to 0.4 (10-40%). Increasing spike-skew specifically
degrades the performance of the F metric. Note that the relatively poor performance of F relative to Fs and ADs when the
spike-skew is 0.2 (20%) is similar to that observed in the experimental data (Figure 3). Twenty simulated hybridizations were
generated for each level of spike-skew. 
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Absolute quantitation of cRNA and cellular RNA
There are several potential sources of inaccuracy in the

cRNA quantitiation given by the scaled frequency metric. 

Our results suggest that there is significant uncertainty in

the molar ratio of spike-in mRNAs to template-derived

cRNAs in any hybridization (the spike-skew effect). The

MEDACV for the F metric in Figure 3 is likely one measure

of this uncertainty, as it probably arises primarily from

cRNA purity variation. This uncertainty leads to propor-

tional differences between frequency metric readouts and

true cRNA transcript abundances. However, in the scaled

frequency method, the simultaneous normalization of larger

datasets reduces these differences through averaging. We

anticipate that inaccuracies of cRNA quantitation arising

from this effect will be reduced by improved methods for

quantitation of cRNA preparations.

For F and Fs, heterogeneity in probe response will lead to

gene-specific biases in quantitation. Our data contains two

observations that allow us to estimate the degree of hetero-

geneity among spiked probe sets. Cursory examination of the

calibration curve (Figure 2) suggests relative responses of the

11 distinct probe sets shown do not vary more than two-fold:

no observations fall more than about a factor of two from the

fitted line. A more rigorous evaluation of probe set hetero-

geneity can be done by comparing the ratio of AD values from

two distinct probe sets that monitor the same transcript in a

single hybridization. This ratio estimates the difference in

readout that would be observed for a single transcript if a dif-

ferent probe set were selected. This comparison was made for

the 11 spiked transcripts (each array contained two probe sets

for each of these mRNAs). On the basis of 138 ratio measure-

ments from the C. elegans arrays, the 10th-90th percentile

range for the ratio was 0.39-1.44 [10], indicating that for the
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Figure 6
Reproducibility of comparisons across array designs. The CV of repeated measurements of three genes across three array
designs is shown for the four metrics. Frequency (F) and scaled frequency (Fs) were more reproducible than either average
difference (AD) or scaled average difference (ADs).
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set of control transcripts, the uncertainty in cRNA quantita-

tion due to heterogeneity in probe set responses for 80% of

transcripts was less than threefold.

In addition to these factors leading to inaccuracies in cRNA

quantitation, there are at least two important factors leading

to differences between cRNA abundances and cellular RNA

abundances in the starting biological material. 

First, because cRNA is generated from the polyadenylated

fraction of total cellular RNA by a linear amplification

process, frequency estimates will not reflect sample-specific

changes in the fraction of polyadenylated RNA in total cellu-

lar RNA. This may be a desirable feature of frequency esti-

mates, in cases where per-total-RNA abundance is less

relevant than per-polyadenylated-RNA abundance.

Second, any gene-specific biases in the cRNA amplification

procedure will lead to gene-specific differences between

cRNA and per-total-RNA quantifications. Evidence to date

suggests that these biases are small [1] and reproducible [19].

Taken together, the above-noted sources of inaccuracy

suggest that there can typically be around two- to threefold

differences between scaled frequency per-cRNA estimates

and per-polyadenylated-RNA abundances in the starting

material. These differences could be reduced by improved

cRNA process control and quantitation, and by improved

probe selection algorithms. 

Conclusions
We have shown that cRNAs spiked into hybridization solu-

tions at known concentrations covering two to three orders

of magnitude can be used to normalize array data and to

estimate array sensitivity. However, frequency normaliza-

tion based solely on these control transcripts can be

adversely affected by variations in the ‘purity’ of cRNA

preparations. These observations underline the need for

meticulous quality control during the production of cRNA

samples and accurate quantitation of the resulting material.

With better control of these processes, the frequency metric

may provide a robust spike-based normalization that, unlike

all the other metrics described here, does not rely on the

constant-mean assumption.

In the presence of variation in cRNA purity, the Fs metric

provides a compromise between the robustness of the ADs

metric and the more absolute quantitation scale of the fre-

quency metric, in cases where the constant-mean assump-

tion is valid. In addition, the Fs metric provides a common

scale for comparing data from distinct array designs. This is

an important advantage over other metrics. For example, the

Fs metric allows comparison of the expression levels of all

worm mRNAs on all three of our array designs with compa-

rable confidence to within-array-design comparisons. This is

not possible with globally normalized average differences.

We believe that cRNA quantitation and the damping of low-

amplitude signals provided by the Fs normalization make

this metric a valuable format for reporting diverse gene

expression array results.

Materials and methods
Experiments and arrays
Array experiments used the Genetics Institute C. elegans

Affymetrix GeneChip� oligonucleotide arrays, a set of three

arrays (denoted A, B and C) which in aggregate monitor

approximately 98% of the 19,099 predicted worm mRNAs in

the October 1998 worm genome sequence release [20]. The

total number of probe sets on each array was 6,617 (A array),

5,768 (B), and 6,646 (C). Each probe set consists of 20 dis-

tinct probe pairs (each probe is a 25mer) designed to

monitor a single transcript. On the C. elegans arrays

described here, probe sets monitoring the spiked transcripts

were each tiled twice with a different set of oligonucleotide

probes. On arrays that are commercially available from

Affymetrix, one probe set is tiled to monitor each of the

spike-in transcripts. The probe sets are not fully randomly

distributed across the arrays, although on the C. elegans

arrays the different probe sets are tiled in widely different

regions of the arrays. Experimental array data described

here were taken from the developmental time course dataset

reported in [10]. Specifically, we examined individual repli-

cate hybridizations of the A array from the worm develop-

mental time course at each of 0 (n = 4), 36 (n = 3), 48 (n = 4)

and 60 (n = 4) hours after synchronization of worm eggs by

bleach, as well as a larger set of 13 hybridizations of all

three arrays to samples ranging from oocytes to 2-week-old

worms. Replicate hybridizations in the datasets included

independently generated complementary RNA (cRNA)

10 Genome Biology Vol 2 No 12 Hill et al.

Table 2

Ratios of across- to within-array coefficients of variation (CVs)

Metric Transcript

K10B3.8 K11C4.5 M03F4.2

AD 2.9 4.2 3.6

ADs 6.4 3.2 6.1

F 2.8 3.0 2.7

Fs 1.3 1.6 1.5

Ratios of across- to within-array CVs. Across-array and within-array CVs
were computed for three worm transcripts. The ratio of across-array to
within-array CV is shown. Across-array CV was computed from
measurements of the same probe set across three different worm array
designs (A, B and C). Within-array CV was computed from serial
measurements of the same probe set within the same array design. Ratios
for the Fs metric are closer to 1 than those for the ADs metric, indicating
that measurements of the same transcript on different array designs were
more reproducible in the Fs metric than the ADs metric. 



preparations from the same starting total RNA. Primary data

for all transcripts on all arrays (including all replicates of all

three array designs) is contained in the supplementary Excel

spreadsheet (see Additional data files). 

Spike-in transcript pool
A pool of biotin-labeled spike-in control transcripts was

derived by in vitro transcription of 11 cloned Bacillus subtilis

genes, using the methods described in [21]. The spike-in

pool was added into hybridization cocktails in proportion to

the UV-quantitated cRNA mass in the hybridization, so as to

achieve the desired final concentration of spike-ins. The

spiked transcripts and their final concentrations in the

hybridization cocktails are listed in Table 1. Final concentra-

tions in pmol and parts per million (ppm) for each spiked

transcript were computed from the known length of each

spike-in, assuming a total mass of 2 �g worm cRNA in a

200 �l hybridization volume, and an average length of 1,000

bases for in vitro transcribed worm cRNAs.

Metrics for transcript abundance
Average difference (AD) is the basic measure of transcript

abundance that is calculated by the Affymetrix GeneChip 3.1

software. The calculation of AD is described in detail in the

Affymetrix GeneChip User Guide [17]. Briefly, a background

intensity is computed for each of 16 rectangular sectors on

the array. This local background is subtracted from the

intensity values of each probe cell in all sectors. After back-

ground subtraction, the difference between perfect match

(PM) and mismatch (MM) feature intensity is calculated for

all probe pairs in each probe set (in our case, 20 probe pairs

in total). The AD for each probe set is the average of the PM -

MM differences, after outlying values are removed. 

A second important metric generated by the GeneChip soft-

ware is the Absolute Decision. The Absolute Decision is a

categorical call for each transcript: either Present, Absent,

or Marginal. The Absolute Decision is a heuristic metric

based on the number of probe pairs for a given transcript

that show strong specific hybridization signals. See the

Affymetrix GeneChip User Guide [17] for a detailed descrip-

tion of this metric.

Because of array-to-array variation in overall signal strength,

AD values from different arrays are usually normalized to a

common scale. We reproduced the scaled AD normalization of

the Affymetrix GeneChip 3.1 software. The calculation is

described in detail in the Affymetrix GeneChip User Guide

[17]. Scaling is done by equalizing the average intensity of all

arrays in a given dataset, where the average intensity is

defined as the trimmed average of the AD values of every

probe set on the array, excluding the highest 2% and lowest

2% of the values. This normalization works on the assumption

that the summed expression level of all genes on the array is

constant across experiments, and that differences in expres-

sion levels between arrays can be corrected by array-specific

scaling factors. We denote the normalized AD values as

scaled average difference (ADs).

The calculation of frequency (F) values involved two steps:

first, conversion of AD values to frequencies by use of the

calibration curve, and second, estimation of the chip sensi-

tivity of detection and ‘damping’ of frequency values below

this sensitivity.

The calibration curve for each hybridization was constructed

from the AD values for each of the 11 control transcripts and

their known frequencies (Table 1). AD values that were nega-

tive, or associated with Absent or Marginal Absolute Deci-

sions, were removed from the curve in order to improve the

robustness of the fit. This calibration curve was fitted by a

linear function with zero intercept, using a generalized linear

model [22] fitting procedure in the statistical software

S-PLUS (Insightful Corp., Seattle, WA). The fitting proce-

dure assumed a gamma error structure, appropriate for data

with constant coefficient of variation, and utilized iterative

reweighting of errors. The single coefficient of this linear fit

was multiplied with the average difference values for each

gene on the array to yield initial frequency estimates. Cali-

bration curves for the hybridizations described here were

examined visually to rule out poor curve fits.

Chip sensitivity of detection was estimated from the

Absolute Decisions (Present, Marginal, or Absent) for the 11

spike-in transcripts in one of two ways. In the general case,

Absolute Decisions were considered as a binary response:

Absent = 0, Present = 1, with Marginal calls treated as

Absent to be conservative. This response was regressed

against the log-transformed known frequencies, using a gen-

eralized linear model with a logit link function. The chip sen-

sitivity was then defined as the frequency at which the

predicted odds of a Present call were 70%. In the special case

where all spike-in mRNAs called Absent were lower-abun-

dance messages than all spike-ins called Present, the sensi-

tivity was defined by linear interpolation as the frequency

70% of the distance between the highest Absent call fre-

quency and the lowest Present call frequency.

Frequency values for all genes on the array that fell below

the sensitivity were damped as follows. Negative frequencies

(corresponding to negative AD values) were adjusted to one-

half of the chip sensitivity. Frequencies between zero and the

chip sensitivity were adjusted to the average of the frequency

and the chip sensitivity. The rationale for this adjustment

was threefold. First, one-half the chip sensitivity was a rea-

sonable a priori estimate of abundance for many genes that

were not reliably detected. Second, the adjusted frequencies

were guaranteed to be positive-valued, making downstream

analyses of frequency values (for example, log transforma-

tion) significantly easier. Third, retaining the adjusted low-

level frequency estimates was preferable to discarding them,

because discarding the values would make it impossible to
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detect potentially important regulation of these genes in

future experiments. 

Frequency normalization could be adversely affected by

technical uncertainties in cRNA preparation (see Results

and discussion). To attenuate these effects, an additional fre-

quency variant termed scaled frequency (Fs) was introduced.

Fs was a hybrid of ADs and frequency, and was computed as

follows. ADs was first computed for a set of two or more

arrays exactly as described above. Then a linear model (with

zero intercept) was fitted to the pooled ADs values for the 11

spike-in transcripts from all arrays, ignoring negative ADs

values or those associated with Marginal/Absent Absolute

Decisions. The slope of this linear model was the single cali-

bration factor for the entire dataset. This slope was multi-

plied with the ADs values from all arrays to yield Fs values.

Per-array sensitivity values were computed exactly as

described for F, and Fs values on any array that were below

the array sensitivity were adjusted as described above.

Simulated data 
Array data was simulated as follows. First, a single experi-

mental dataset, one of the 0-hour replicates, was chosen as a

baseline for generation of all simulated data. To this baseline

dataset, several random noise sources were added to repro-

duce key sources of variability in array data. The relation

describing the simulated data was:

ADij = bij + ADBi (aj mij sij rij)

where 

ADij = simulated AD for the ith mRNA on the jth array

ADBi = baseline gene expression data for the ith mRNA

bij = background noise for the ith mRNA on the jth array

aj = array intensity offset for the jth array

mij = multiplicative noise for the ith mRNA on the jth array 

sij = spike-skew factor for the ith mRNA on the jth array

(unity for all nonspiked mRNAs)

rij = regulation factor for the ith gene on the jth array (unity

for all spiked mRNAs)

Background bij was Gaussian with a standard deviation (SD)

that varied randomly from one array to another. The back-

ground noise SD had a mean of 20 AD units, and a standard

deviation of 5 AD units. Array intensity offsets aj were

Gaussian with a mean of one and SD of 0.3. Multiplicative

noise, mij, was drawn from a normally distributed zero-mean

noise source with a constant CV of 0.1. Spike-skew factor sij

was a single random factor for all spiked cRNAs on a given

array, and unity for all other messages. The spike-skew

factor for the spiked cRNAs was Gaussian with mean 1 and a

SD that was adjusted from 0.1 to 0.4 (in percentage terms,

10-40%). Regulation factors rij were generated by a proce-

dure in which the base-10 log (fold-change) for each gene

was selected from a normal distribution with mean 0 and SD

0.5. Extreme random regulation factors were limited so that

the regulated gene expression values had the same range as

baseline data. After multiplication of each gene by its regula-

tion factor, the mean expression level of all genes was

adjusted so that the overall mean expression level was

unchanged by regulation.

Additional data files
Primary data for all experimental hybridizations are pro-

vided with the online version of this article.
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