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Mutant Lef1 controls Gata6 in sebaceous gland
development and cancer
Bénédicte Oulès1 , Emanuel Rognoni1,2 , Esther Hoste1,3,4 , Georgina Goss1, Ryan Fiehler5,

Ken Natsuga6, Sven Quist7, Remco Mentink8, Giacomo Donati1,9,† & Fiona M Watt1,*,†

Abstract

Mutations in Lef1 occur in human and mouse sebaceous gland (SG)
tumors, but their contribution to carcinogenesis remains unclear.
Since Gata6 controls lineage identity in SG, we investigated the
link between these two transcription factors. Here, we show that
Gata6 is a b-catenin-independent transcriptional target of mutant
Lef1. During epidermal development, Gata6 is expressed in a
subset of Sox9-positive Lef1-negative hair follicle progenitors that
give rise to the upper SG. Overexpression of Gata6 by in utero
lentiviral injection is sufficient to induce ectopic sebaceous gland
elements. In mice overexpressing mutant Lef1, Gata6 ablation
increases the total number of skin tumors yet decreases the
proportion of SG tumors. The increased tumor burden correlates
with impaired DNA mismatch repair and decreased expression of
Mlh1 and Msh2 genes, defects frequently observed in human seba-
ceous neoplasia. Gata6 specifically marks human SG tumors and
also defines tumors with elements of sebaceous differentiation,
including a subset of basal cell carcinomas. Our findings reveal
that Gata6 controls sebaceous gland development and cancer.
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Introduction

At the core of the canonical Wnt signaling pathway is nuclear

translocation of b-catenin and consequent transcription of down-

stream target genes through b-catenin binding to members

of the lymphoid enhancer-binding factor/T-cell factor (Lef/Tcf) tran-

scription factor family (Klaus & Birchmeier, 2008; Nusse & Clevers,

2017). The Wnt pathway plays a central role in stem cell mainte-

nance and fate specification in mammalian epidermis (Watt &

Collins, 2008; Lim & Nusse, 2012), controlling the balance between

hair follicle (HF) and sebaceous gland (SG) differentiation. During

embryonic life and during the postnatal hair cycles, activation of b-
catenin triggers HF growth (Huelsken et al, 2001; Lowry et al, 2005;

Donati et al, 2014). Ectopic HF can also be generated upon transient

activation of epidermal b-catenin (Lo Celso et al, 2004; Silva-Vargas

et al, 2005), in particular in Lrig1-positive and Lgr6-positive stem cell

(SC) populations of the upper pilosebaceous unit (Kretzschmar et al,

2016). While Wnt signaling favors HF over SG fate, an N-terminally

truncated form of Lef1 (DNLef1), unable to bind b-catenin, converts
HF into keratinized epidermal cysts with ectopic sebocytes (Merrill

et al, 2001; Niemann et al, 2002; Donati et al, 2017).

Deregulation of the Wnt/b-catenin pathway occurs in several

skin cancers. Transgenic mice overexpressing a stabilized form of b-
catenin develop HF tumors: pilomatricomas or trichofolliculomas

(Gat et al, 1998; Lo Celso et al, 2004). In humans, stabilizing muta-

tions in b-catenin are found in a majority of pilomatricomas (Chan

et al, 1999) and pilomatrix carcinomas (Lazar et al, 2005).

While genetic deletion of b-catenin from the epidermis is not

associated with tumor development (Huelsken et al, 2001; Malanchi

et al, 2008), transgenic mice expressing DNLef1 under the control of

the keratin 14 promoter (K14DNLef1) spontaneously develop skin

tumors, most of which are sebaceous adenomas and sebaceomas

(Niemann et al, 2002). In K14DNLef1 mice, DNLef1 decreases

endogenous Lef1 expression and acts as a dominant negative inhi-

bitor of b-catenin (Niemann et al, 2002). Therefore, Wnt/b-catenin
targets are downregulated (Donati et al, 2017) and the hair follicle

cycle is compromised (Niemann et al, 2002). The DNLef1 transgene

acts as a tumor promoter in chemical carcinogenesis experiments.

Tumors that develop upon DNLef1 expression exhibit sebaceous
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differentiation rather than the papillomas and squamous cell carci-

nomas characteristic of wild-type (WT) mice (Niemann et al, 2007).

Consistent with these findings, mutations in the N-terminus of Lef1

that prevent b-catenin binding are found in approximately 30% of

human benign sebaceous tumors (Takeda et al, 2006) and 20% of

eyelid sebaceous carcinomas (Jayaraj et al, 2015).

We recently reported that the transcription factor Gata6 plays a

role in sebaceous lineage determination and is highly upregulated in

the junctional zone (JZ) of K14DNLef1 mice (Donati et al, 2017).

Therefore, in the present work, we sought to explore the role of

Gata6 in establishing the sebaceous lineage and to understand the

link between Gata6 and Lef1 in the context of sebaceous gland

tumors. Our findings demonstrate that sebaceous fate during cancer

is controlled by Lef1 and Gata6.

Results

Gata6 is a DNLef1 target gene

As reported previously (Merrill et al, 2001; Niemann et al, 2002;

Petersson et al, 2011, 2015), in adult K14DNLef1 mice, the HF

undergoes conversion to multilayered, keratinized cysts with ectopic

sebocytes (Fig 1A and B). Based on our earlier studies, we now

believe that these cysts represent abnormal Gata6-positive seba-

ceous ducts (SD) while the associated mature sebocytes do not

express Gata6 (Donati et al, 2017). To identify direct DNLef1 target

genes, we performed chromatin immunoprecipitation and next-

generation sequencing (ChIP-Seq) on keratinocytes isolated from

K14DNLef1 epidermis (Fig 1C). As expected, the intact DNLef1 DNA

binding domain bound the same DNA core motif as Lef1, as, for

example, on Vgll4 and Runx1 loci (Fig 1C).

To understand the transcriptional role of DNLef1 in the epider-

mis, we compared DNLef1 direct target genes to the gene signatures

of the three major epidermal compartments (interfollicular epider-

mis (IFE), HF, and SG) obtained upon micro-dissection of adult tail

skin from WT mice (Fig 1D and E; Donati et al, 2017). We observed

that DNLef1 mainly bound to repressed genes belonging to the SG

signature (Fig 1D and E), consistent with a known TLE/Groucho-

dependent repressive function of Lef1 in the absence of b-catenin
(Niemann et al, 2002; Ramakrishnan et al, 2018).

Further analysis of the ChIP-Seq data revealed that Gata6 was a

direct transcriptional target of DNLef1 (Fig 1C). We confirmed by

RT–qPCR that Gata6 expression was increased in K14DNLef1 kerati-

nocytes as compared to WT cells (Fig 1F). RNAi-mediated knock-

down of Lef1 led to a striking Gata6 downregulation (Fig 1F), while

DNLef1 overexpression in the SebE6E7 sebocyte cell line increased

Gata6 expression (Fig 1G). These results are in agreement with the

expansion of Gata6-positive cells observed in K14DNLef1 mice

(Fig 1H; Donati et al, 2017).

To uncover the in vivo changes in gene expression linked to

DNLef1 expression, we compared the gene expression profiles of

flow-sorted total basal keratinocytes (basal, Itga6+Cd34�) and bulge

stem cells (HFSC, Itga6+Cd34+) in WT and K14DNLef1 transgenic

mice (Fig EV1A). To detect early molecular events, we collected

cells from 9.5-week-old mice, when the HFs are in the resting (telo-

gen) phase of the hair growth cycle (Oh et al, 2016), and the DNLef1
phenotype is not yet fully apparent (Niemann et al, 2002). Differen-

tially expressed genes (DEG) between the different keratinocyte

populations were validated by RT–qPCR (Fig EV1B). DNLef1 expres-

sion favored gene expression characteristic of the pilosebaceous unit

while repressing the IFE gene signature (Fig 1I), and differently

impacted several signaling pathways in the three compartments

(Fig EV1C). The correlation between bulge and SG signatures in

K14DNLef1 mice significantly increased when we selected genes

that were direct targets of DNLef1 (white box in Fig 1J), suggesting

a direct role of DNLef1 in the formation of ectopic SG in the HF. In

addition, Gene Ontology (GO) of DEG in WT as compared to

K14DNLef1 cells showed enrichment for the terms “tissue morpho-

genesis” and “gland development” (Fig 1K).

We next intersected DNLef1 direct target genes with DEG in SG

(vs. IFE and HF) and with K14DNLef1 (vs. WT) epidermis transcrip-

tomes (Fig EV1D). In addition to Gata6 (Fig 1C), DNLef1 directly

upregulates Pparg and Edar, two well-characterized positive

▸Figure 1. DNLef1 drives Gata6 expression and SG transcriptional signature.

A Hematoxylin and eosin (H&E) staining of WT and K14DNLef1 HF from back skin at 11.5 weeks (early anagen). White arrowheads: ectopic SG and epidermal cysts.
B Tail epidermal whole mounts from WT and K14DNLef1 mice labeled with anti-Fabp5, Krt15, and counterstained with Dapi.
C Average signal intensity of DNLef1 binding sites detected by a Lef1 antibody (red) as compared to input alone (gray) and negative control (Neg. Ctl., black). DNA motif

analysis revealed Lef1 classical consensus sequence. Representative plots of ChIP-Seq reads aligned to the Vgll4, Runx1, and Gata6 loci.
D Heat-map (Pearson’s correlation) of differentially expressed genes (DEG) between different micro-dissected regions (IFE, HF, and SG) from WT mice (left panel) (Donati

et al, 2017). DNLef1 Chip-Seq data show DNLef1 direct transcriptional targets in black (right panel).
E Gene Set Enrichment Analysis comparing gene location of DNLef1 peaks and SG gene expression signature.
F RT–qPCR analysis of Gata6 in WT and K14DNLef1 primary keratinocytes transfected with siRNA targeting DNLef1 or a scrambled sequence (scr.). Data are

means � SEM of three independent wells.
G RT–qPCR analysis of Gata6 in human SebE6E7 sebocytes transfected for 48 h with a mock plasmid or a Lef1- or DN34Lef1-expressing plasmid. DN34Lef1 is the

human ortholog of murine DN32Lef1, which is expressed in K14DNLef1 transgenic mice (Takeda et al, 2006). Data are means � SEM of three independent
experiments.

H Dorsal skin sections of WT and K14DNLef1 mice stained for Krt14 and Gata6.
I Heat-maps of DEG from WT- or K14DNLef1-unfractionated (all) or sorted (Itga6+Cd34�, basal; Itga6+Cd34+, HFSC) keratinocytes in comparison with IFE, SG, and HF

gene signatures ranked from high to low expression.
J Heat-map depicting similarities, as Pearson’s correlation coefficient, between DEG in keratinocytes from WT or K14DNLef1 mice and IFE vs SG vs HF transcriptome

analysis (left panel). Additional correlation with DNLef1 Chip-Seq data is depicted in the right hand heat-map.
K GO enrichment analysis of DNLef1 direct target genes among DEG of WT and K14DNLef1 mice.

Data information: (A, B, and H) Scale bars: 50 lm. (F, G) Statistical analyses were performed with an ordinary one-way ANOVA: (ns) not significant; *P < 0.05;
***P < 0.0005.
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regulators of the SG (Chang et al, 2009; Niemann & Horsley, 2012).

In parallel, DNLef1 directly downregulates genes such as Klf5,

important for IFE identity (Ge et al, 2017), Igfbp3 that is expressed

in SG (Dahlhoff et al, 2016), and Slco2a1. Loss-of-function muta-

tions in Slco2a1 are associated with sebaceous hyperplasia (Guo

et al, 2017). We conclude that DNLef1 has activating and repressive

functions that converge in promoting a SD/SG phenotype in

K14DNLef1 mice.

Gata6 expression is not dependent on Lef1 or b-catenin during
epidermal development

Although Gata6 is a DNLef1 transcriptional target, DNLef1 did not

trigger ectopic Gata6 expression in the IFE of K14DNLef1 mice

(Fig 1H), suggesting that the upper pilosebaceous compartment is

the only permissive niche for DNLef1-mediated Gata6 expression.

During early HF/SG morphogenesis (from E15.5 to E18.5), Gata6

and Lef1 were not co-expressed in epidermal cells (Fig 2A), and at

E18.5, Lef1�/� epidermal Gata6 expression was indistinguishable

from control epidermis (Fig 2B). In embryonic WT skin, endoge-

nous Gata6 appeared mainly in suprabasal cells located in the upper

part of stage 4 HF (late hair peg; Fig 2A). While Gata6 and Lef1 did

not co-localize in developing HF, Gata6 expression was detected in

a subset of Sox9-positive cells in stage 4 and 5 HF (Fig 2A). In

anagen HF of adult WT mice, endogenous Lef1 and Gata6 did not

co-localize (Fig EV2A).

From birth, Gata6 was expressed, as in the adult epidermis, in

the JZ and upper SG, but not in mature sebocytes (Fig EV2B).

Consistent with the restriction of Sox9 expression to bulge cells in

adult HF (Nowak et al, 2008), there was little co-expression of

Gata6 and Sox9 at P1 (Fig EV2B). Gata6-positive cells did not co-

localize with another bulge marker, CD34. Cells expressing low

levels of Gata6 co-expressed Lgr6 and Lrig1 in neonatal P1 mice, as

in adult animals (Donati et al, 2017). No co-expression of Gata6 and

Tcf3/4 was observed. Gata6 did not co-localize with Ki67

(Fig EV2B), indicating that Gata6-positive cells were not prolifera-

tive, in agreement with the role of Gata6 in terminal differentiation

of the SD lineage (Donati et al, 2017). During HF morphogenesis in

human embryonic skin, Gata6 expression was initiated at a similar

HF stage to the mouse and was located in the JZ, SD, and upper SG

of more mature HF (Fig EV2C).

To test whether Gata6 expression was regulated by canonical

Wnt signaling, we used inducible and constitutive epidermal b-
catenin gain-of-function mouse models (Fig 2C and D). K14DNb-
CateninER mice in which N-terminally truncated b-catenin is fused

with the estrogen receptor ligand binding domain (ER) (line D2, 12

copies; line D4, 21 copies) served as the inducible model (Lo Celso

et al, 2004). Upon application of tamoxifen (4OHT) for 1 or 6 days,

HF entered anagen in both mouse lines. In the D4 line, this was

accompanied by massive thickening of the existing HF and induc-

tion of ectopic follicles. However, we did not observe any ectopic

expression of Gata6 (Fig 2C).

For constitutive b-catenin activation, we generated K14Cre/bCat
Flox(ex3)/+ mice in which stabilized b-catenin lacking the GSK3b
phosphorylation sites becomes prematurely active in all basal kerati-

nocytes during embryogenesis. In these mice, the IFE and SG adopt

a HF fate (hair shaft; Kretzschmar et al, 2016). We observed

induced ectopic Sox9 expression in K14Cre/bCat Flox(ex3)/+ epider-

mis. Nevertheless, premature and broad epidermal b-catenin activa-

tion, even in this developmental context, did not trigger Gata6

expression (Fig 2D).

We conclude that although Gata6 is a mutant Lef1 target gene,

Gata6 expression is neither Lef1 nor b-catenin-dependent during

pilosebaceous unit morphogenesis.

The Gata6 lineage participates in sebaceous
gland morphogenesis

We next investigated the role of Gata6 in SG morphogenesis. We did

not observe any major SG abnormalities when Gata6 was deleted

via the Krt5 promoter (cKO; Donati et al, 2017). However, an in-

depth analysis of tail epidermis did indicate that in the absence of

Gata6 the proportion of hypotrophic SG was significantly higher

than in WT and heterozygous mice, albeit constituting a minority of

the total SG (Fig 3A).

By overexpressing Gata6 in primary murine keratinocytes, we

previously demonstrated that Gata6 induces a SD/SG transcriptional

program upon differentiation in vitro (Donati et al, 2017). In addi-

tion to SD genes, Gata6 triggered the expression of genes associated

with sebocyte differentiation, such as Pparg and Fasn, and downreg-

ulated genes associated with the androgen receptor gene signature

that is a distinctive feature of the base of the SG (Donati et al,

2017). To overexpress Gata6 in developing epidermis, we performed

in utero lentiviral infection (Beronja et al, 2013) with a Gata6-ires-

GFP virus or a control virus expressing GFP alone (Figs 3B and C).

This protocol is characterized by a low infection efficiency, with

most transduced cells carrying only one transgene to avoid uncon-

trolled overexpression and off-target effects (Beronja et al, 2013).

Gata6 overexpression in epidermal cells at E9.5 recapitulated

aspects of the K14DNLef1 phenotype, in particular the formation of

epithelial cysts with ectopic sebocytes (Fig 3B). Gata6 overexpres-

sion also resulted in the ectopic expression of the differentiating

▸Figure 2. Gata6 expression is independent of Wnt/b-catenin signaling.

A Sections of WT embryonic skin at different HF stages stained for Gata6, Lef1 or Sox9, and counterstained with Dapi. Black asterisks indicate overexposed areas of
nonspecific Lef1 staining in the suprabasal epidermis. Quantification of the percentage of cells labeled for both Gata6 and Lef1, or Gata6 and Sox9 in stage 4–5 HF is
shown (upper right panel). Data are means � SD and were obtained from 9 HF from 3 mice.

B Sections of E18.5 WT and Lef1�/� mouse skin stained for Lef1 and Gata6. Deletion of Lef1 does not impair Gata6 expression.
C Sections of WT and K14DNb-CateninER (K14DNb-CatER D2 and D4 strains) adult dorsal skin stained with antibodies against Krt14 and Gata6. Topical treatment with

1 or 6 doses of 4OHT activates b-catenin, leading to anagen induction and ectopic hair follicles but not Gata6 expression.
D Sections of E18.5 WT and K14Cre/bCat Flox(ex3)/+ mouse skin stained for Sox9 and Gata6. Activation of Wnt/b-catenin signaling during epidermis development does

not induce Gata6 expression but results in ectopic expression of the HFSC marker Sox9.

Data information: (A–C) Scale bars: 50 lm. (D) Scale bar: 25 lm.
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sebocyte marker Fasn in the SG and in the HF but not in the IFE,

suggesting that Gata6 is able to promote SG identity in a cell

compartment-dependent manner (Fig 3B). Gata6-induced ectopic

sebocytes did not complete their maturation, as shown by the

absence of LipidTOX staining (Fig 3C). This is consistent with the

absence of Gata6 staining in differentiated sebocytes in mouse skin

(Fig EV2B; Donati et al, 2017).

The origins of the SG during development are still a subject of

debate (Reuter & Niemann, 2015). Primitive sebocytes can be

detected in stage 5 HF (bulbous hair peg) as described by Paus et al

(1999). While it is generally assumed that the entire gland is derived

from a single lineage expressing Sox9 (Nowak et al, 2008; Frances &

Niemann, 2012), lineage tracing via retrovirus-mediated LacZ trans-

duction of dermabraded skin has shown that individual SG can

be derived from more than one cell population (Ghazizadeh &

Taichman, 2001). To examine this without having to damage the skin

or rely on candidate SGmarkers, we generatedWT:GFP chimeric mice

(Fig EV3A) as previously described (Arwert et al, 2010). Aggregation

chimeras are powerful tools that have been extensively used to infer

developmental mechanisms (Tam, 2003). We assessed GFP expres-

sion in SG from 5 chimeric mice. In labeled SG, GFP staining was

frequently localized exclusively to the upper SG (Fig EV3A). There-

fore, we postulate that the SG is formed from at least two progenitors,

one of which exclusively populates the upper SG and ducts.

To test whether Gata6 progeny were involved in morphogenesis

of the upper SG, we performed lineage tracing by inducing recombi-

nation in Gata6EGFPCreERT2 (Gata6creER) × Rosa26-fl/STOP/

fl-tdTomato (ROSA-dTom) mice at E16.5 and E18.5 and analyzing

whole mounts of tail and back skin 2 days and 17 days (P13) post-

labeling (Figs 3D and EV3B and C). In line with our Gata6 expres-

sion analysis (Fig 2A), only cells in the upper part of stage 4–5 HFs

were labeled 2 days after recombination (Fig EV3B). HF labeling

efficiency was higher at E18.5 due to the higher abundance of stage

4–5 HF, but Gata6 progeny were never observed in earlier HF stages

(Fig EV3B). At P13, Gata6 progeny were specifically located in the

upper SG and JZ in approximately 90% of labeled pilosebaceous

units (Fig 3D). Gata6 progeny were only rarely found in the lower

SG or in the lower part of the HF (Fig EV3C).

Taken together, these data suggest that the Gata6 lineage is

responsible for generating the upper part of the SG, including the

SD.

Gata6 specifies number and type of K14DNLef1 tumors

We next investigated the role of Gata6 in epidermal carcinogenesis.

Unlike WT mice, K14DNLef1 mice develop tumors spontaneously,

or after a single DMBA application (Niemann et al, 2007). In both

contexts, K14DNLef1 tumors have elements of sebaceous differenti-

ation. Gata6 was expressed in all K14DNLef1 tumors, whereas it

was undetectable in DMBA/TPA-induced papillomas in WT mice

(Fig 4A). Ablation of Gata6 in K14DNLef1 mice (K14DNLef1:cKO)
resulted in an increased rate of tumor formation following DMBA

treatment, and in an increased number of tumors per mouse

(Fig 4B), indicating that Gata6 acted as a tumor suppressor. In addi-

tion to increasing the overall number of tumors per mouse, loss of

Gata6 led to an increase in papilloma-like tumors and a decrease in

tumors with SG elements (Fig 4C). K14DNLef1 tumors strongly

expressed the SD markers Plet1 and ATP6v1c2 (Donati et al, 2017),

while WT and K14DNLef1:cKO tumors did not, indicating that SG

differentiation was significantly reduced upon Gata6 loss (Fig 4D

and Appendix Fig S1).

Gata6 acts as a tumor suppressor by controlling the DNA
mismatch repair response

Muir–Torre syndrome is a rare genetic condition that predisposes

patients to developing sebaceous skin tumors and visceral malig-

nancies. This autosomal dominant variant of Lynch syndrome is

caused by mutations in DNA mismatch repair (MMR) genes, result-

ing in microsatellite instability (Eisen & Michael, 2009a,b; John &

Schwartz, 2016). Since loss of Gata6 in cultured mouse keratino-

cytes leads to DNA damage, triggering apoptosis (Wang et al, 2017),

we investigated whether the tumor suppressive function of Gata6

might be due to an effect on MMR gene transcription.

Computational analysis of RNA-Seq data from Gata6-deficient

keratinocytes (Wang et al, 2017) revealed that DNA metabolism

◀ Figure 3. Gata6 progenitors contribute to SG morphogenesis.

A Bright-field images of whole-mount WT and Gata6 cKO epidermis, showing abnormal SG upon loss of Gata6. Quantification of hypotrophic SG in WT, heterozygous
(Het), and Gata6 cKO epidermal whole mounts. Data are boxplots with indication of means. Box limits are minimum and maximum values. An average of 165 HF per
mouse (from 3 to 4 mice per genotype) was analyzed. *P < 0.05; **P < 0.005; unpaired Student’s t-test.

B Schematic representation of plasmid constructs used for in utero lentiviral infection. Whole mounts or sections of adult infected epidermis with empty vector (EV) or
Gata6-ires-GFP (G6OE) lentivirus were stained for GFP and Fasn. In vivo overexpression of Gata6 leads to ectopic Fasn expression in the HF/SG unit. White dotted
lines define SG, and yellow dotted lines define a cyst. Note that the cyst is mostly negative for Fasn in agreement with its SD-like phenotype. White arrows indicate
GFP-positive infected cells. These cells are stained with Fasn only on G6OE expression. H&E-stained skin from G6OE mice shows a cyst with SG elements in the HF
unit (black arrows). Staining for Gata6 (both endogenous and exogenous) shows that Gata6 expression occurs in a limited number of cells (representative image in
upper right panel). Bottom left graph shows quantification of the percentage of clones labeled for both Fasn and GFP in the SG, HF, and IFE compartments. Data are
means � SD and originate from 4 EV mice and 8 G6OE mice (average of 11 clones per mouse).

C Whole-mount adult epidermis infected with EV or G6OE lentivirus stained with LipidTOX. Ectopic Gata6 expressing cells are not stained with LipidTOX, indicating
incomplete sebaceous maturation.

D Lineage tracing experiments in Gata6EGFPCreERT2:Rosa26-fl/STOP/fl-tdTomato (Gata6creER ROSA-dTom) mice. A single dose of 4OHT was injected into pregnant
females at E16.5. Tail skin from pups was collected at P13. Representative example of whole-mount epidermis showing tdTomato-labeled cells counterstained with
Dapi (top left panel). Right panels show the different Z-stacks related to this whole mount. Gata6 progeny are mainly found in the upper SG/JZ. Localization of Gata6
progeny (dTomato+) was quantified in 20–26 pilosebaceous units per mouse (N = 4 mice) (bottom left panel). Data are means � SD. As a control, quantification was
also performed on Rosa26-fl/STOP/fl-tdTomato (ROSA-dTom) mice that were treated similarly to Gata6creER ROSA-dTomato mice.

Data information: (A–C) Scale bars: 50 lm. (D) Scale bar: 25 lm.
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genes (including a number of genes related to DNA repair and

replication) were over-represented in downregulated genes

(Fig 5A and B). When we intersected Gata6 ChIP-Seq data

(Donati et al, 2017) with the RNA-Seq data from WT and Gata6

cKO keratinocytes (Wang et al, 2017), we confirmed that KEGG

pathways related to DNA repair, including MMR, were enriched
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Figure 4. Effect of Gata6 loss on K14DNLef1 sebaceous tumors.

A Sections of mouse skin tumors were stained with antibodies to Gata6 and Krt14. A papilloma from a WT mouse treated with DMBA and TPA (left panel) is compared
with sebaceous tumors found in K14DNLef1 mice (right panels).

B Tumor burden and tumor incidence in DMBA-treated K14DNLef1 (n = 11) and K14DNLef1:cKO (n = 8) mice. ***P < 0.001; Wilcoxon matched-pairs signed
rank test.

C Representative H&E-stained tumors of K14DNLef1 and K14DNLef1:cKO mice with quantification of each tumor type relative to the total number of tumors in each
group (middle panel) and as the average absolute number of tumors per mouse (right panel). A total of 268 tumors were analyzed. 143 tumors were found in 7
K14DNLef1 mice (103 sebaceous tumors and 40 papillomas), while 125 were found in 5 K14DNLef1:cKO mice (55 sebaceous tumors and 70 papillomas). **P < 0.005,
Student’s t-test.

D Representative images of mouse skin tumor sections labeled with antibodies to Plet1 and Atp6v1c2.

Data information: (A, D) Scale bars: 100 lm. (C) Scale bar: 1 mm. (B, C) Data are means � SEM.
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in the genes downregulated on loss of Gata6 (Fig 5A and B). The

specific MMR genes Msh3, Exo1, Pold1, Rfc3, and Pcna were

downregulated in Gata6 cKO keratinocytes (Fig 5A), although

they were not identified as direct transcriptional targets of Gata6

(Donati et al, 2017).

Using ChIP-Atlas, an extensive database of publicly available

ChIP-Seq experiments (Oki et al, 2018 and http://chip-atlas.org),

we analyzed Gata6 ChIP-Seq experiments performed in human ES

cell-derived mesendodermal cells and in human colon, gastric and

pancreatic adenocarcinoma cell lines. We identified eight genes in

the MMR pathway for which a Gata6-binding peak was found

within 10 kb from the transcription start in at least 2 different data-

sets: Msh3, Rfc2, Pold4, Ssbp1, Pold3, Exo1, Rfc1, and Mlh3

(Fig EV4). It is possible that these were not found in Gata6-overex-

pressing primary mouse keratinocytes (Donati et al, 2017) because

the ChIP-Seq analyses were performed too soon after lentiviral infec-

tion for Gata6 to induce MMR genes. Nevertheless, the MMR genes

identified as Gata6 direct transcriptional targets using ChIP-Atlas

closely match the MMR genes that were downregulated in Gata6

cKO keratinocytes and confirm that the MMR pathway is regulated

by Gata6.

To further study the functional impact of Gata6 on the MMR

pathway, we used two methods that are key to diagnosing Muir–

Torre syndrome (Eisen & Michael, 2009b) and Lynch syndrome

(Giardiello et al, 2014): microsatellite instability (MSI) testing and

immunohistochemistry for MMR proteins. We first evaluated MSI in

skin tumors from K14DNLef1 mice and K14DNLef1:cKO mice. We

analyzed the relative allele frequency of five microsatellite regions,

as previously described (Woerner et al, 2015; Germano et al, 2017;

Keysselt et al, 2017). Three markers (Bat64, AA003063, and

L24372) showed a shift in allele distribution, two of which were

significant (Fig 5C). This indicated a more unstable microsatellite

phenotype in K14DNLef1:cKO mice.

The MMR pathway corrects errors within newly synthesized

DNA strands during replication and mainly relies on MutSa and

MutLa complexes formed by Msh2/Msh6 and Mlh1/Pms2, respec-

tively (Jiricny, 2006). Mlh1 (Fig 5D and Appendix Fig S2A) and

Msh2 (Fig 5E and Appendix Fig S2B) expression were significantly

reduced in K14DNLef1:cKO as compared to K14DNLef1 tumors. The

broad downregulation of MMR genes, in particular of Msh3, in

Gata6-deleted skin is likely to explain the downregulation of Mlh1

and Msh2 (Figs 5D and E, and Appendix Fig S2) through destabi-

lization of MMR protein complexes.

Altogether, these results indicate that the increased incidence of

tumors in K14DNLef1:cKO mice could be due to a decrease in

expression of Gata6-dependent MMR proteins.

Gata6 expression is a hallmark of human skin tumors with
sebaceous differentiation

To examine whether the observations in mice were relevant to

human skin tumors, we first confirmed that Gata6 was expressed in

the same locations in human as in mouse adult skin. Indeed, Gata6

was expressed in the upper SG, SD, and JZ (Fig 6A). We then

analyzed Gata6 expression in a large panel of benign and malignant

human skin samples (N = 73; Fig 6B and Appendix Fig S3). Eigh-

teen out of 19 human sebaceous tumors were Gata6-positive,

regardless of their malignancy grade. In addition, the majority of the

tumors harboring elements of SG differentiation were positive for

Gata6: sebaceous nevus, syringocystadenoma papilliferum (SCAP,

commonly associated with sebaceous nevus), folliculosebaceous

cystic hamartoma (FSCH), steatocystoma multiplex (genetic

◀ Figure 5. Gata6 controls the DNA mismatch repair response during sebaceous tumorigenesis.

A Heat-map highlighting differentially expressed genes (DEG) between WT and Gata6 cKO keratinocytes from Wang et al (2017). Gata6 direct transcriptional targets
from Chip-Seq data (Donati et al, 2017) are shown in dark gray.

B KEGG pathway analysis performed on downregulated genes upon Gata6 loss.
C MSI analysis performed on skin tumors from DMBA-treated K14DNLef1 and K14DNLef1:cKO mice (5 mice in each group). Representative microsatellite profiles of

K14DNLef1 and K14DNLef1:cKO tumors. Peak heights were normalized to the highest peak in each microsatellite profile to obtain the relative frequency of each allele
for five different markers. “0” indicates the position of the highest peak in bp. *P < 0.05; **P < 0.001; paired t-test.

D Representative immunohistochemistry staining for Mlh1 performed on skin tumors from DMBA-treated K14DNLef1 and K14DNLef1:cKO mice. Four mice were
included in each group. A technical control is displayed (without primary antibody incubation). Semi-quantitative analysis of Mlh1 staining and statistical analysis
(chi-square test) were performed.

E Representative immunohistochemistry staining for Msh2 and semi-quantitative analysis performed as in (D).

Data information: (D and E) Scale bar: 250 lm.

▸Figure 6. Gata6 expression is conserved in human normal skin and found in tumors harboring sebaceous differentiation.

A Normal human scalp skin sections stained with Gata6 and pankeratin antibodies. Endogenous Gata6 expression was found in the JZ, upper SG, and SD. As in mouse
skin, Gata6 was not expressed in sweat glands (SwG).

B Representative sections of human skin tumors stained with Gata6 and pankeratin antibodies. Quantification of the percentage of Gata6-positive tumors within each
histopathological group (middle left panel) and quantification of the percentage of Gata6-positive cells within each positive sample (middle right panel). Note that
the least positive sample showed about 3% of Gata6-positive cells. The analysis was performed on 73 different tumor samples. SSC: squamous cell carcinoma; SCAP:
syringocystadenoma papilliferum; EMPD: extramammary Paget’s disease; nod./superf./scler. BCC: nodular/superficial/sclerodermiform basal cell carcinoma;
Steatocystoma M.: steatocystoma multiplex; FSCH: folliculosebaceous cystic hamartoma. Heat-map displaying the �log(P-value) of chi-square test computed
between the different tumor types (bottom left panel).

C Gata6 expression (measured in transcripts per million, TPM) in human SCC (n = 6), BCC (n = 6), and sebaceous carcinoma (n = 14) samples from North et al (2018).
Data are means � SD. **P ≤ 0.005, Student’s t-test.

Data information: (A and B) Scale bars: 100 lm.
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condition characterized by multiple benign sebaceous cysts), and

basal cell carcinoma (BCC) with a cystic differentiation. In contrast,

squamous cell carcinomas (SCC), HF/matrical tumors, and extra-

mammary Paget’s disease (EMPD) were negative for Gata6 (Fig 6B

and Appendix Fig S3). The percentage of Gata6-positive cells was

typically in the same range within each tumor group, except in the

case of sebaceous carcinomas, which exhibited more variability in

Gata6 expression (Fig 6B and Appendix Fig S3).

Two BCC subtypes could be distinguished on the basis of Gata6

expression. Gata6 was selectively expressed in BCC with cysts. We

speculate that these BCC may arise from a different region of the HF

compared to cyst-less BCC. In addition, although the number of

samples of the benign skin disorder SCAP was limited, we observed

Gata6 expression in almost 70% of cases (Fig 6B and Appendix Fig

S3). This is intriguing because SCAP is thought to derive from sweat

glands (Yamamoto et al, 2002), yet normal sweat glands do not

express Gata6 (Fig 6A).

In support of our findings, we reanalyzed published RNA-Seq

data from human SCC, BCC, and sebaceous carcinomas (SebC;

North et al, 2018). We found that Gata6 expression was significantly

increased in SebC as compared to BCC and SCC (Fig 6C), which

confirms our previous observations (Fig 6B and Appendix Fig S3).

Therefore, our results establish Gata6 as a key histological

marker of human skin tumors that originate from, or have differenti-

ated elements of, the SG.

Mutation and downregulation of Gata6 are features of
sebaceous carcinomas with a high mutational burden

North et al (2018) have distinguished three subclasses of human

SebC based on their mutational profile: the ocular and cutaneous

pauci-mutational SebC (with a low prevalence of mutations); SebC

with a MSI mutational signature (intermediate prevalence of muta-

tions) and SebC with a UV mutational signature (highest somatic

mutation burden). Within this dataset, we found GATA6 mutations

in approximately 30% of SebC harboring a MSI or UV damage signa-

ture (Fig 7A). GATA6 missense mutations were mostly deleterious

(Fig 7B). In addition, analysis of RNA-Seq data showed that Gata6

expression was significantly lower in UV-induced SebC than in other

SebC (Fig 7C). In agreement with our observations in mice (Fig 4B

and C), UV-related SebC expressing a low level of Gata6 were less

differentiated and more aggressive than the pauci-mutational and

MSI-mutant tumors (North et al, 2018).

Despite the different mutational mechanisms associated with

MSI-related and UV-induced SebC, Gata6-mutated tumors (Gata6-

mut) displayed a higher number of mutations/Mb (Fig 7D), of

somatic single-nucleotide variants (SSNV) (Fig 7E) and Indel

(Fig 7F) than Gata6 wild-type tumors (Gata6wt). In addition, Gata6-

mut tumors displayed a trend of downregulation in MMR genes

when compared to Gata6wt tumors (Fig 7G). The limited number of

Gata6mut SebC samples did not allow us to test for significance.

However, these results suggest that Gata6 affects DNA damage path-

ways in human sebaceous tumors as in mice.

Our data indicate a role of Gata6 in the physiopathology of seba-

ceous tumors, particularly in relation to DNA mismatch repair.

Discussion

Gata6 is widely expressed in the heart and in endoderm-derived

tissues, including the lungs, liver, pancreas, stomach, and intestine

(Maeda et al, 2005). Mice lacking Gata6 die during embryonic

development as a result of endoderm defects (Morrisey et al, 1998).

In contrast, Gata6 expression in the epidermis is limited to a popula-

tion of SD/SG progenitors in the developing HF and to the JZ, upper

SG, and part of the infundibulum in adult skin (Figs 2A and 6A, and

EV2A–C; Donati et al, 2017).

Although Gata6 is strongly upregulated in the epidermis of

K14DNLef1 mice (Fig 1H) and is a direct DNLef1 target gene

(Fig 1C), we saw no evidence for co-expression of Gata6 and Lef1 in

developing or adult epidermis and Gata6 was not induced upon

b-catenin activation (Fig 2), even though Gata6 synergizes with or

activates Wnt signaling in a number of contexts (Afouda et al, 2008;

Zhang et al, 2008b; Whissell et al, 2014).

During skin morphogenesis, Gata6 was first expressed in the

upper stage 4 HF (Fig 2A), consistent with a recent study that

reported co-localization with Krt79 and Lrig1 (Mesler et al, 2017).

The Gata6-positive population does not originate from Shh-posi-

tive progenitors (Mesler et al, 2017) and an alternative possibility

is that it arises from Sox9 progenitors (Fig 2A). Regulation of

Sox9 by Gata6 has been shown in several organs, including the

pancreas (Carrasco et al, 2012) and cardiac valves (Gharibeh

et al, 2018).

Gata6 gain and loss-of-function experiments revealed that Gata6

regulates JZ, SD, and upper SG differentiation in WT mice (Figs 3

and EV3B and C). In K14DNLef1 mice, a DNLef1-Gata6

◀ Figure 7. Gata6 is mutated or downregulated in human sebaceous carcinomas with a high mutational burden.

A Differentiation status (poor, moderate, or well-differentiated), circumscription (not infiltrative, focally infiltrative, or infiltrative), log10 total number of mutations,
and Gata6 mutations in 32 human sebaceous carcinomas (SebC) separated into 3 subgroups: pauci-mutational, MSI-related, and UV-related, as published by North
et al (2018). For Gata6 mutations, the most deleterious mutation is displayed. n.a.: not assessed.

B Schematic representation of Gata6 protein displaying the different protein domains: PEST, GATA-type transcription activator, zinc-finger (ZnF), nuclear localization
sequence (NLS), and the different Gata6 missense mutations and deletions found in human SebC. Heat-map displaying the predicted effect (deleterious or neutral)
of W8C, S33C, G61R, and S511F point mutations as assessed by PredictSNP, Polyphen-1, Polyphen-2, SIFT, SNAP, and SNAP2 algorithms (right panel). Percentages
indicate the level of confidence of the predictions.

C Gata6 expression (measured in transcripts per million, TPM) in human pauci-mutational (pauci-mut) SebC (n = 4), MSI-related SebC (n = 4), and UV-related SebC
(n = 5) samples. Data are means � SD. *P ≤ 0.05, Student’s t-test.

D–F Graphs showing the number of mutations per megabase (mutations/Mb) (D), the number of somatic single-nucleotide variants (SSNV) (E), and Indel (F) of
Gata6mut (n = 3) or Gata6wt (n = 6) MSI-related SebC (left panels), as well as of Gata6mut (n = 3) or Gata6wt (n = 7) UV-related SebC (right panels). Data are
means � SD.

G Heat-map displaying the mean expression level of MMR genes (measured in TPM) in Gata6wt (n = 10) and Gata6mut (n = 3) SebC.
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transcriptional cascade triggers formation of multilayered cysts and

ectopic SG (Fig 1A and B). Most of the cysts represent aberrant SD

and JZ, since they express SD/JZ markers (Donati et al, 2017),

rather than IFE as previously proposed (Niemann et al, 2002). Gata6

overexpression in utero led to formation of cysts, reminiscent of

ducts, with ectopic SG features (Fig 3B and C). Our functional data

together with our lineage tracing experiments (Figs 3D and EV3B

and C) allow us to propose that the Gata6-positive cells in the devel-

oping HF give rise to the upper SG. The lower SG has a distinct

origin that has yet to be identified (Donati et al, 2017).

Gata6 is overexpressed in a variety of cancers, including pancre-

ato-biliary cancers (Kwei et al, 2008), colon cancers (Shureiqi et al,

2007; Tsuji et al, 2014), esophageal adenocarcinomas (Lin et al,

2012), breast cancers (Song et al, 2015), and adrenal tumors

(Vuorenoja et al, 2007). Conversely, it is lost in certain ovarian

cancers (Cai et al, 2009) and may act as a tumor suppressor gene in

lung cancer (Cheung et al, 2013) and astrocytoma (Kamnasaran

et al, 2007). We observed a strong association between Gata6 and

sebaceous carcinogenesis in mouse and human skin. Gata6 was

expressed in sebaceous tumors of K14DNLef1 mice (Fig 4A) and

deletion of Gata6 reduced the proportion of tumors with sebaceous

differentiation (Fig 4C). Furthermore, human skin tumors with

sebaceous differentiation expressed Gata6 (Fig 6B and C). Thus,

Gata6 could be a useful biomarker for diagnostic pathology of seba-

ceous tumors.

We observed that Gata6-positive cells were Ki67-negative in WT

mouse back skin (Fig EV2B). However, we previously showed in

K14DNLef1 mice that cell proliferation is a downstream effect of

DNLef1 overexpression (Niemann et al, 2002). Ki67 staining is

found in the outer root sheath and in some cells at the periphery of

the dermal cysts. In addition, Ki67-positive cells are twice as

frequent in the basal layer of K14DNLef1 as WT IFE (Niemann et al,

2002). Thus, Ki67 is mostly expressed in the Gata6-negative regions

of K14DNLef1 epidermis. This suggests that Gata6 does not stimu-

late proliferation, consistent with previous observations (Donati

et al, 2017). Therefore, two cell populations can be distinguished:

actively proliferating K14+/DNLef1+/Gata6� keratinocytes and

infrequently proliferating K14+/DNLef1+/Gata6+ keratinocytes of

the JZ and upper SG. K14DNLef1 mice develop sebaceous tumors at

high frequency. This suggests that tumor initiation involves cooper-

ation between these two cell populations. Our data indicate that

Gata6 is likely to be responsible for the sebaceous differentiation

observed in the tumors (Fig 4C) but also acts as a tumor suppressor

(Fig 4B). In addition, we and others have confirmed the existence of

proliferative cells in K14DNLef1 sebaceous tumors by showing Ki67

expression (Niemann et al, 2002), BrdU incorporation (Niemann

et al, 2007), and isolating tumor-propagating cells that form

secondary tumors in serial transplantation assays (Petersson et al,

2015). How the two cell populations cooperate to initiate tumors

remains to be elucidated.

Sebaceous tumors are closely associated with MMR deficiency,

for example, in the context of Muir–Torre syndrome (Eisen &

Michael, 2009a,b; John & Schwartz, 2016). In this syndrome, muta-

tions in the MMR genes Msh2 or, less frequently, Mlh1 and Msh6,

predispose cells to DNA base errors (shown by the acquisition of

MSI status; John & Schwartz, 2016). The estimated frequency of

MSI is at least 60% of all sebaceous neoplasms, while only 3% of

SG hyperplasia (Kruse et al, 2003; Jessup et al, 2016). Furthermore,

Msh2-deficient mice develop sebaceous tumors (Reitmair et al,

1996).

We observed that Gata6 was required for expression of MMR

genes. Microsatellite stability and expression of Msh2 and Mlh1

were reduced upon Gata6 knockout in K14DNLef1 mice (Figs 5C, D

and E, and Appendix Fig S2). This would explain why tumor inci-

dence was increased in K14DNLef1:cKO mice (Fig 4B). Paradoxi-

cally, while MSI-linked tumors develop and progress rapidly, their

prognosis is often better. The increased mutation load resulting from

MMR inactivation generates multiple neo-antigens and stimulates

immune surveillance and cancer clearance (Germano et al, 2017).

MMR-deficient tumors show an excellent response to pembroli-

zumab, an immunotherapy targeting the PD-1 receptor (Le et al,

2015). In addition to MMR regulation, Gata6 may also suppress

tumor formation by reducing proliferation and increasing SD/SG dif-

ferentiation (Donati et al, 2017).

Like K14DNLef1 mice, mice overexpressing DNLef1 under the

control of the Krt15 promoter (which labels HF bulge cells) develop

sebaceous tumors (Petersson et al, 2015). These tumors are more

aggressive than those of K14DNLef1 mice and are associated with

increased DNA damage (Petersson et al, 2015). These results could

be explained by the lack of Gata6 expression in the bulge.

In humans, sebaceous tumors harbor a high level of expression

of Gata6 (Fig 6B and C, and Appendix Fig S3). However, sebaceous

carcinoma can also acquire Gata6 mutations correlating with the

total mutational burden (Fig 7). Gata6mut tumors display reduced

expression of several MMR genes (Fig 7G). In addition, a reduction

in Gata6 expression is associated with less differentiated and more

aggressive UV-related SebC, independent of GATA6 mutational

status (Fig 7C).

The link between Gata6 and MMR that we have found could

open up new therapeutic approaches to target sebaceous carcino-

genesis. It is tempting to speculate that the MMR DNA repair path-

way is necessary for maintenance of healthy SG, because lipid

production is associated with the formation of reactive

oxygen species (Bek-Thomsen et al, 2014; Ibrahim et al, 2014) and

subsequent DNA damage.

Materials and Methods

Mice

All animal procedures were subject to local ethical approval and

performed under a UK Government Home Office license (PPL 70/

8474). K14DNLef1 (Niemann et al, 2002), Lef1�/� (Van Genderen

et al, 1994), K14DNb-CateninER (D2 and D4 lines; Lo Celso et al,

2004), K14Cre/bCat Flox(ex3)/+ (Zhang et al, 2008a), epidermal

Gata6 conditional knockout (cKO) (Donati et al, 2017),

Gata6EGFPCreERT2 (Donati et al, 2017), Lgr6EGFPCreERT2 (Snip-

pert et al, 2010), and Rosa26-fl/STOP/fl-tdTomato (Madisen et al,

2010) mice were previously described. The K14DNb-CateninER
transgene was activated by one or six topical applications of 1.5

mg 4-hydroxytamoxifen (4OHT) (Sigma) (Donati et al, 2017). For

lineage tracing experiments, pregnant females were injected

intraperitoneally with a dose of 50 lg/g of tamoxifen (Sigma) at

E16.5 and E18.5. Samples were collected at 2 or 17 days after

recombination. Ultrasound-guided lentiviral in utero injection
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procedures were performed as previously described (Beronja et al,

2013). Lentiviral particles were produced by transfecting HEK293

cells with a Trans-Lentiviral Packaging System in combination

with Precision LentiORFs control and Gata6 (Dharmacon). GFP

chimeric mice were generated as previously described (Arwert

et al, 2010). For skin carcinogenesis experiments, K14DNLef1 and

K14DNLef1:cKO mice received a single 100 nmol dose of DMBA

(7,12-dimethylbenz(a)anthracene; Niemann et al, 2007). Tumor

incidence and burden were assessed once a week by two indepen-

dent researchers. As a control for Appendix Fig S2A and B, a WT

mouse was UVB-irradiated with a total dose of 500 mJ/cm2. No

specific method for randomization, blinding, or estimation of

sample size was used. Male and females were used. All efforts

were made to minimize suffering of mice.

Human tissue

All human tissue samples were collected, diagnosed, and

processed for research in accordance with the recommendations of

the relevant local ethics committees in compliance with the UK

Human Tissue Act and approved by the National Research Ethics

Service (08/H0306/30), German Medical Council, and/or the Japa-

nese Ministry of Health, Labor, and Welfare. Human embryonic

and fetal tissues were obtained with appropriate ethical approval

from the UK Human Developmental Biology Resource (www.hdbr.

org). Informed consent was obtained from all subjects. The experi-

ments conformed to the principles set out in the WMA Declaration

of Helsinki and the Department of Health and Human Services

Belmont Report.

Tissue processing and analysis

Sections from OCT- or paraffin-embedded tissues and epidermal

whole mounts were prepared and processed as previously described

(Donati et al, 2017; Walko et al, 2017). Primary antibodies were

used at the indicated dilutions: Fabp5 (1:100, R&D Systems

AF1476); Krt15 (1:1,000, LHK-15 clone, Abcam ab80522); Lef1

(1:100–500, C12A5 clone, Cell Signaling 2230 and 8490); Gata6

(1:100–1,000, D61E4 clone, Cell Signaling 5851 and 26452); Krt14

(1:1,000, LL002 clone, Abcam ab7800 and 1:1,000, Covance SIG-

3476); Sox9 (1:100, R&D Systems AF3075 and 1:400, D8G8H clone,

Cell Signaling 71273); Ki67 (1:50, Tec3 clone, Dako); Lrig1 (1:200,

R&D Systems AF3688); Cd34 (1:100, RAM34 clone, BD Biosciences

553731); Tcf3/4 (1:100, Abcam ab12065); pankeratin (1:1,000,

clone LP34, LSBio LS-C95318); Fasn (1:100, G-11, Santa Cruz sc-

48357); GFP (1:200, Abcam 6673 and 1:800, Thermo Fisher Scien-

tific A-11122); Plet1 (1:200, LSBio LS-C149191); Atp6v1c2 (1:200,

Sigma HPA034735); Mlh1 (1:100, Abcam ab92312); and Msh2

(1:100, Clone D24B5, Cell Signaling 2017). Dapi (Thermo Fisher

Scientific) or hematoxylin (Dako) were used as counterstains.

Where indicated, HCS LipidTOX Deep Red Neutral lipid stain was

used (1:500, Life Technologies). Alexa Fluor-conjugated secondary

antibodies (Thermo Fisher Scientific) were used for immunofluores-

cence and Vectastain ABC HRP Kit with Vector DAB or NovaRED

HRP substrate kit (Vector Laboratories) for immunohistochemistry.

Hematoxylin and eosin (H&E) staining was performed where

indicated. Images were acquired with a Leica TCS SP5 Tandem

Scanner confocal, a Nikon A1 confocal microscope, or a

NanoZoomer Slide Scanner (Hamamatsu). Digital images were

processed using NIS-Elements Advanced Research (Nikon), ImageJ

(https://imagej.nih.gov/ij/), or NDP.view2 (Hamamatsu).

Flow cytometry

Epidermal cells were isolated, labeled with anti-CD34 (RAM34

clone, BD Biosciences 553731) and anti-CD49f (Itga6) (GoH3 clone,

eBioscience 14-0495-81), and sorted by flow cytometry as previ-

ously described (Jensen et al, 2010). Data were analyzed using

FlowJo software.

ChIP-Seq, microarray, and computational analysis

ChIP-Seq was performed as previously described (Mulder et al,

2012). Briefly, crosslinked material corresponding to � 107

K14DNLef1 cultured primary keratinocytes (collected from 9.5-

week-old mice) was incubated overnight with 10 lg of Lef1 (Cell

Signaling) or Flag antibody (Sigma), and immune-precipitated DNA

was sequenced. Base-calling, genome alignment, filtering against

potential PCR duplications and peak calling were performed as

previously described (Donati et al, 2017).

RNAs from FACS-purified Cd34+Itga6+ and Cd34�Itga6+ epider-

mal cells collected from WT and K14DNLef1 epidermis (9.5-week-

old mice) were provided to the Paterson Institute Microarray Core

Facility to perform gene expression profiling using the mouse

Exon1.0ST Affymetrix platform. Differential expression analysis was

carried out on normalized data as described previously (Donati

et al, 2017).

Gene Set Enrichment Analysis was performed to compare expres-

sion signature genes in SG vs IFE and HF (ranked Z-score values of

differentially expressed genes (DEG); Donati et al, 2017) with

respect to a gene subset composed of the nearest genes to the

DNLef1 peaks from Chip-Seq data.

Human Gata6 ChIP-Seq datasets were interrogated using the

“Target Genes” module of ChIP-Atlas (Oki et al, 2018 and http://

chip-atlas.org). This module predicts genes directly regulated by a

given protein, based on binding profiles of all public ChIP-Seq data

for particular gene loci.

KEGG pathway analysis of DEG in WT vs epidermal specific

Gata6 knockout keratinocytes (Wang et al, 2017) and Gene Ontol-

ogy analysis of DEG in WT vs K14DNLef1 keratinocytes were

performed using DAVID software (https://david.ncifcrf.gov). Heat-

maps were generated via Gene-E (http://www.broadinstitute.org).

Network visualization was achieved using Cytoscape (http://www.

cytoscape.org). Protein schematization was performed using IBS

(http://ibs.biocuckoo.org). SNAP2 (Hecht et al, 2015) and

PredictSNP (Bendl et al, 2014) algorithms were used to predict the

effect of Gata6 mutations.

Cell culture and siRNA transfection

Primary mouse keratinocytes were isolated from dorsal skin as

previously described (Jensen et al, 2010) and cultured on confluent

irradiated 3T3-J2 fibroblast feeders in calcium-free FAD medium

(DMEM: Ham’s F12, 3:1, 1.8 × 10�4 M adenine) supplemented with

10% fetal calf serum, hydrocortisone (0.5 lg ml�1), insulin

(5 lg ml�1), cholera toxin (8.4 ng ml�1), and epidermal growth
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factor (10 ng ml�1). siRNAs for the negative control and mouse

Lef1 (Ambion) were introduced into cells by nucleofection using the

Amaxa 96-well shuttle system (Lonza) as previously described

(Mulder et al, 2012).

The SebE6E7 sebocyte line was obtained and cultured as

described previously (Lo Celso et al, 2008). All cell stocks were

routinely tested for mycoplasma contamination and were negative.

SebE6E7 cells were transfected with a control plasmid or human

full-length or DN34Lef1 plasmids (Takeda et al, 2006) using

jetPRIME transfection reagent (Polyplus transfection) following the

manufacturer’s instructions.

RT–qPCR

For RT–qPCR, total RNA was isolated using RNeasy kits (Qiagen).

cDNAs were generated using the SuperScript III Supermix (Invitro-

gen) or QuantiTect Reverse Transcription Kit (Qiagen) and analyzed

using Power SYBR Green (Applied Biosystems) or SYBR Green

Master Mix (Life Technologies) and custom-made primers.

Primer sequences for mouse genes were as follows: Gata6 (for-

ward GGATTCTTGGTGTGCTCTGG and reverse ATTTTTGCTGC

CATCTGGAC); Klf4 (forward CTGTCACACTTCTGGCACTGA and

reverse GTTCTCATCTCAAGGCACACC); Cd44 (forward CATGGAA

TACACCTGCGTAGC and reverse CTAGATCCCTCCGTTTCATCC);

Lef1 (forward GCTCCTGAAATCCCCACCTTC and reverse GGAT

GAGGGATGCCAGTTGTG); JunB (forward CCCTGACCCGAAAAG

TAGCTG and reverse CTGGCAGCCTGTCTCTACACG); Met (forward

CAACCATGAGCACTGTTTCAA and reverse TTTGATGAAGGTGGA

GATGGA); Egfl6 (forward TCGATGAATGTGCGTCTAGC and reverse

TATTGAGGCAATTGGCATGG); Tiam1 (forward GAGGGCTGTGA

GAGGAAATCT and reverse CTGTGGATGAAGATGGCATTC); Wnt16

(forward ACTACCACTTCCACCCAGCTC and reverse CAGGAACAT

TCGGTCATGTTG); Pparg (forward ATAAAGTCCTTCCCGCTGACC

and reverse CTGGCACCCTTGAAAAATTCG); and Tnc (forward

TTGCTGGGTCTCAGTTTCATC and reverse ACAGACTCAGCCAT

CACCAAC). b-actin was used as a housekeeping gene (forward TG

GCGTGAGGGAGAGCATAG and reverse GCCAACCGTGAAAAGAT

GACC).

Primer sequences for human genes were as follows: Gata6 (for-

ward GTGCCCAGACCACTTGCTAT and reverse CCCTGAGGCTG

TAGGTTGTG). Gapdh, Rpl13, and Tbp were used as housekeeping

genes: Gapdh (forward GAAGAGAGAGACCCTCACTGCTG and

reverse ACTGTGAGGAGGGGAGATTCAGT); Rpl13 (forward AACA

GCTCATGAGGCTACGG and reverse AACAATGGAGGAAGGGCAG

G); and Tbp (forward GTGACCCAGCATCACTGTTTC and reverse

GAGCATCTCCAGCACACTCT).

Microsatellite instability analysis

Microsatellite instability in sebaceous tumors was determined as

previously published (Woerner et al, 2015; Germano et al, 2017).

DNA was extracted from paraffin-embedded tumors using a Relia-

Prep FFPE gDNA Miniprep System Kit (Promega). Amplification was

performed on 20 ng DNA with a Type-it Microsatellite PCR Kit (Qia-

gen). The cycling profile was as follows: 1 cycle at 95°C for 5 min,

95°C for 30 s, 56°C for 90 s, and 72°C for 30 s for a total of 28 cycles;

final extension at 60°C for 30 min. The following labeled primers

were used: mBat64, forward fluorescein-GCCCACACTCCTGAAA

ACAGTCAT and reverse CCCTGGTGTGGCAACTTTAAGC; AC09

6777, forward JOE-TCCCTGTATAACCCTGGCTGACT and reverse

GCAACCAGTTGTCCTGGCGTGGA; AA003063, forward Tamra-

ACGTCAAAAATCAATGTTAGG and reverse CAGCAAGGGTCCC

TGTCTTA; U12235, forward JOE-GCTCATCTTCGTTCCCTGTC and

reverse CATTCGGTGGAAAGCTCTGA; and L24372, forward fluores-

cein-GGGAAGACTGCTTAGGGAAGA and reverse ATTTGGCTTT

CAAGCATCCATA. PCR fragments were separated using Applied

Biosystems Big-Dye Ver 3.1 chemistry on an Applied Biosystems

model 3730 automated capillary DNA sequencer. Raw data were

visualized with Geneious software and further analyzed as previ-

ously described (Keysselt et al, 2017).

Statistics and reproducibility

Statistical analyses were performed using GraphPad Prism software.

No statistical method was used to predetermine sample size. Panels

showing images are representative of at least two independent

experiments as indicated in each panel of the figure legends.

Data availability

All data that support the conclusions are available from the authors

on request. Microarray and ChIP-Seq data that support the findings of

this study have been deposited in the Gene Expression Omnibus

(GEO) under accession codes GSE62608 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE62608), GSE118073 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118073), and GSE118074

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118074).

Expanded View for this article is available online.
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