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Introduction: In aggregate, existing data quality (DQ) checks are currently represented in heterogeneous 
formats, making it difficult to compare, categorize, and index checks. This study contributes a data 
element-function conceptual model to facilitate the categorization and indexing of DQ checks and explores 
the feasibility of leveraging natural language processing (NLP) for scalable acquisition of knowledge of 
common data elements and functions from DQ checks narratives.
Methods: The model defines a “data element”, the primary focus of the check, and a “function”, the 
qualitative or quantitative measure over a data element. We applied NLP techniques to extract both from 
172 checks for Observational Health Data Sciences and Informatics (OHDSI) and 3,434 checks for Kaiser 
Permanente’s Center for Effectiveness and Safety Research (CESR).
Results: The model was able to classify all checks. A total of 751 unique data elements and 24 unique 
functions were extracted. The top five frequent data element-function pairings for OHDSI were Person-
Count (55 checks), Insurance-Distribution (17), Medication-Count (16), Condition-Count (14), and 
Observations-Count (13); for CESR, they were Medication-Variable Type (175), Medication-Missing (172), 
Medication-Existence (152), Medication-Count (127), and Socioeconomic Factors-Variable Type (114). 
Conclusions: This study shows the efficacy of the data element-function conceptual model for classifying 
DQ checks, demonstrates early promise of NLP-assisted knowledge acquisition, and reveals the great 
heterogeneity in the focus in DQ checks, confirming variation in intrinsic checks and use-case specific 
“fitness-for-use” checks.
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Introduction
Widespread collection of clinical data in a computerized format, such as electronic health records (EHRs) and adminis-
trative claims, has made available an unprecedented amount of health care data for computational reuse [1, 2]. These 
data promise to facilitate comparative effectiveness research, safety surveillance, and pragmatic trials, to name a few 
[3–8]. Large clinical data research networks–here within referred to as networks–have been established to capitalize 
on these research opportunities [9]. These networks employ different data architectures to support a variety of data 
uses [9, 10]. For example, Kaiser Permanente’s Center for Effectiveness and Safety Research (CESR) is a clinical research 
network that utilizes its eight regional research centers for improving the health and well-being of its members and the 
general public [11, 12]. PEDSnet is a learning health system that focuses on EHR data for pediatric related research [13]. 
Sentinel is an active surveillance program for medication safety using data from primarily claims-based data partners 
[14, 15]. The National Patient-Center Clinical Research Network (PCORnet®) is a network of networks that consists of 
a large, highly representative set of patients for health research [16, 17]. The Observational Health Data Sciences and 
Informatics (OHDSI) initiative was created in response to the differences in data models used by clinical data research 
networks in order to enable large scale analytics [18].

Poor data quality (DQ) is a potential threat to the discoveries from these data [19–21]. DQ is a multi-dimensional 
concept that is described by different terms [22–27]. To address the heterogeneity of the terminology, Kahn et al. 
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created a harmonized DQ assessment terminology framework in order to provide a unified language [23]. In brief, 
the framework has three primary categories with corresponding subcategories: (1) Conformance, which refers to the 
data’s compliance to structural constraints, subcategorized as Value, Relational, or Calculation; (2) Completeness, which 
refers to the data’s presence in a particular context, subcategorized as Atemporal or Temporal; and (3) Plausibility, 
which refers to the data’s feasibility, subcategorized as Atemporal, Temporal, or Uniqueness. Of note, Atemporal refers 
to a single instance in time while Temporal refers to multiple instances across a specified time period. Overlaid on 
these categories and subcategories are two assessment categories that further detail how to check expectations that a 
particular quality metric has been achieved: (1) verification, which focuses on internal expectations and (2) validation, 
which focuses on external expectations.

Multiple networks have established customized DQ checks corresponding to this framework, where current existing 
DQ checks tend to be empirically defined for network-specific purposes [28–32]. We see an unexplored opportunity to 
learn from these checks for harmonizing DQ checking methods, understanding their similarities and differences, shar-
ing best practices, and moving towards community-based standardization of DQ checking efforts. A conceptual model 
for DQ check content promises to better enable aggregate analyses of DQ checks. 

The primary goal of this study is to propose a conceptual model for indexing and categorizing DQ checks. The 
secondary goal of this study is to assess the feasibility of using natural language processing (NLP) methods for scalable 
acquisition of knowledge from narrative DQ checks accompanying the model, similar to other work [33]. This study 
contributes a foundational data element-function conceptual model and knowledge of data elements and functions in 
the DQ checks from two example networks. 

Methods
Figure 1 presents a high-level overview of this study. A set of DQ checks was collected from multiple networks. A subset 
of checks was reviewed to define a potential conceptual model for categorization of the DQ checks. We used the pro-
posed conceptual model as a guide to annotate and parse all DQ checks. Because of the wide variety of terms extracted, 
we categorized terms into broader categories for easier interpretation. We concluded the study with a descriptive 
analysis of our findings. Each subsequent subsection provides further details for each step. The IRB determined this 
study to be exempt.

DQ checks collected 
We evaluated DQ checks of two notable networks: OHDSI and CESR. We utilized previously collected checks from a 
prior study, which provided 172 checks from OHDSI and 3,434 checks from CESR. Checks were stored as narrative text 
in Microsoft Office Excel 2016 spreadsheets [29]. Specific to OHDSI, we analyzed 67 additional DQ checks available 
from another study and stored them similarly, leading to a total of 239 checks from OHDSI [34]. In brief, the difference 
between the 172 OHDSI checks and the 67 additional OHDSI checks is that the former are pre-computational while the 
latter are both derived and community added [31, 34]. 

Conceptual model definition
The overall guiding principle of the conceptual model was to establish the most fundamental constructs needed to repre-
sent and index DQ checks in a common format. In order to define potential constructs, a random 10 percent sample of DQ 
checks were reviewed from each network. Following the aforementioned principle, the review led to the proposal of two 
constructs: 1) a “data element”, which is the primary focus of the DQ check, and 2) a “function”, which is the qualitative or 
quantitative measure applied to the data element; Figure 1 provides examples of these constructs. We expect that all DQ 
checks have these two constructs. We refer to this conceptual model as the data element-function model. 

This setup was chosen as it echoes the entity-attribute-value (EAV) approach utilized in modeling heterogeneous data 
[35]. EAV was chosen because of its simplicity, common use, and flexibility for extension. In brief, an entity is a particu-
lar object of interest; an attribute is a descriptive of the entity; and the value is the quantity of the attribute. For this 
study, the entity is analogous to the individual DQ check; the possible attributes are the constructs (either data elements 
or functions); and the values are to be extracted from the collected DQ checks.

Parse DQ checks
Using the conceptual model as a guide, we extracted terms corresponding to data elements and functions using NLP 
models. To do so, a multi-step procedure was followed per network. The procedure was stratified by network because 
the DQ checks were in different narrative formats. The DQ checks were split into a training set and a testing set, with 
the aforementioned 10 percent sample serving as the training set while the remaining 90 percent of checks served as 
the testing set. We chose not to expand upon our 10 percent sample for training because the highly structured and 
consistent nature of the majority of DQ checks we reviewed did not reveal sophisticated linguistic patterns, making it 
feasible for the reuse of an existing NLP system as is with minimal training. Regarding annotation, we chose a subset 
from the training set to capture any of the observed changes in linguistic patterns. For CESR, 10 checks were chosen 
while for OHDSI, 5 checks were chosen.

After the subsets were selected, an iterative annotation process by authors JRR and CW was pursued. Annotations 
were driven by defined constructs of the model, with sample checks presented in Figure 1. For example, the DQ check 
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“Number of persons with at least one drug occurrence, by drug_concept_id” has the data element “persons” and the 
function “number of”. We revisit the existence of the “by drug_concept_id” subsetting clause in the Discussion. 

NLP models were defined and applied on the annotated training set of DQ checks. Models optimized for extract-
ing data elements and functions from DQ checks were implemented in an open-source NLP system [36]. The NLP 
system chosen was originally intended for clinical trial eligibility criteria, but we repurposed portions of its pipeline, 
specifically the named entity recognition methodology, to be applied on textual DQ checks. Only one data element 
and only one function must be identified from each DQ check because each check is expected to have one intended 
focus. Annotation guidelines ensured only one data element and one function could be identified, with relevant terms 
extracted based on the structural context of each check. The model evaluation metric for each construct was the pro-
portion of correctly identified constructs divided by the total number of possible constructs, which equates to the total 
number of DQ checks analyzed. A threshold of 90 percent for this metric was set for each construct with author JRR 
verifying whether or not the appropriate term was identified for each check. If the threshold was not met for either 
construct for the specific network, then additional checks were annotated based on the checks that were not appropri-
ately identified by the NLP model and the NLP models were re-trained. This process was iterated until an acceptable 
performance was achieved.

After sufficient performance was achieved for both constructs, the NLP models were applied to the testing set. 
Proportions of correctly identified constructs per each network were evaluated, with author JRR manually reviewing 
each DQ check to determine whether or not the appropriate term for each construct was identified. If the incorrect 
term was identified, the reviewing author noted it and manually derived the appropriate construct that would be used 
for analysis. From there, the constructs were organized into domains. The NLP system was programed in Python 2.7.

Concept categorization
Constructs derived from the NLP results were manually categorized into domains. For data elements, we leveraged the 
domain definitions in OHDSI because they are expected to be robust to many observational database schemas [37]. 
Where there was no relevant OHDSI domain, authors JRR and CW added one [38]. Example domains for data elements 
include conditions, medications, procedures, and social history. Domains for functions were related to concepts akin to 
how the data elements were aggregated. For example, “exist” and “existence” would both be represented by the domain 
“existence”. All domains were initially determined by author JRR, reviewed by author CW, and then adjudicated based 
on consensus. Figure 1 presents sample terms for each domain.

Analysis of checks
Descriptive statistics for the categorized domains per network was evaluated. The categorized domains were also com-
pared with labels from the DQ harmonization framework in order to provide a sense of how the domains are intrinsically 
applied; these labels were already derived from prior work [29]. In order to assess relations between data element 
domains and function domains, heat maps were created. We also compared overlaps in domains between OHDSI and 
CESR to assess robustness in domain categorization. Analyses were performed in R 3.4.2. 

Figure 1: High-level overview of workflow with example DQ checks and their corresponding constructs, terms, and 
suggested domains. A data element is a focus of a DQ check (annotation is represented by “[[ data element ]]” for 
parsing); a function is the qualitative or quantitative evaluation over the data element (annotation is represented by 
“{{ function }}” for parsing). Each DQ check is essentially a function of a data element.
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Results
Feasibility to leverage NLP to scale knowledge acquisition for standardizing DQ checks
There was a total of 239 DQ checks for OHDSI. The additional 67 checks were in a narrative format not conducive for 
NLP processing, so only the 172 DQ checks were parsed by NLP and included in the main analysis (results of manual 
curation for the 67 checks are presented in the Supplemental Material). There were 18 DQ checks used in the training 
phase, with 100 percent of the data elements and functions from the training set correctly identified. For the remaining 
154 DQ checks from the testing set, 76 percent and 98 percent of data elements and functions were correctly identified, 
respectively. There were 3,434 DQ checks for CESR parsed by NLP. For the 344 DQ checks in the training phase, 97 
percent and 92 percent of data elements and functions were correctly identified, respectively, after one iteration of 
annotation. For the remaining 3,090 DQ checks in the testing phase, 97 percent and 89 percent of data elements and 
functions were correctly identified, respectively.

Concept categorization – suggested domains and allowable syntax
Table 1 presents 49 unique data elements mapped to 12 domains extracted from the 172 OHDSI DQ checks. The 
domain with the most unique terms was Insurance (13 terms), followed by Medication (10), and then Condition, Obser-
vation, and Visit (5 each). In regards to frequency, the most common domains for data elements in the OHDSI DQ checks 
were Person (55; 32 percent), followed by Insurance (23; 13 percent), Medication (20; 12 percent), Observations (16; 9 
percent), and Condition (15; 9 percent). For functions, there were a total of 3 unique domains: Count, Distribution, and 
Time Length. The most common domain for functions was Count (128; 74 percent). In general, the functions reflected 
assessments related to summary-level evaluations, such as providing a count of a data element relative to a particular 
specification.

Figure 2 presents bar charts of the frequencies of the DQ harmonization categories for all DQ check domains specific 
to OHDSI. The majority of data element domains focused on Atemporal Plausibility followed by Temporal Plausibility. 
In terms of function domains, DQ checks that measured Counts tended to focus on either Atemporal Plausibility or 
Temporal Plausibility whereas DQ checks that measured Distributions focused only on Atemporal Plausibility checks 
and DQ checks that measured Time Length only focused on Calculation Conformance checks. Visual mapping of 
the OHDSI DQ check domains to DQ harmonized framework categories in terms of percentages are also available 
(Supplemental Material, Figure S1).

Table 2 presents the frequent data elements extracted from the 3,434 CESR DQ checks. There was a total of 702 
unique data elements categorized into 23 domains. The domain with the most unique data elements was Medication 
(120 terms), followed by Socioeconomic Factors (117), Tumor (107), Social History (53), and Internal ID (53). The data 
elements were specific to an individual field in a data table, such as “birth date”, “code type”, or “smoking use”. In regards 
to frequency, the most common data element domains represented in the CESR DQ checks were Medication (764; 22 
percent), Tumor (534; 16 percent), Socioeconomic Factors (464; 14 percent), Social History (216; 6 percent), and Visit 
(190; 6 percent). For functions, there were a total of 21 unique functions that were categorized into 14 domains. Four 
domains, i.e., Consistency, Count, Existence, and Overlap, contained more than one function. The domains with the 
most common functions were Variable Type (726; 21 percent), Missing (722; 21 percent), Existence (715; 21 percent), 
Variable Length (467; 14 percent), and Count (380; 11 percent). In general, most of the functions reflected variable-level 
assessments.

Figure 3 presents bar charts of the frequencies of the DQ harmonization categories for all DQ check domains specific 
to CESR. All data elements except for Date were part of checks that were focused on Value Conformance, Relational 
Conformance, and Atemporal Completeness. For functions, many domains pertained to one category of the DQ harmo-
nization framework. Visual mapping of the CESR DQ check domains related to DQ harmonized framework categories in 
terms of percentages are also available (Supplemental Material, Figure S2). 

Knowledge acquisition – applicable pairs between data element domains and function domains
Figure 4 presents heat maps of frequency for each pair of data element domain and function domain for both net-
works. Of the 172 DQ checks in OHDSI, the most common pair between data element domains and function domains 
was Person-Count (55; 32 percent of the DQ checks); in other words, there are 55 DQ checks examining the number of 
persons with a particular specification. The other most common pairs include Insurance-Distribution (17; 10 percent), 
Medication-Count (16; 9 percent), Condition-Count (14; 8 percent), and Observations-Count (13; 8 percent). In general, 
the majority of pairs found in OHDSI examine the frequency of a particular data element in a defined context.

Of the 3,434 DQ checks for CESR, almost all data element domains had DQ checks related to the five most com-
mon function domains. In particular, the most common pair was Medication-Variable Type (175; 5 percent of the data 
quality checks); in other words, there are 175 DQ checks that examine the variable type of medication-related data 
elements. The other most common pairs are Medication-Missing (172; 5 percent), Medication-Existence (152; 4 per-
cent), Medication-Count (127; 4 percent), and Socioeconomic Factors-Variable Type (114; 3 percent). For some function 
domains, they were utilized mainly for one data element domain; specifically, all 49 of the Sum DQ checks were for 
Socioeconomic Factors, 24 of the 29 Trend DQ checks were for Date, and 18 of the 29 Uniqueness DQ checks were for 
MRN.
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The heat map also illustrates overlapping domains between the two networks. There are 8 data element domains that 
overlap between them: Visit, Provider, Procedure, Observations, Medication, Death, Condition, and Care Site. Of those 
that do not overlap, there are some similarities that are associated but do not necessarily refer to same meaning and are 
thus not considered overlapping. For example, OHDSI has an Insurance domain that focuses primarily on insurance-
related data elements; CESR has insurance-related data elements also, but those are represented by the broader domain 
Socioeconomic Factors. Similarly, OHDSI has an Age domain that focuses on the calculated value of age while CESR has 

Table 1: Allowable terms for domain descriptions of OHDSI DQ check constructs.

Domain Domain Definition Terms Count of 
Unique Terms 

in Domain

Count of 
Checks in 
Domain

Data Elements (DEs)

Age DE related to age-specific variables age at first observation period; age at death; 
age

3 10

Care Site DE related to places of care 
variables

care sites 1 3

Condition DE related to condition-specific 
variables

condition occurrence records; condi-
tion occurrence concepts; condition eras; 
condition era length; condition era concepts

5 15

Death DE related to death-specific 
variables

death records; records of death; time from 
death

3 9

Insurance DE related to insurance-specific 
variables 

procedure cost records; total paid; total 
out-of-pocket; paid toward deductible; paid 
copay; paid coinsurance; paid by payer; paid 
by coordination of benefit; ingredient_cost; 
drug cost records; dispensing fee; average 
wholesale price; payer plan (days) of first 
payer plan period

13 23

Medication DE related to medication-specific 
variables

refills; quantity; drug occurrence records; 
drug exposure records; drug exposure 
concepts; drug eras; drug era records; drug 
era length; drug era concepts; days_supply

10 20

Numeric 
Values

DE related to an unspecified 
numeric values

numeric values 1 1

Observations DE related to observation-centric 
variables

records; observation records; observation 
occurrence records; observation occurrence 
concepts; observation (days) of first 
observation period

5 16

Person DE that examines only persons Persons 1 55

Procedure DE related to procedure-specific 
variables

procedure occurrence records 1 8

Provider DE related to provider-specific 
variables

Providers 1 3

Visit DE related to visit-record related 
variables

visits; visit records; visit occurrence records; 
visit occurrence concepts; length of stay

5 9

Functions

Count Measures the count of DE relative 
to a certain specification (e.g., 
number of persons with X)

Number of 1 128

Distribution Measures the dispersion of DE 
across a certain specification (e.g., 
distribution of age by X)

Distribution of 1 39

Time Length Measures the time frame of DE 
given a certain specification (e.g., 
length of observation period (days) 
of first observation period by X)

Length of 1 5
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Figure 2: Horizontal bar charts of frequency of DQ check domains specific to OHDSI, overlaid with DQ harmonization 
categories. DQ Harmonization Categories brief descriptions: Completeness, Atemporal is the data’s presence in a 
particular context at an individual time point; Conformance, Calculation is the data’s compliance to constraints 
relating to computationally derived values from existing data; Conformance, Relational is the data’s compliance to 
structural constraints as it relates to physical database structure specifications (e.g., primary key and foreign key 
relationships); Plausibility, Atemporal is the data’s feasibility at an individual time point; Plausibility, Temporal is the 
data’s feasibility across a series of time points in a defined time period. 

Table 2: Allowable terms for domain descriptions of CESR DQ check constructs.

Domain Domain Definition Sample Term Descriptions* Count of 
Unique Terms 
in Domain**

Count of 
Checks in 
Domain

Data Elements (DEs)

Birth DEs related to birth-related 
variables

birth date, bdate 4 11

Bone 
Measurement

DEs related to bone measurement 
variables

bone measured, machine type used, scan 
date

10 42

Care Site DEs related to place of care specific 
variables

facility name 2 20

Condition DEs related primarily to condition-
specific variables

principal diagnosis, diagnosis code type, 
original diagnosis

17 85

Date DEs related to unspecified date 
variables

Date 2 24

Death DEs related to death-specific vari-
ables

death date, age at death 6 24

Enrollment DEs related to enrollment-specific 
variables

enrollment start date, enrollment end 
date, enrollment basis

11 30

Ethnicity DEs related to ethnicity-specific 
variables

Hispanic 2 10

Gender DEs related to gender-specific 
variables

gender 2 10

Internal ID DEs defined by internally utilized 
constructions

protocol ID, row ID, template ID 53 144

Lab DEs related to lab-specific variables test type, specimen source, modification 
measures (e.g., high, low, etc.)

26 121

(contd.)
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Domain Domain Definition Sample Term Descriptions* Count of 
Unique Terms 
in Domain**

Count of 
Checks in 
Domain

Language DEs related to speaking language 
variables

primary language, need for interpreter, 
language usage 

8 36

Medication DEs related to medication-specific 
variables

refills, quantity, dosage form, dosage 
amount, order date, prescription date, 
infusion duration 

120 764

MRN DEs related to medical record 
numbers

general MRNs, table-specific MRNs 
(such as related to enrollment)

12 153

Observations DEs related to ambiguous variables unit of measure, type of activity, 
message-related characteristics

43 184

Procedure DEs related to procedure-specific 
variables 

CPT modifiers, procedure date, original 
procedure

8 43

Provider DEs related to provider-specific 
variables

specialty, provider demographics, 
provider type

26 146

Race DEs related to race-specific  
variables

race listed (i.e., “race1, race2, etc.”), 
race cross-section with ethnicity (e.g., 
non-Hispanic white)

24 97

Social History DEs related to social history  
variables

smoking use, alcohol use, drug use 53 216

Socioeco-
nomic Factors

DEs related to socioeconomic  
variables

household income, poverty status, educa-
tion level, insurance-related

117 464

Tumor DEs related to cancer-specific  
variables

SSF measures, stages of progression, 
dates of particular cancer-related 
therapies (e.g., chemotherapy)

107 534

Visit DEs related to visit-specific  
variables

inpatient length of stay, discharge status, 
admission type

29 190

Vital DEs related to vital-specific  
variables

weight measurements, blood pressure 
measurements, pulse measurements

20 86

Functions

Category Examines whether or not 
appropriate categories of a DE are 
correctly entered

Category 1 243

Consistency Examines if a target DE follows an 
expected pattern with another DE

Expected order of values; Compare to; 
Extra check; Consistency

4 10

Count Measures the count of a DE (either 
by the DE or categories of the DE)

Frequency; Counts; Number 3 380

Cross tab Cross-section of a target DE with 
other DEs

Cross tab 1 19

Distribution Examines context-specific 
dispersion of a DE

Distribution 1 1

Existence Examines if the DE itself is present Exist; Existence 2 715

Link Examines if DE is linked correctly Link 1 41

Missing Examines if a DE’s entries are 
present

Missing 1 722

Overlap Examines multiple locations of DE 
occurrence

Not overlap; Overlap 2 3

Sum Measures the sum of DEs (typically 
used for proportions that must 
add to 1)

Sum 1 49

Trend Examines time fluctuation of a DE Trend 1 29

(contd.)
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a Birth domain that focuses on data elements that relate to the date of birth as opposed to the calculated age. As for 
functions, the overlapping domains are Count and Distribution. The description of length is utilized by both networks, 
but for different contexts: for OHDSI, length is in reference to a time frame whereas for CESR, length is in reference to 
a variable length.

Discussion
Key takeaways
The data element-function model provides a pragmatic setup for indexing and categorizing DQ checks. To populate this 
model with relevant knowledge, this study demonstrates promise that an NLP system can be used as a tool for large 
scale acquisition. For OHDSI, the reduction in the proportion of correctly identified data elements from the training set 
to the testing set was largely attributed to adjective modifiers used before the data element term that were not identi-
fied by our parser in the training phase. For example, if a check examined a data element with a distinct designation, 
the term “distinct” would be identified as opposed to the data element. For CESR, the slight drop in the proportion of 
correctly identified functions was attributed to checks with nuanced patterns not captured in the training set, in which 
the functions were found in a different portion of the check.

Domain Domain Definition Sample Term Descriptions* Count of 
Unique Terms 
in Domain**

Count of 
Checks in 
Domain

Uniqueness Examines if DE duplicates are 
present

Uniqueness 1 29

Variable 
Length

Examines the variable length of a 
DE

Length 1 467

Variable Type Examines how the DE is stored or 
defined (e.g., date format, integer, 
etc.)

Type 1 726

* Note that select example data element terms and descriptions are provided because some terms are proprietary and some data 
elements have many terms.

** Unique terms include case sensitive representations; for example, “race1” and “RACE1” are counted as unique.

Figure 3: Horizontal bar charts of frequency of DQ check domains specific to CESR, overlaid with DQ harmonization 
categories. DQ Harmonization Categories brief descriptions: Completeness, Atemporal is the data’s presence in a 
particular context at an individual time point; Conformance, Calculation is the data’s compliance to constraints 
relating to computationally derived values from existing data; Conformance, Relational is the data’s compliance to 
structural constraints as it relates to physical database structure specifications (e.g., primary key and foreign key 
relationships); Conformance, Value is the data’s compliance to structural constraints as it relates to prespecified 
formatting constraints (e.g., data element is numeric); Plausibility, Atemporal is the data’s feasibility at an individual 
time point; Plausibility, Temporal is the data’s feasibility across a series of time points in a defined time period; 
Plausibility, Uniqueness is the data’s feasibility regarding duplication. 
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The similar format provided by the conceptual model enables comparisons between different networks’ DQ checks. 
When comparing the extracted terms from pre-computational OHDSI checks with the CESR checks, both organizations 
shared many similar focuses from a domain perspective. For example, both networks had checks regarding the counts 
of Medication, Observation, Provider, and Condition data elements.

However, differences in the content of the domains and how they were evaluated were prevalent between the 
two networks. One major difference is the granularity of data elements assessed. In OHDSI, the checks reflect 
aggregated data elements. This is expected as the purpose of these checks is to provide a way to examine the data 
at a summarized level and are applied after the data has been mapped to and extracted from the utilized common 
data model. For instance, many checks are based on aggregated record-level evaluations, such as drug occurrence 
records from the Medication domain, procedure cost records from the Procedure domain, and visit records from 
the Visit domain. In contrast, CESR checks were generally more granular and spanned across multiple compo-
nents for the data elements, which in turn led to more terms represented. For example, CESR has checks that 
evaluate medications in the Medications domain, but the medication data was broken down into many aspects 
such as medication name, dosage form, and dosage unit. To emphasize the contrast between networks, one can 
compare data element domains found in similar function domains, such as counts in the Medication domain. 
OHDSI counts for Medication domain elements are on aggregated record-level evaluations, such as “drug expo-
sure records” or “drug cost records”, whereas CESR focused on counts for individual components, such as number 
of medication names or number of dosage forms. This potentially reflects differing standards utilized by both 
networks’ underlying data models. For example, OHDSI utilizes the RxNorm terminology as a standard for all 
medications, where individual drug components can be categorized by higher level concepts, and lower-level 
concepts have the medication information built in (e.g., dosage) [18]. In contrast, CESR utilizes different medica-
tion terminologies (such as National Drug Codes), which have different representations that may lead to different 
kinds of checks [12].

This level of granularity also persists from the function perspective. Using the data element domain of Medication, 
OHDSI checks involve counts of particular medication-oriented data elements as well as the distribution of such data 
elements. However, CESR utilizes many checks from a variable perspective, such as whether the data element exists 
(Existence), if any values are missing (Missing), what is the stored length of the data element (Variable Length), what are 
the frequency of the values for the date element (Count), among other checks.

Conceptual model in context of DQ heuristics
DQ checks are generally utilized for determining whether or not the data available is appropriate for particular tasks, also 
described as “fit-for-use” [39]. In the context of the data element-function model, the differences between the networks’ 
DQ checks provide evidence of differing purposes. For OHDSI, the checks represent a focus on specific “fitness-for-use” 
cases, as the checks provide a summary or characterization of data elements, which users must evaluate to determine if 
the data are acceptable for their goals after at least one extract-transfer-load (ETL) process. These particular checks are 
not intended to define an actionable strategy for correcting underlying errors, but are instead meant to flag potential 
issues for users to further evaluate. For the additional checks from OHDSI, they provide a more targeted focus of the 
data elements, but the functions on those data elements are still mostly reflective of “fitness-for-use” (such as thresholds 
and ratios). Ultimately, the OHDSI checks are a user-perspective endeavor, and it is up to the user to decide how to 

Figure 4: Heat maps of DQ check domains. Domains represented in both networks are indicated with an “*”.
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best address the findings of the checks. Of note, if users are interested in investigating different concerns prior to the 
aggregated checks, additional tools can be utilized [40].

For CESR, the checks tend to be at an intrinsic level because the focus is on ensuring certain data elements are present 
or accurately represented without reference to external requirements [23, 27]. These checks are likely defined at this 
level because the DQ assessment is centralized to confirm the data meet basic expectations. As such, there is a central 
party responsible for making sure local contributing sites performed appropriate conversion of source data to the 
required common data model format before aggregated use. Put another way, the checks operate as a verification that 
the data are properly formatted and are ready for aggregated analyses. These observations are consistent with previous 
interpretations of these checks [29]. Of note, there exist other strategies that CESR utilizes beyond the collected CESR 
checks. These strategies are geared toward additional data characterization that is reviewed, compared to other local 
sites, and assessed for irregularities which require further investigation by local data teams. These strategies were not 
considered for this study.

Additionally, these results further extend the DQ harmonization framework by adding constructs and representations 
related to the predefined categories. In general, for both networks, data element domains tended to be categorized by 
many DQ harmonization categories whereas function domains were more homogenously captured. This provides a 
sense of face-validity: most data elements are checked in a variety of ways while the functions represent the kinds of 
checks utilized. For example, it is not surprising the CESR function domain Existence refers to Relational Conformance 
as the majority of those checks examined whether or not a particular variable existed; conversely, it is not surprising 
that virtually all CESR data element domains have Relational Conformance checks as each domain is likely evaluated to 
see whether or not particular variables exist. The different domains shed light on the kind of applications performed in 
context of the DQ harmonization framework.

An alternative consideration for use cases beyond the conceptual model 
The data element-function model defines foundational components for categorizing DQ checks, which fits its intended 
purpose to categorize DQ checks into their most basic components. As a result of this scope, caution must be exercised 
when considering whether or not the model is appropriate for certain use cases. Specifically, the model does not cap-
ture all information contained within DQ checks and the model is not set up to be executable. If these are of interest 
to a user, an alternative model to representing DQ checks is the Quality Data Model (QDM) with accompanying logic 
defined by clinical quality language (CQL) [41, 42]. In brief, QDM defines clinical concepts in three segments: (1) a 
category to represent a general clinical concept; (2) a datatype to define a particular care process for a chosen category; 
and (3) an attribute to provide a specific detail of the overall concept. CQL provides the logic to perform evaluations on 
QDM elements and is designed to be “blind” to the underlying data structure.

To illustrate feasibility, a random 5 percent sample of DQ checks from each network were used for mapping into QDM-
CQL syntax. Of the 9 OHDSI checks, only 5 (56 percent) were successfully mapped, while of the 172 CESR checks, only 
44 (26 percent) were successfully mapped. For the OHDSI checks, the main reason for unmapped checks was because 
there was no appropriate QDM element to adequately define particular terms, specifically for insurance-related terms. 
For the CESR checks, the main reason for unmapped checks generally pertained to an inability to write the checks in a 
CQL format, specifically checks that focused on the underlying variable setup such as variable type or existence. This is 
expected as checks dependent on the underlying data model are beyond the scope of CQL.

Despite the limitation of not being able to map all sampled checks, the QDM-CQL model demonstrated advantageous 
characteristics. QDM-CQL was able to map multiple data elements (as opposed to primary data element of focus) within 
DQ checks. It was able to map attributes embedded within checks (such as “distinct” or temporal constrictions). It has 
already undergone significant development (i.e., syntax readily defined and can be executed). These advantages suggest 
the QDM-CQL model may work well for use cases focused on representing all relevant information from a DQ check as 
well as executing checks on particular data environments, conditional on the scope of the checks. Regardless, a more 
rigorous exploration is required. 

Limitations
This study serves as a proof of concept that constructs of DQ checks can be derived and categorized in a shared represen-
tation, but this model contains some limitations. First, the data element-function model has limited scope and focuses 
on a few aspects of DQ checks, which can lead to a loss of information of the DQ checks. For this study, we defined only 
two constructs that were expected to serve as a minimal definition of the DQ checks: what the primary focus is (i.e., 
data element) and how it is being evaluated (i.e., the function). Although this serves as a reasonable starting point for 
comparing DQ checks, it does not comprehensively capture all information. As per the sampled checks, the prevalence 
of under capturing information was higher for OHDSI checks than CESR checks. For the 18 sampled OHDSI checks, all of 
them had additional information, particularly related to stratifications. For example, using our procedure on the OHSDI 
DQ check “number of persons with at least one drug occurrence, by drug_concept_id” would not identify the informa-
tion that this check is displaying a stratification by drug_concept_id and does not identify that each person is required 
to have at least one drug occurrence. For the 344 sampled CESR checks, 16 percent were identified as having additional 
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information, with most prominent to related temporal considerations. For example, our procedure on the CESR DQ 
check “the count of encounter dates by year across all years of data” would not identify the temporal constraint of this 
check.

A second limitation is that the domain assignments are subjective, as certain constructs can be classified differently. 
For instance, the CESR data element of encounter dates could qualify as Visit and Date. For situations such as this, we 
would classify based on the most relevant category. For this example, we categorized it as Visit because the date was 
explicitly defined in relation to an encounter whereas the Date category referred to unspecified dates.

An additional consideration is that different domains could be constructed, depending on preference for broader 
or narrower categorization. For this study, we tried to focus on broad domains that were relatively informative, 
acknowledging that this is relatively subjective. For example, many of the domains defined in CESR could be specified 
as Demographics (such as Birth, Ethnicity, and Gender); we did not categorize by demographics because we agreed that 
these were broad enough to warrant their own domains. In contrast, a domain such as Medication contained many 
data elements (such as refills, quantity, and order date) but its data elements did not provide a broad enough scope to 
warrant their own categorizations. Similarly, some categories are vague because the data element that was identified 
was vague. For example, we had a category of Date for CESR–this is because the DQ checks looked at dates but did 
not provide specification of kind of dates (e.g., dates of birth, death, or discharge) within the checks themselves. These 
observations suggest a more rigorous categorical refinement should be considered. Despite this limitation, it is impor-
tant to note that this was beyond the scope of this study as the overall goal was to prove that this step could be achieved 
and to provide a sense of plausibility for categorization.

A third limitation is that the NLP models are susceptible to overfitting. There was a substantial decrease in the pro-
portion of correctly identified data elements in the test set versus the training set in the OHDSI dataset and, to a lesser 
extent, in the CESR results with a slight decrease in the proportion of correctly identified functions. In order to remedy 
this, the training and testing sets may require a more even split to capture more diverse checks for annotation.

A fourth limitation is the DQ checks collected do not necessarily represent all possible DQ checks that can be 
constructed. As mentioned earlier for both networks, other checking mechanisms exist but were not included in this 
study. Furthermore, the checks collected are focused on static datasets rather than comparing datasets between ETLs, 
which means the conceptual model does not include checks that examine dynamic changes.

Future work
As a proof of concept, this study provides a multitude of directions for future work. One direction is to expand the scope 
of the data element-function model to consider extracting additional constructs from the defined DQ checks. As found 
above, the focus on just two constructs provided general descriptions of what checks exist but came at the expense of a 
loss in information. Refining constructs to be derived from the DQ checks could lead to a more thorough interpretation 
of the kinds of checks that are applied and further enhance the interpretation for fitness-for-use. In-depth models from 
other terminologies, such as Systematized Nomenclature of Medicine–Clinical Terms (SNOMED-CT), could serve as a 
guide to refine how additional constructs are defined and utilized [43]. In a similar vein, terminologies themselves may 
be utilized to more rigorously define appropriate domains for extracted terms.

A second direction is to test the robustness of the data element-function model with accompanying NLP procedure 
on additional networks. As observed in OHDSI and CESR, organizational differences persist and were echoed in the 
setup of their DQ checks. Future work could further evaluate whether or not this observation persists when examining 
other organizations that have readily available DQ checks, such as Sentinel, PEDSnet, and PCORNet [17, 29]. However, 
this would be dependent on the DQ checks being stored as narrative text.

One last direction is to more formally compare the data element-function model to alternative models in order to 
examine which is optimal for particular use cases. As explored above, the model can work well for providing categoriza-
tions of DQ checks for comparisons while the QDM-CQL model has potential to work well for executable DQ checks. 
Particularly in the case of the QDM-CQL, a more formal evaluation of executing the checks would be necessary to ensure 
the syntax is executing the intended purpose of the DQ check.

Conclusions
This study demonstrates the feasibility of a data element-function conceptual model for indexing and categorizing DQ 
checks and being able to extract them at scale through the use of an NLP system. The results also reveal the heteroge-
neity in DQ checks among two networks explored, primarily due to the intended purpose of the DQ checks. The con-
ceptual model provides a promising direction for enabling shared representation and comparison amongst DQ checks.
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