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INTRODUCTION

Malnutrition affects 52 million children under age 5 years, contributing to 45% of child 

mortality. Chronic malnutrition results in stunting (low height for age), present in 155 

million children—87 million in Asia and 59 million in Africa. The 16.9 million children 

with severe wasting (low weight for height), including 12.6 million in Asia and 4.1 million 

in Africa,1 have a 9.4-fold greater chance of dying compared with healthy-weight children.2 

The World Health Organization (WHO) defines severe acute malnutrition (SAM) as mid-

upper arm circumference (MUAC) less than 115 mm or weight-for-height z score (WHZ) 

less than −3 for ages 6 months to 59 months. Both acute and chronic malnutrition can cause 

long-term cognitive deficits. Low birthweight, stunting, and wasting correlate with lower 
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scores on intelligence tests, developmental delays, and decreased lifetime earnings, 

perpetuating the poverty-malnutrition cycle.3

The WHO recommends that all children with SAM are treated with therapeutic foods. 

Children with minimal appetite or medical complications should receive inpatient treatment 

with therapeutic milk (F-75 and later F-100) and an antibiotic with gram-negative coverage 

and then be transitioned to community-based treatment with ready-to-use therapeutic food 

(RUTF). Children should be monitored until recovery, defined as WHZ greater than or equal 

to −2 or MUAC greater than or equal to 125 mm and greater than or equal to 2 weeks 

without edema.4 Despite these guidelines, SAM mortality rates in the hospital setting remain 

as high as 10% to 40%, and meta-analyses examining long-term outcomes reveal mixed 

results.5,6 Among the key barriers to improving care is an incomplete understanding of 

mechanisms underlying the metabolic and physiologic abnormalities of SAM.

Recent insights into the pathogenesis of malnutrition instill hope that better outcomes might 

soon be possible. This review highlights new evidence relevant to 5 topics, including early-

life determinants of malnutrition, the role of protein deficiency in the development and 

perpetuation of malnutrition, the drivers of malnutrition-associated immune deficiencies, 

impaired gut barrier function and resulting inflammation, and potential roles of the intestinal 

microbiota in the pathogenesis and treatment of malnutrition.

PRENATAL AND PERINATAL FACTORS

Intrauterine growth restriction (IUGR), being small for gestational age, and preterm birth all 

contribute to child mortality7 and malnutrition.8 Maternal micronutrient status is 1 

determinant of low birthweight and IUGR. Iron supplementation during pregnancy reduces 

the risk of low birthweight and child mortality within the first 5 years of life,9 and multiple 

micronutrient supplementation during pregnancy increases birthweight and decreases infant 

mortality.10 Low vitamin D receptor expression has been observed in placentas of IUGR 

pregnancies,11 and single-nucleotide polymorphisms in placental genes governing vitamin D 

metabolism are associated with low birthweight.12 IUGR can be driven by many other 

factors, including low insulin-like growth factor 1 (IGF-1)13 (discussed later), highlighting 

the complex, systemic nature of metabolic derangements in malnutrition.

Low birthweight could promote malnutrition via fetal epigenetic alterations.14 Differential 

DNA methylation in infants with IUGR was observed in genes involved in lipid metabolism, 

transcriptional regulation, metabolic disease, and T-cell development.15 Although a “thrifty 

phenotype” may be protective during early-life nutrient deprivation, its persistence into 

adulthood can have detrimental effects. Adult survivors of infant or prenatal famines have 

increased rates of obesity, diabetes, and cardiovascular diseases.16 Epigenetic changes 

caused by episodes of prenatal or childhood malnutrition can persist for generations17; 

however, some changes can be rescued by early nutrient supplementation in preclinical 

models.18

Maternal genotype also influences the risk of child malnutrition. For example, vitamin D 

status and fetal growth are impacted by maternal variants of vitamin D metabolizing genes.
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19 IUGR might be avoided in certain cases by individualizing prenatal supplementation 

regimens. Similarly, mothers lacking a functional FUT2 gene secrete lower concentrations of 

fucosylated human milk oligosaccharides in breast milk and are more likely to have stunted 

children.20 When nutritional quality of breast milk is inadequate, complementary feeding 

might be required to reduce an infant’s risk of malnutrition.

THE ROLE OF PROTEIN DEFICIENCY

Significant food insecurity arising seasonally or with political or natural crises increases the 

incidence of malnutrition and child mortality. SAM incidence is highest in the rainy season, 

or preharvest hungry period, and declines just after harvest.21 One recent study in India 

found that children with SAM had increased odds of relapse if they completed treatment 

during seasons of moderate or severe food insecurity.22 Just as important as macronutrient 

quantity are protein quality and digestibility.23 Protein inadequacy, which correlates with 

stunting,24 is highest in Africa and southern Asia.25 Up to 70% of protein consumption in 

these regions is in the form of cereals and roots, which lack many of the essential amino 

acids found in animal meat and dairy proteins.

Although stunted children have lower circulating levels of all essential amino acids, it is 

uncertain whether this results from inadequate intake, increased catabolism, or both. 

Malnourished children are particularly deficient in arginine, glycine, glutamine, asparagine, 

glutamate, and serine.26 These amino acids serve in a variety of biological roles, including 

protein synthesis, enterocyte growth, bile acid conjugation, intestinal barrier function, and 

neurotransmitter biosynthesis. Serum amino acids are sensed by, and influence the activity 

of, the mTORC1 pathway, a master regulator of growth.27 Protein synthesis, proteolysis, and 

bone growth are inhibited during SAM, because lipolysis and fatty acid oxidation meet a 

greater proportion of energy needs.28–30 Decreased circulating polyunsaturated fatty acid 

levels further suggest compensatory fat catabolism in SAM,31 whereas elevated cortisol and 

growth hormone (GH) and decreased leptin and insulin may reflect hormonal regulation of 

these processes.28,32 Decreased leptin is a strong independent predictor of mortality in 

children with SAM.28,30

Protein deficiency also results in liver dysfunction (Fig. 1). The most dramatic manifestation 

is steatosis,33 although mechanisms by which this occurs are poorly understood. A murine 

model of protein deficiency linked mitochondrial dysfunction and loss of peroxisomes to 

impaired fatty acid oxidation and steatosis. By activating the nutrient-sensing nuclear 

receptor peroxisome proliferator-activated receptor alpha (PPARα), peroxisome numbers 

and fatty acid oxidation and steatosis were normalized. Peroxisome loss was associated with 

decreased markers of bile acid synthesis,34 suggesting that peroxisomal dysfunction may 

contribute to the altered bile acid profiles observed in SAM. Specifically, children with SAM 

have increased total bile acids in serum, whereas their intestine contains decreased 

conjugated and increased secondary bile acids.35 Secondary bile acids, deoxycholic acid and 

lithocholic acid, products of metabolism by gut microbes, can be toxic to intestinal epithelial 

cells, increasing permeability and apoptosis.36 Thus, although liver dysfunction and 

microbiome alterations influence bile acid metabolism, the resulting bile acid changes may 

in turn cause liver and intestinal dysfunction. In a neonatal mouse model of protein 
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deficiency, primary and secondary bile acid content within liver was decreased greater than 

80%; mice exhibited evidence of oxidative stress, inflammation, autophagy, and liver 

dysfunction.37 Decreased intestinal conjugated bile acids likely also contribute to the 

impaired fat digestion, fat-soluble vitamin deficiencies, and small bowel bacterial 

overgrowth that contribute to the clinical picture of SAM.

COMPROMISED GUT BARRIER FUNCTION

Malnutrition affects all organ systems, including the intestinal mucosa (Fig. 2). Hallmark 

histologic changes include mucosal and villous atrophy, crypt branching, and narrowing of 

the brush border.38 Malnourished children also have inflammatory cells infiltrating the 

lamina propria, increased numbers and activity of CD3 cells, increased macrophage number 

and activity, and reduced interleukin (IL)-10 production.39 Animal models of protein 

malnutrition reveal an inverse relationship between dietary protein quantity and the severity 

of intestinal histopathology.40,41

This intestinal damage impairs digestion and absorption of macronutrients and 

micronutrients, resulting in increased nutritional requirements.42 In this context, proteins 

from breast milk and animal sources are more bioavailable than those derived from plants, 

which could explain why dairy proteins improve growth in children with SAM.43,44 

Compared with other carbohydrates, lactose is often more easily digested by children with 

SAM.45

Animal models of malnutrition exhibit minimal intestinal histopathology unless an 

infectious insult is provided. Nonetheless, human studies and animal models suggest that 

malnutrition (with or without infection) impairs intestinal barrier function41,46 by altering 

the expression of antimicrobial peptides41 and tight junction proteins.47,48 Historically, 

intestinal absorption and permeability has been assessed with the lactulose:mannitol test, 

which has high variability in children due to inaccurate carbohydrate dosing, incorrect urine 

collection, variable rates of gastric emptying or renal excretion, and concurrent diarrhea.49 

Recent studies have sought to identify biomarkers that correlate with intestinal damage, 

inflammation, and barrier function. Promising candidates include serum endotoxin core 

antibody; circulating bacterial products, such as lipopolysaccharide (LPS) and flagellin; and 

fecal markers, including α1-antitrypsin, myeloperoxidase, and neopterin.50 Serum LPS and 

bacterial 16S DNA are elevated in children with SAM, and correlate with decreased 

expression of mucosal repair peptides and IGF-1, which suggests GH resistance.47 Thus, 

decreased barrier function and bacterial translocation may contribute to chronic 

inflammation and growth failure by modulating the GH/IGF-1 axis.29,32 Not surprisingly, 

intestinal and systemic inflammatory markers and elevated GH predict mortality in 

malnourished children.32,51

IMMUNE DEFICIENCIES ATTRIBUTED TO MALNUTRITION

Malnutrition causes deficits in both adaptive and innate immune function, leading to 

increased childhood mortality from infectious disease.52 These deficits are multifactorial, 

driven in part by impaired immune cell production and function. Animal models of protein 
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malnutrition demonstrate bone marrow atrophy and decreased numbers of hematopoietic 

stem cells and hematopoietic progenitor cells. Cell cycle arrest occurs in the latter due to 

reduced expression of cell cycle proteins and increased expression of inhibitory proteins.53 

Bone marrow mesenchymal stem cells are more likely to differentiate into adipocytes in 

protein-malnourished mice, further limiting their ability to produce cytokines.54 Bone 

marrow polymorphonuclear cells from protein-malnourished mice also exhibit reduced 

migration and IL-1β production in response to LPS challenge.55 Lymphoid organs, including 

thymus, spleen, and lymph nodes, also show atrophy, reduced cellularity, arrested cell cycle, 

and impaired cellular function in acute malnutrition.56

In addition to the reduced cellularity of hematopoietic and lymphoid tissues, a shortened 

lifespan from increased apoptosis also contributes to reduced numbers of circulating 

monocytes, macrophages, dendritic cells, and natural killer cells.56 Circulating innate 

immune cells from malnourished mice also exhibit impaired cytokine expression in response 

to LPS as a result of nuclear factor κB dysregulation.56 In addition to protein deficiency, 

multiple micronutrient deficiencies can contribute to immune dysfunction.56 In preclinical 

models, natural killer cell and neutrophil functions are restored by reversal of vitamin A 

deficiency and vitamin C deficiency, respectively.57,58

Reduced numbers and function of innate immune cells contribute to deficits in adaptive 

immunity. Dendritic cells from severely malnourished children have reduced HLA-DR 

expression and consequently are unable to stimulate T cells.59 Peripheral blood mononuclear 

cells from malnourished children underexpress helper T-cell (TH)1 differentiation cytokines 

and overexpress TH2 cytokines, contributing to their inability to clear certain infections.60,61 

CD3+ T cells from cord blood of children with IUGR revealed hypermethylation of genes 

that participate in T-cell regulation and activation and metabolic diseases.62 T cells from 

malnourished children also overexpress the apoptotic marker CD95.60 CD8+ T cells from 

malnourished mice recover their functional deficits when transferred to a healthy mouse,63 

suggesting that environmental cues contribute to impaired function. T cells require glucose 

uptake and metabolism—both leptin-dependent processes. Low leptin levels in malnutrition 

inhibit T-cell activation and skew differentiation of T cells from TH1 to TH2.64,65 Leptin also 

protects against thymic atrophy, prevents apoptosis of innate immune cells, and improves 

cytokine production in macrophages and T cells in models of malnutrition.65,66 Changes to 

the gut microbiota drive differentiation of TH17 cells over regulatory T cells, because 

transcription factors for each cell type are sensitive to different commensal species.67 

Finally, deficits in mucosal immunity in malnourished children can result in poor response to 

mucosal vaccines.68 In a mouse model of malnutrition, poor secretory IgA production 

mediated decreased response to Salmonella and cholera vaccines.69

Malnutrition also impairs hepatic synthesis of complement proteins, especially in children 

with edematous malnutrition, among whom low circulating C3 correlates with low serum 

albumin.52 Increased consumption of complement, however, measured via elevated 

circulating levels of the C3 degradation product C3d, might also contribute to the low levels 

reported in numerous studies of malnourished children.35
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INTESTINAL MICROBIOTA AS A CAUSE AND THERAPEUTIC TARGET FOR 

MALNUTRITION

Enteropathogens induce malnutrition, mediating growth impairment by reducing nutrient 

absorption and increasing nutrient and energy needs.70 Most malnourished children in low-

income countries harbor multiple pathogens.71 As the number of pathogens isolated from 

stool increases, weight-for-age z scores and height-for-age z scores decrease.72 A single 

episode of diarrhea can have an impact on mortality and linear growth for 2 months to 3 

months after infection.51,71 Even in the absence of diarrhea, however, the malnourished gut 

microbiota is abnormal.73–75 Decades ago, culture-dependent studies revealed bacterial 

overgrowth in the proximal gastrointestinal tract, and microbial DNA sequencing 

technologies have facilitated a more detailed characterization of this malnutrition-associated 

dysbiosis75 (Box 1). Numerous factors may drive these microbiome alterations. For 

example, a monotonous diet containing specific nondigestible dietary carbohydrates20,76 

provides a selective advantage to microbes that metabolize these substrates. Likewise, 

inflammation can alter the microbiome by triggering an immune response in which subsets 

of commensal microbes may be eliminated by host-secreted antimicrobial peptides,77 by 

disruption of the oxygen gradient at the mucosal surface78–80 and by generation of reactive 

oxygen and nitrogen species.81,82

Recent preclinical studies demonstrate a causal link between the malnourished microbiome 

and growth impairment. Fecal microbes isolated from malnourished children can induce 

weight loss in gnotobiotic mice under specific conditions.83–85 Similarly, mice iteratively 

challenged with a combination of nonpathogenic commensal microbes demonstrate impaired 

growth.86 Intriguingly, the microbiota’s effect on growth in each of these mouse models is 

dependent on administration of a low-protein, low-fat diet—if the animals consume standard 

chow, growth impairment is not observed. Furthermore, the presence of a malnourished 

microbiota can exacerbate weight loss due to pathogenic infection.87 On the other hand, 

specific beneficial microbes have been positively linked to growth. For example, 

Lactobacillus plantarum increases IGF-1 expression and linear growth in a model of chronic 

malnutrition.88

Several large double-blind, randomized controlled trials have examined the role of 

microbiome-targeting therapies for SAM but have demonstrated conflicting results (Table 

1).89–94 Current WHO guidelines recommend treating all cases of complicated or 

uncomplicated SAM with broad-spectrum antibiotics because their use results in decreased 

mortality, and 1 study associated early-life antibiotic exposure with an increase in ponderal 

growth among children in low-income settings.95 These guidelines are warranted, but 

vigilance must be kept for adverse events that may emerge as well.96,97 Although trials of 

probiotics and prebiotics have not revealed growth benefits for malnourished children,93,94 

these microbiome-targeting therapies were not tailored to microbial species or functional 

deficiencies within the target populations; thus, the full potential of microbiome-targeting 

therapies for child malnutrition has not yet been realized.
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PROSPECTUS

Although recovery rates in SAM treatment programs routinely exceed 85%, hundreds of 

thousands of children still die every year. The next generation of treatment modalities must 

reflect the growing knowledge of the pathogenesis of malnutrition and the comorbidities that 

affect multiple organ systems. There also exists, however, an enormous coverage gap, with 

less than 15%98 of affected children globally, including less than 2% in East Asia and the 

Pacific,99 having access to malnutrition treatment. Among the barriers to access are 

caretaker awareness of malnutrition and local treatment programs, high opportunity costs of 

seeking treatment, and proximity.98 Interventions that may reduce the coverage gap include 

educating and engaging mothers, integrating community-based management of SAM with 

existing health programs, and strengthening government involvement to increase coverage 

and data collection.99 There is now a unique and extraordinary opportunity to work together

—basic and clinical scientists, policymakers, and mothers of afflicted children—to ease the 

suffering from the most dire health problem plaguing children today.

Abbreviations

GH Growth hormone

HMO Human milk oligosaccharides

IUGR Intrauterine growth restriction

IL Interleukin

LPS Lipopolysaccharide

MUAC Mid-upper arm circumference

PPARα Peroxisome proliferator-activated receptor alpha

RUTF Ready-to-use therapeutic food

SAM Severe acute malnutrition

WHO World Health Organization

WHZ Weight-for-height z score
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KEY POINTS

• Prenatal and perinatal influences can have lifelong and intergenerational 

effects on nutritional status, primarily via epigenetic modifications.

• Protein deficiency results in hepatic dysfunction driven by loss of 

peroxisomes and mitochondrial impairment.

• Compromised gut barrier function increases nutrient needs and predisposes to 

infection and systemic inflammation.

• Malnutrition-associated immune deficiencies are driven by lymphoid atrophy, 

cell cycle arrest of progenitor cells, and impaired effector function.

• The intestinal microbiota can contribute to malnutrition and represents a 

promising therapeutic target.
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Box 1

Summary of features that characterize the gut microbiota from 
malnourished children

The fecal microbiome derived from malnourished versus healthy children is characterized 

by

• Increased relative abundance of pathogenic genera within the phylum 

Proteobacteria

– Enterobacter, Escherichia, Klebsiella, and Shigella

• Decreased relative abundance of genera containing beneficial bacteria

– Bifidobacterium, Butyrivibrio, Faecalibacterium, Lactobacillus, and 

Roseburia

• Decreased microbial community richness (fewer unique organisms)

• Microbiome “immaturity,” with delayed acquisition of age-specific microbes 

and microbial genes

Data from Velly H, Britton RA, Preidis GA. Mechanisms of cross-talk between the diet, 

the intestinal microbiome, and the undernourished host. Gut Microbes 2017;8(2):98–112.
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Fig. 1. 
Effects of malnutrition on liver structure and function.
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Fig. 2. 
Effects of malnutrition on intestinal function. Observations predominantly from clinical 

studies, although some mechanistic data are from preclinical models of malnutrition.
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