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1  | INTRODUC TION

Liver cancer is a life‐threatening malignant disease, and the number 
of new cases of liver cancer increased by 75% between 1990 and 
2015 according to the Global Burden of Disease Study (GBD 2015). 
In 2015, 854 000 new cases of liver cancer and 810 000 deaths were 
reported worldwide, making liver cancer the fourth leading cause of 
cancer‐related death, amounting to a disease burden of 20 578 000 
disability‐adjusted life‐years.1

Hepatocellular carcinoma (HCC) accounts for 75%‐80% of all 
cases of liver cancer. The 5‐year overall survival (OS) of HCC patients 
is 3%‐5% across all countries. Patients with stage A HCC (BCLC) have a 
5‐year OS rate of 50%–75%, with different comorbidities.2 Increasing 
evidence suggests that altered or dysregulated DNA methylation may 
contribute to HCC. DNA methylation plays an important role in reg‐
ulation of gene expression, development of normal cells and mainte‐
nance of tissue stability.3 Human DNA methylation occurs only at CpG 
islands, most of which are located in the promoter and the first exon.4 
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Abstract
Hepatocellular carcinoma (HCC) is closely associated with abnormal DNA methyla‐
tion. In this study, we analyzed 450K methylation chip data from 377 HCC samples 
and 50 adjacent normal samples in the TCGA database. We screened 47,099 differ‐
entially methylated sites using Cox regression as well as SVM‐RFE and FW‐SVM al‐
gorithms, and constructed a model using three risk categories to predict the overall 
survival based on 134 methylation sites. The model showed a 10‐fold cross‐valida‐
tion score of 0.95 and satisfactory predictive power, and correctly classified 26 of 33 
samples in testing set obtained by stratified sampling from high, intermediate and 
low risk groups.
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Methylation of the promoter inhibits gene expression, and abnormal 
methylation is associated with many human diseases, including can‐
cer.5 Genomic methylation can be analyzed in a high‐throughput man‐
ner, which may facilitate disease diagnosis, prevention and treatment.

In a study of 61 HCC cases, methylation‐specific PCR identified 
MLH1, PMS2, MSH2 and P16 as frequently methylated genes in ad‐
vanced HCC.6 An effective two‐category classification model was 
generated for predicting early HCC recurrence based on at least 
three CpG methylation sites; this model was developed through 
analysis of 450K methylation chip data from 576 publicly available 
samples.7 Analysis of 450K chip data also led to the identification of 
DNA methylation sites in the genome of peripheral blood mononu‐
clear cells and T cells that were associated with HCC progression.8 
Bisulfite sequencing analysis in the Huh2 HCC cell line showed an 
association between abnormal DNA methylation and abnormal DLL3 
expression.9 The clinical potential of DNA methylation in HCC was 
demonstrated when DNA containing methylated SEPT9 promoter 

circulating in plasma was found to be a promising biomarker for the 
disease.10

Several studies suggest that DNA methylation may help pre‐
dict OS of HCC patients. Analysis of 63 HCC samples and 10 nor‐
mal controls identified methylation sites potentially associated 
with poor prognosis,11 and a study of 27K methylation chip data 
from 71 HCC patients identified 13 candidate methylation sites. 
Unfortunately, both studies failed to develop a predictive model 
because of small sample size.12 A larger study of 450K chip data 
from 304 HCC samples used machine learning to build a model to 
predict OS based on 36 methylation sites.13 Xu et al. analyzed cir‐
cular tumor DNA methylation sites in 1098 HCC patients and con‐
structed a two‐category classification prognostic model based on 
8 DNA methylation sites, which can effectively predict OS of HCC 
patients.14 Yeh et al. analyzed plasma DNA methylation sites in 172 
HCC patients and found that LINE‐1 methylation level was signifi‐
cantly correlated with OS, and may be a promising predictor of 

F I G U R E  1   Schematic of the study method. Raw data on DNA methylation of 377 HCC samples and 50 adjacent normal tissue samples 
based on the Illumina Human Methylation 450 (450K) Bead Chip were downloaded from the TCGA database. By using the ChAMP tool in 
R software, 40 799 sites methylated differently between HCC tissue and adjacent normal tissue were identified. Then Cox regression was 
used to assess the potential correlation between OS and each CpG site differentially methylated between HCC and normal tissues. 2785 
sites significantly related to OS (P < 0.05) were retained. The SVM was then used as a classifier in the SVM‐RFE algorithm to rank features 
(in our case, methylation sites) from most to least relevant for the training objectives in an iterative process that removes the feature from 
the background, and the best 243 were selected based on the 10‐fold cross‐validation score for the number of recursive features at each 
level.The forward‐SVM (FW‐SVM) method was then used to screen feature subsets emerging from the SVM‐RFE analysis. In this process (As 
shown in the right half of the figure), a model for each feature is constructed, the model with the highest cross‐validation score is selected, 
and then this feature is combined with each of the others to construct two‐feature models, the best of which is selected based on the cross‐
validation score. This process is then iterated to build up multi‐feature models. Finally we built a predictive model containing the best 134 
features, and the model was tested using the testing dataset. Of 33 cases, 26 were correctly classified (26/33=79%)
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OS of HCC patients.15 The three models established by the above 
three studies are dichotomy‐based (two categories), making their 
risk prediction relatively crude. The predicting tool for survival that 
is based on the molecular information of the patients complements 
currently existing tumor staging methods that are based on clini‐
copathologic variables of the patients. Combining these predicting 
tools and current grading and staging methods will further improve 
current tumor assessment and guide clinicians to better treatment 
plan including molecular stratification and risk mitigation, and at 
the same time offer convenience for data communication among 
different clinical organizations and further promote research and 
control on cancer.

Study of the relationship between HCC and DNA methylation is still 
in its infancy, with relatively few methylation sites associated with HCC 
prognosis and few predictive models. Here, we used machine learning 
to analyze DNA methylation data from 450K chips in the TCGA data‐
base and to build a model with three risk categories for predicting OS 
of HCC patients. Our work has implications not only for HCC manage‐
ment but also for other methylation‐associated conditions.

2  | MATERIAL S AND METHODS

2.1 | Data collection and processing

Figure 1 illustrates the study protocol. Raw data on DNA methyla‐
tion of HCC samples and adjacent normal tissue samples based on 
the Illumina Human Methylation 450 (450K) Bead Chip were down‐
loaded from the TCGA database. By using the ChAMP tool (version 
1.8.2, parameters: differentially methylated sites: P < 0.05, |Delta‐
Beta| > 0.2) in R software (version 3.2.3), sites methylated differently 
between HCC tissue and adjacent normal tissue were identified. 
ChAMP was expressly designed for methylation chips and performs 
quality control, standardization and calculation of methylation sites 
and regions.16 The beta value was used to estimate methylation levels 
at CpG loci.

2.2 | Grouping of patients based on OS

Patients with HCC obtained from the TCGA database were classified 
as “high‐risk”(58 samples) if they were likely to die within 1 year after 
surgery; “low‐risk”(41 samples) if they were likely to survive more than 
5 years after surgery; and “intermediate‐risk”(64 samples) if they did 
not fall into either of these two categories. The same three categories 
were used in the predictive model developed in this study. The me‐
dian survival of all samples is 416 days (excluding censored patients). 
In the low‐risk group: the longest follow‐up duration is 3675 days and 
longest survival is 3258 days. The mean survival is 2525 days for pa‐
tients who succumbed and 2411 days for those who survived. The 
high‐risk group and the intermediate‐risk group excluded censored 
patients, only included non‐surviving patients who fit the definition 
of “high‐risk” or “intermediate‐risk” in this study. Meanwhile, the low‐
risk group included 31 censored patients who were alive at the time 
of last follow‐up with survival longer than 5 years.

2.3 | Screening of differentially methylated 
CpG sites

First, Cox regression was used to assess the potential correla‐
tion between OS and each CpG site differentially methylated 
between HCC and normal tissues. Sites significantly related to 
OS (P < 0.05) were retained. Second, these sites were screened 
using the Support Vector Machine (SVM)‐Recursive Feature 
Elimination (RFE) algorithm. The SVM method finds an optimal 
plane in a multidimensional space that can divide all sample units 
into two classes, and this plane should maximize the distance be‐
tween the two nearest points in different classes. The point on 
the margin between the two nearest points is called the SVM; 
the split superplane is located in the middle of the space between 
them. The SVM is then used as a classifier in the SVM‐RFE algo‐
rithm to rank features (in our case, methylation sites) from most 
to least relevant for the training objectives in an iterative pro‐
cess that removes the feature from the background. The SVM‐
RFE algorithm may be superior to Linear Discriminant Analysis 
and Mean Squared Error methods for selecting relevant features 
and removing redundant features, especially when the number of 
samples is small.17

Third, the forward‐SVM (FW‐SVM) method was used to screen 
feature subsets emerging from the SVM‐RFE analysis. In this pro‐
cess, a model for each feature is constructed, the model with the 
highest cross‐validation score is selected (see next section), and 
then this feature is combined with each of the others to construct 
two‐feature models, the best of which is selected based on the 
cross‐validation score. This process is then iterated to build up 
multi‐feature models. The FW‐SVM algorithm is different from 
SVM‐RFE because it progresses from fewer to more features using 
a greedy algorithm. The combination of two algorithms can screen 
features better than either on its own for constructing an SVM 
model.

Software version and specific implementation: Python 3, Scikit‐
learn (sklearn) toolkit. Sklearn is a Python‐based machine learn‐
ing module based on the BSD open source license. SVM‐RFE and 
FW‐SVM mainly utilizes the svm module and the feature_selection 
module under the sklearn package. The steps of SVM‐RFE are: (a) 
build the SVM‐RFE model using RFECV under the sklearn.feature_se‐
lection module; (b) use the fit function to train the model; (c) obtain 
the model cross‐validation score by the cross_val_score function 
under the sklearn.model_selection module; (d) return the model score 
for a different number of features, and obtain the final features of 
SVM‐RFE screening. The FW‐SVM utilizes the same modules as the 
SVM‐RFE, but finds the best feature set according to the forward 
recursive process described previously.

2.4 | Cross‐validation during screening of 
methylation sites

In each step of the RFE‐SVM and FW‐SVM algorithms, the in‐
termediate and final results were evaluated using the average 
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score obtained from 10‐fold cross‐validation. In cross‐validation, 
training and testing require multiple iterations of data, and 10‐
fold means that the data are randomly divided into 10 batches.18 
During the next 10 machine learning sessions, each batch was 
used for validation and the other nine for training. Cross‐valida‐
tion estimates the error boundary for multiple samples, resulting 
in a model with lower generalization errors. The mean accuracy of 
the 10 validation runs was calculated as the 10‐fold cross‐valida‐
tion score. The closer this score was to 1, the more effective the 
model was considered.

2.5 | Model validation and evaluation

The 163 cases of raw data were divided by stratified sampling into a 
training set (130 cases, 80%) and test set (33 cases, 20%). The SVM 
model was reconstructed by using the training sample and the final 
feature combination, and the test samples were used to test the 
model effectiveness.

3  | RESULTS

3.1 | Patient grouping

Raw 450K chip data from 377 HCC samples and 50 adjacent normal 
tissue samples were downloaded from the TCGA database. Patients 
who were still alive and for whom fewer than 5 years had passed 
since surgery were excluded from the analysis. Among the remaining 
patients, 58 were classified as high‐risk, 64 as intermediate‐risk and 
41 as low‐risk.

3.2 | Identification and screening of differentially 
methylated sites

Using ChAMP, we identified 47 099 differentially methylated sites 
in the sample of 377 HCC samples and 50 adjacent normal tis‐
sues (Figure 2A). Of these sites, Cox regression identified 2785 

differentially methylated sites that correlated significantly with OS 
(P < 0.05). SVM‐RFE was then applied to these 2785 sites, and the 
best 243 were selected based on the 10‐fold cross‐validation score 
for the number of recursive features at each level. The correspond‐
ing 10‐fold cross‐validation score was 0.50 (Figure 2B).

This score prompted us to perform further screening using the 
FW‐SVM algorithm, which combined the SVM algorithm with an al‐
gorithm that progressively filters feature subsets forward. In order 
to obtain the “best model with the fewest features”, we built a pre‐
dictive model containing the best 134 features, which gave a mean 
10‐fold cross‐validation score of 0.95 (Figure 2C).

3.3 | Model validation

The SVM model was reconstructed using the training dataset and 
134 feature combinations, and the resulting model was tested using 
the testing dataset (Table 1). Of 33 cases, 26 were correctly classi‐
fied. These results suggest that the model can effectively predict OS 
of HCC patients on the basis of methylation status without over‐fit‐
ting (Table 2). To further validate the predictive power of the model, 

F I G U R E  2   (A) Using ChAMP, we identified 47 099 differentially methylated sites in the sample of 377 HCC samples and 50 adjacent 
normal tissues. (B) Results of applying the SVM‐RFE algorithm to 2785 methylation sites significantly associated with overall survival based 
on Cox regression, and the best 243 were selected based on the 10‐fold cross‐validation score for the number of recursive features at each 
level. The corresponding 10‐fold cross‐validation score was 0.50.C. Results of applying the FW‐SVM algorithm to 243 methylation sites 
obtained with the SVM‐RFE method, and we finally built a predictive model containing the best 134 features, which gave a mean 10‐fold 
cross‐validation score of 0.95

TA B L E  1   Stratified sampling of patients based on overall 
survival after surgery

Risk group

Patients in dataset (n)

Training Testing

High 46 12

Intermediate 51 13

Low 33 8

TA B L E  2   Model validation

Predicted/Actual High risk Intermediate risk Low risk

High risk 12 0 0

Intermediate risk 2 9 2

Low risk 1 2 5
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we tested it on 19 paired HCC and normal tissue samples from the 
GSE77269 dataset in the GEO database. The model did not clas‐
sify any samples as “high‐risk” in normal adjacent liver tissues, but 
classified 7 samples as “high‐risk” in 19 HCC tissues, and this ratio 
(7/19 = 36.8%) is very consistent with that in the TCGA database 
(58/163 = 35.8%).

4  | DISCUSSION

Here we achieved a reasonable predictive model of OS in HCC pa‐
tients based on 134 methylation sites. This number of features is not 
particularly large for general machine learning, but it is still too many 
for optimal performance in molecular biology tasks. The relatively 
large number of features reflects the relatively small sample of 163 
cases, which in turn reflects the fact that much of the TCGA data did 
not satisfy classification requirements. This makes feature selection 
difficult and increases the risk of model over‐fitting. Fortunately, our 
model was able to predict reasonably well without over‐fitting. This 
illustrates how the combination of the SVM‐RFE and FW‐SVM al‐
gorithms can be effective when the number of samples is small. We 
speculate that this is because compared to SVM‐RFE, the FW‐SVM 
is closer to the exhaustive algorithm (traversing all feature combi‐
nations to identify the features that perform best on the test set), 
which can finely screen the features, so there is generally better 
performance in the final stage of model training. In this study, the 
number of initial features was large and the number of samples was 
small. As a result, the SVM‐RFE algorithm score is not high, and the 
FW‐SVM algorithm has a better improvement on the results of the 
previous step, which is within our expectation. Integrating more 
sample data would doubtlessly allow us to generate a model with 
fewer features. Data mining of the growing methylation database 
will continue to shed insights on the association between DNA 
methylation at specific sites and HCC phenotypes.

Here, we compare the model obtained in this study with other 
DNA methylation‐based survival prediction models for HCC. Many 
researchers have investigated prognostic predictors of HCC based 
on methylation sites. Compared with these models or molecular 
biomarkers, the advantage of our model is that it is a three‐cate‐
gory model with a satisfactory accuracy of prediction. The former 
two‐category classification models usually did survival analysis of 
high‐risk and low risk patients in the validation set to judge the effec‐
tiveness of the model. Three‐category classification model is more 
detailed than two‐category classification models if its accuracy is 
acceptable. Here, we take a recent representative study by Xu et al. 
mentioned previously as an example for comparison with our study: 
Xu, et al. analyzed circular tumor DNA methylation sites in 1098 
patients with HCC and constructed the two‐category classification 
prognostic model based on 8 DNA methylation sites, combined prog‐
nosis score (cp‐score), classified samples with survival data into the 
high‐risk group and the low‐risk group. Kaplan‐Meier curves showed 
significant difference of prognosis between the two groups in the 
validation set, log‐rank test P = 0.0014, hazard ratios [HR] (high‐risk 

vs. low‐risk) = 3.13, CI:1.64‐6.25, P < 0.0001. If our model is ana‐
lyzed by the same method, our model classified the test set into three 
groups: the high‐risk group, the intermediate‐risk group and the 
low‐risk group. Here are five comparisons: (a) high‐risk vs. low‐risk: 
log‐rank test P < 0.001, HR = 8.95 (1.96‐40.92), P = 0.005; (b) High‐
risk vs. medium‐risk: log‐rank test P = 0.007, HR = 3.12 (1.31‐7.46), 
P = 0.01; (c) Medium vs. low‐risk: log‐rank test P = 0.04, HR = 4.58 
(0.97‐21.64), P = 0.055; (d) High‐risk vs. (medium‐risk + low‐risk): log‐
rank test P < 0.0001, HR = 4.77 (2.09‐10.90), P = 0.0002; (e) (high‐
risk + medium‐risk) vs. low‐risk: log‐rank test P = 0.004, HR = 6.41 
(1.49‐27.54), P = 0.01. In conclusion, our model is able to classify test 
sets effectively and yet in greater details compared with the two‐cat‐
egory classification models.

It should be noted that in addition to the small number of sam‐
ples, we still face some problems when using TCGA data. The sam‐
ples of TCGA were collected mainly from the US, which brings about 
the following problems: in terms of sample ethnicity, the samples of 
TCGA are mainly from Caucasians; in terms of the underlying dis‐
eases of HCC, the cause of HCC varies significantly among coun‐
tries. Furthermore, in terms of the overall quality of medical care: 
the distribution of OS in our study is different from other countries, 
possibly due to better health care condition in the US.

After the final model was established, we carried out gene anno‐
tation enrichment analysis of the detected marker genes and found 
that these genes were highly enriched in such biological processes as 
regulation of transcription from RNA polymerase II promoter, apop‐
tosis, and angiogenesis, and cellular components including lysosomal 
membrane. These biological processes and components play an im‐
portant role in oncogenesis and cancer progression.

Emerging new technologies such as in genomics and proteom‐
ics provide new approaches for exploration of novel diagnostic 
and prognostic biomarkers of HCC, including DNA, mRNA, mi‐
croRNA, proteins, metabolites, and abnormally methylated DNA. 
The developing algorithmic technologies also offer tremendous 
help in the birth of new prediction models, especially machine 
learning, including Deep Learning, Decision Tree and SVM. In the 
machine learning model of HCC diagnosis and prognosis, many 
representative studies have appeared in recent years. Omran 
et al. (2015) constructed the decision tree model to predict prog‐
nosis of HCC patients based on the clinical data of 315 HCV pa‐
tients, 116 liver cirrhosis patients, and 135 HCC patients, yielding 
a sensitivity of 83.5% and an accuracy of 83.3%.19 Wang et al. 
(2015) constructed the decision tree model to predict post‐hepa‐
tectomy liver failure of HCC patients based on the surgical data 
of 634 HCC patients.20 Cao et al. (2013) trained the decision tree 
by serum protein spectrum of 50 post‐hepatectomy patients with 
HCC, and then used 36 homogeneous patients to validate the ac‐
curacy of the decision tree. They found that the serum biomarkers 
could predict post‐hepatectomy intrahepatic recurrence of HCC 
patients.21 Ho et al. (2012) used SVM algorithm and neural net‐
work to train the machine learning model based on the clinical 
data of 482 cases that received HCC resection, in order to predict 
recurrence and survival. Moreover, Ho et al. judged the merits and 
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drawbacks of their models by comparing the area under the ROC 
curve in different models.22 Augello et al. (2018) found that two 
SNPs rs2596542 and rs2596538 of the MICA gene and “age” could 
be used for identification and classification of liver cirrhosis and 
HCC by using sorting algorithm in machine learning.23 Chandhary 
et al. (2018) constructed a multi‐layer artificial neural network 
model containing three hidden layers based on RNA sequencing, 
miRNA sequencing and methylation data of 360 samples in TCGA, 
and further determined subgroup classification of HCC patients 
by survival.24 Liang et al. (2016) combined machine learning and 
metabonomics and identified 15 metabolites in urine; these me‐
tabolites are involved in several critical metabolic pathways and 
could differentiate HCC patients from normal subjects. Five of 
the metabolites are of diagnostic value for HCC with a sensitivity 
of 96.5% and an accuracy of 83%.25 As shown previously, new 
algorithms and biomolecular techniques have been applied for 
constructing HCC diagnostic and prognostic models. The contin‐
uously developing technologies have brought about massive data, 
yet we are still not able to understand and analyze these data pro‐
foundly. Since the current models only contain limited variations, 
it will be an exciting research area to construct a predicting model 
that not only takes full advantage of patients’ clinicopathologic 
data but also contains multi‐level molecular data.
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