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Abstract

The human MC1R gene is highly polymorphic among lightly pigmented populations, and several 

variants in the MC1R gene have been associated with increased risk of both melanoma and non-

melanoma skin cancers. The functional consequences of MC1R gene variants have been studied in 
vitro and in vivo in postulated causal pathways, such as G-protein-coupled signaling transduction, 

pigmentation, immune response, inflammatory response, cell proliferation, and extracellular 

matrix adhesion. In a case-control study nested within the Nurses’ Health Study, we utilized 

hierarchical modeling approaches, incorporating the quantitative information from these functional 

studies, to examine the association between particular MC1R alleles and the risk of skin cancers. 

Different prior matrices were constructed according to the phenotypic associations in controls, cell 

surface expression, and enzymatic kinetics. Our results showed the parameter variance estimates 

of each SNP were smaller when using a hierarchical modeling approach compared to standard 

multivariable regression. Estimates of second-level parameters gave information about the relative 

importance of MC1R effects on different pathways, and odds ratio estimates changed depending 

on prior models (for example, the change ranged from −21% to 7% for melanoma risk 

assessment). In addition, the estimates of prior model hyper-parameters in the hierarchical 

modeling approach allow us to determine the relevance of individual pathways on the risk of each 

of the skin cancer types. In conclusion, hierarchical modeling provides a useful analytic approach 

in addition to the widely used conventional models in genetic association studies that can 

incorporate measures of allelic function.
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Introduction

Skin cancer is the most common form of cancer in the United States and accounts for more 

than 1 million new cases per year, including approximately 87,000 cases of cutaneous 

malignant melanoma (hereafter referred to simply as melanoma) [2017; Howe, et al. 2001; 

Siegel, et al. 2017]. There are three major types of skin cancer, with melanoma being the 

most fatal; the most common types of non-melanoma skin cancer are basal cell carcinoma 

(BCC) followed by squamous cell carcinoma (SCC). Ultra-violet (UV) radiation exposure is 

an important risk factor for skin cancer, and dark pigmentation is an important inherited 

factor protecting against UV-induced skin cancer. Pigmentary melanin is synthesized in 

melanocytes and secreted into keratinocytes. Brown/black eumelanin absorbs UV and 

neutralizes free radicals to protect skin from UV damage, whereas yellow/red phaeomelanin 

generates free radicals in response to UV. Human pigmentation is an inherited trait partially 

determined by the melanocortin 1 receptor (MC1R) gene, located at 16q24.3 [Gantz, et al. 

1994]. It encodes a 317-amino acid seven-pass-transmembrane G protein-coupled receptor. 

When activated by α-melanocyte-stimulating hormone (α-MSH) or adrenocorticotrophic 

hormone (ACTH), MC1R activates adenylate cyclase, thereby elevating intracellular cyclic 

adenosine monophosphate (cAMP). MC1R was shown to be the limiting factor controlling 

the output of the cAMP signaling pathway in heterologous cells expressing the wild-type 

MC1R gene [Mas, et al. 2003]. This signaling induces the maturation of the 

phenomelanosome to eumelanosome, resulting in darker pigmentation [Rees 2003; Sturm, et 

al. 2001].

The human MC1R gene is highly polymorphic among lightly pigmented populations 

[Harding, et al. 2000; Sturm 2002]. Among more than 80 nonsynonymous variants identified 

to date, Arg151Cys, Arg160Trp, and Asp294His were associated with red-hair phenotype 

[Beaumont, et al. 2005; Box, et al. 1997; Valverde, et al. 1995] and are known as “red hair 

color” (RHC) variants; other variants with weaker association are referred to as “non-red 

hair color” (NRHC) variants. Several variants in the MC1R gene have been associated with 

increased risks for melanoma and non-melanoma skin cancers after pigmentation phenotype 

was taken into account [Bastiaens, et al. 2001; Box, et al. 2001; Kennedy, et al. 2001; Landi, 

et al. 2005; Matichard, et al. 2004; Palmer, et al. 2000]. Previous studies grouped RHC 

alleles and NRHC alleles in tests of genetic associations between the MC1R alleles and risk 

of skin cancer [Han, et al. 2006; Landi, et al. 2005; Matichard, et al. 2004]. Distinct 

functions of specific MC1R variants in relation to pigmentation, immune response, 

inflammatory response, cell proliferation, and extracellular matrix adhesion pathways have 

been examined using data on pigmentation phenotypes or quantitative in vitro assays.

In this study, we utilized this knowledge regarding the role of MC1R alleles in biological 

processes potentially relevant to skin cancers to improve the accuracy of the estimated 

effects of MC1R variants on predisposition to skin cancer. Using a nested case-control 
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design within the Nurses’ Health Study, we explored hierarchical modeling analyses, 

incorporating quantitative information on the function of particular MC1R alleles [Aragaki, 

et al. 1997; Brenner, et al. 2013; Greenland 2000; Hung, et al. 2004; Witte 1997]. We 

evaluated the associations of seven common MC1R variants (Val60Leu, Val92Met, 

Arg151Cys, Ile155Thr, Arg160Trp, Arg163Gln, and Asp294His) with three major types of 

skin cancer (melanoma, SCC, and BCC) in women of European ancestry. Hierarchical 

regression approach allows the integration of biological data, reduces the overall estimation 

error by shrinking the estimated coefficients to their mean, and at the same time protects 

against over-parameterization of the model.

Methods

Study Population

The Nurses’ Health Study was established in 1976, when 121,700 female registered nurses 

between the ages of 30 and 55 completed a self-administered questionnaire on their medical 

histories and baseline health-related exposures. Updated information has been obtained by 

questionnaires every 2 years since then. Between 1989 and 1990, blood samples were 

collected from 32,826 of the cohort members. Detailed methods of this nested case-control 

study were described previously [Han, et al. 2006]. The distributions of risk factors for skin 

cancer in the subcohort of those who donated blood samples were very similar to those in 

the overall cohort. Briefly, eligible cases in this study consisted of women with incident skin 

cancer from the subcohort who had given a blood specimen, including cases of SCC and 

BCC with a diagnosis any time after blood collection up to June 1, 1998, and cases of 

melanoma up to June 1, 2000, with no previously diagnosed skin cancer. A common control 

series was randomly selected from participants who gave a blood sample and were free of 

diagnosed skin cancer up to and including the questionnaire cycle in which the case was 

diagnosed. One or two controls were matched to each case by year of birth (±1 year) and 

self-reported race (Caucasian/missing or others). Fewer than 5% of cases and controls had 

missing or other race/ethnicity. The nested case-control study consisted of 219 melanoma 

cases, 286 SCC cases, 300 BCC cases, and 874 matched controls. We restricted analysis to 

197 melanoma cases, 264 SCC cases, 263 BCC cases, and 791 controls with complete 

genotype information. The study protocol was approved by the Committee on Use of Human 

Subjects of Brigham and Women’s Hospital, Boston, MA.

Information regarding skin cancer risk factors was obtained from the prospective biennial 

questionnaires and the retrospective supplementary questionnaire. Information on natural 

hair color and childhood and adolescent tendency to tan was solicited in the 1982 

prospective questionnaire. To avoid potential population stratification, we excluded one 

Asian melanoma case and one control, one Hispanic SCC case and two controls.

Single Nucleotide Polymorphism (SNP) Identification

The distribution and frequency of MC1R variants in 179 Caucasian controls from the US 

were determined by Kanetsky et al. using a direct-sequencing method [Kanetsky, et al. 

2004]. Seven non-synonymous polymorphisms with allele frequency >1% were identified 

(Val60Leu, Val92Met, Arg151Cys, Ile155Thr, Arg160Trp, Arg163Gln, and Asp294His) in 
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the coding region. We genotyped these variants in our case-control study. There are 

comprehensive and quantitative in vitro assays on the function of these particular variants, 

which we incorporated into hierarchical modeling analyses. We did not genotype the three 

variants (86insA, Asp84Glu, and Arg142His) with allele frequency ≤ 1% [Han, et al. 2004].

Laboratory Assays

The Arg160Trp polymorphism was genotyped by restriction fragment length polymorphism 

(RFLP), and the other polymorphisms were genotyped by the 5’-nuclease assay (TaqMan®) 

in 384-well format, using the ABI PRISM 7900HT Sequence Detection System (Applied 

Biosystems, Foster City, CA). TaqMan® primers and probes were designed using the Primer 

Express® Oligo Design software v2.0 (ABI PRISM). Laboratory personnel were blinded to 

case-control status, and blinded quality-control samples were inserted to validate genotyping 

procedures; concordance for the blinded samples was 100%. Primers, probes, and conditions 

for genotyping assays are available upon request.

Statistical Analyses

Hierarchical modeling outline—We utilized a two-level hierarchical modeling approach 

that incorporates functional information in a second-level (prior) model for regression 

parameters. Specifically, it assumes the log-odds ratio parameters β from the first-level 

logistic regression of disease risk on MC1R variants are themselves independent random 

variables with means Z π and variance τ2. The first level of the regression models the log 

odds of disease on the seven MC1R SNPs, X, and the vector of covariates, W.

log   p
1 − p =  α +  Xβ + Wγ

The second level is a linear model on which the first-level regression parameter β is 

regressed on a matrix obtained using functional information, Z, and this helps improve the 

estimation of β.

β = Zπ +  δ

Z is a user-specified prior design matrix, and the dimension of the second-level parameter 

vector, π, can be much smaller than the dimension of β. For example, if β is a vector of 

seven SNP log odds ratios, Z might be a vector of seven ones, indicating that the average 

effect for each of the modeled SNPs is the same (namely π). By treating β as a random 

variable, this approach incorporates the uncertainty in this prior structure (e.g., prediction 

error in the second-level covariates in Z). The residuals in the second-level regression, δ, are 

assumed to have a normal distribution, with a mean 0 and variance τ2.

We coded each variant using a dominant model and fit all variants simultaneously. We used 

dominant models because the MC1R variants being studied follow a dominant inheritance 

pattern. Hierarchical analyses can be implemented using the %glimmix SAS macro [Witte, 

et al. 1998; Witte, et al. 2000], in which the two levels of the hierarchical regression are 
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combined into a mixed model with fixed coefficients (π, and γ) and random coefficient (δ). 

By substituting the value of β from the second-level model into the first-level model, we get 

the following mixed-model equation:

log   p
1 − p =  α +  XZπ + Xδ + Wγ

Therefore, in addition to the SNPs X and the covariates W, we also included the product of 

X and Z matrices (XZ) in the mixed model, and their fixed effect coefficients can be 

interpreted as π.

In this analysis, we used a Semi-Bayes approach and pre-specified the common variance of 

the random coefficient vector δ, for effect sizes to be consistent with those found in previous 

studies of genetic variants. Rather than allowing τ to be estimated empirically, we fixed the 

value of τ2 at 0.1 [Greenland 1994; Witte, et al. 1994]. At this value of τ, we assume with 

95% confidence that the variation in the true odds ratios for SNPs, after adjusting for the 

effects of the attributes considered in the Z matrix, will fall within a 1.5-fold range, i.e., 

(exp(0.1×3.92) ≈ 1.5).

Construction of prior design matrix—The prior design matrix Z is a critical 

component of the hierarchical approach. We considered several prior design matrices 

corresponding to different working hypotheses about the causal role of different MC1R 
variants. First, we simply assumed that all variants were exchangeable, i.e., they have the 

same average effect. This corresponds to the Z matrix described in the previous section. We 

then defined several prior matrices according to the functional parameters generated from 

phenotypic correlations and in vitro assays (Table 1). The functional parameters for model 

4–9 in Table 2 were obtained from published literature [Beaumont, et al. 2005; Sanchez-

Mas, et al. 2004] and not based on our samples in the NHS.

We performed multiple linear regression analyses among controls to evaluate the 

associations between the phenotypes and the MC1R variants (Table 1, models 2–4). We 

treated hair color (red, blond, light brown, dark brown or black), skin color (fair, medium, 

olive), and tanning ability (deep tan, average tan, light tan, practically none) as ordinal 

outcome variables. The three RHC alleles (Arg151Cys, Arg160Trp, and Asp294His) had a 

stronger association with skin color and hair color compared with other variant alleles. For 

tanning ability, the three RHC alleles and 155Thr allele showed strong associations. The 

variant-specific estimated regression coefficients zi from these analyses were then used in 

the second-level model, so that the mean log-odds ratio for variant i was π0 + π1 zi.

MC1R polymorphisms are also associated with a change in receptor localization. cAMP 

production depends on the number of surface MC1R sites per cell, and a lower receptor 

number would result in decreased production of cAMP and downstream signaling [Sanchez-

Mas, et al. 2004]. Beaumont et al. [Beaumont, et al. 2005] quantified cell-surface MC1R 

antibody binding detected by immuno-fluorescence in transient cell expression of variant 

alleles. We used the log-transformed fold decrease relative to the wildtype allele in 

construction of Z matrix (Table 1, model 5). Cell-surface expression of MC1R variant alleles 
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in relation to the wildtype was also quantified by binding of the radio-labeled MC1R ligand 

125I-NDP-MSH [Beaumont, et al. 2005]. We used the log-transformed fold decrease in 

maximum binding values of the variant alleles relative to the wildtype allele (Table 1, model 

6).

Reduced MC1R coupling activity is also an important factor contributing to the genetic 

association between the MC1R variants and the RHC phenotype. Pharmacological 

characterization of common MC1R variants was conducted previously [Ringholm, et al. 

2004; Schioth, et al. 1999]. The log-transformed dissociation constants from competition 

studies (Ki) using α-MSH and NDP-MSH are listed in Table 1 (models 7–8). The Ki is the 

concentration of the competing ligand that binds to half of the binding sites at equilibrium in 

the absence of radioligand or other competitors. If the Ki is low, the affinity of the receptor 

for the inhibitor is high. The differential binding to MC1R between the α-MSH and NDP-

MSH is related to the general binding characteristics of these peptides. The ability of the 

variant alleles to increase the production of cAMP after stimulation with α-MSH was 

measured [Ringholm, et al. 2004; Schioth, et al. 1999]. We listed the log-transformed fold 

decrease in the maximum production by the MC1R variant alleles relative to that of the 

wildtype in transfection assays (Table 1, model 9). In this signaling transduction process, the 

downstream signaling from cAMP production influences the ratio of phenomelanosome to 

eumelanosome. The cAMP production is most reduced for three RHC alleles, Arg151Cys, 

Arg160Trp, and Asp294His, which is in good agreement with their association with lighter 

skin color and hair color.

Finally, we considered a multivariable second-level model. We selected three representative 

measures, one for each “pathway”: hair color as pigmentary phenotype, cell surface MSH 

ligand binding as cell surface expression, and kinetics (Ki) using α-MSH as MC1R coupling 

activity. In this case, the mean log odds ratio for variant i is π1 + π2 ∑ z2i + π3 ∑ z3i + π4 ∑ 

z4i, where zhi are the variant-specific coefficients for functional measure h.

Results

The genotype distributions of the seven non-synonymous polymorphisms did not show 

departure from Hardy-Weinberg equilibrium among controls. The minor allele frequency of 

the seven polymorphisms among the controls was 12.7% for Val60Leu, 9.8% for Val92Met, 

7.0% for Arg151Cys, 1.3% for Ile155Thr, 7.8% for Arg160Trp, 4.0% for Arg163Gln, and 

1.6% for Asp294His, which were compatible with the previous report on 179 US Caucasian 

controls [Han, et al. 2004]. Overall, based upon the seven polymorphisms genotyped, 31% 

of the controls were homozygous for the consensus allele. Half of the controls carried one 

variant allele; 32% carried one NRHC allele and 18% carried one RHC allele. 20% of the 

controls carried two variant alleles; 9% carried two NRHC alleles, 8% carried one NRHC 

allele and one RHC allele, and 3% carried two RHC alleles.

The fixed-effect parameter (π0 and π1) estimates are listed in Table 2. The results of the 

genetic main effect of each variant on melanoma risk are presented in Table 3 and Figures 1–

6, which compare the conventional and hierarchical analyses. In the conventional analysis, 

five of the seven common variants included in the analysis (except 155Thr and 163Gln) were 
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associated with a significantly increased risk of melanoma. All genetic factors were first 

assumed to be exchangeable in the hierarchical model (model 1). We then pre-specified the 

prior second-level covariates according to regression coefficients with phenotypes (models 

2–4), MC1R cell-surface expression (models 5–6), and parameters of in vitro pharmacologic 

assays (models 7–9). We observed that the CIs from hierarchical modeling were narrower 

than those from conventional estimates, i.e., the precision of the risk estimates was 

enhanced. The change of ORs ranged from −21% to 7%. As was observed by Hung et al. 

[Hung, et al. 2004], the shrinkage of estimates was not always towards the null, but toward 

the prior means.

Alterations in the prior matrix influenced the risk estimates (Table 3). The results for the 

RHC variants -- Arg151Cys, Arg160Trp, and Asp294His -- were robust for melanoma risk; 

all three variants were significantly associated with melanoma risk in all the models. 

Similarly, the Val60Leu and Val92Met variants were significantly associated with melanoma 

risk in all models. The association of Ile155Thr variant with melanoma risk became non-

significant in model 6 and borderline significant in model 9. In the models incorporating 

phenotypic parameters, the association between the Arg163Gln variant and melanoma risk 

was significant in some models, but not in others (model 3,4 and 9).

For SCC, the Val60Leu, Arg151Cys and Arg160Trp variants were significantly associated 

with risk in all models. The Asp294His variant was not associated with SCC risk in the 

conventional model but was significantly associated with SCC risk in three hierarchical 

models, incorporating hair color, skin color or generation of cAMP in response to MSH. The 

association of Ile155Thr variant with SCC was not significant in any model except in the 

hierarchical one based on cell surface MC1R antibody binding. The Val92Met and 

Arg163Gln variants were not associated with SCC risk in any model. (Table 3)

For BCC, Arg151Cys, Arg160Trp and Arg163Gln were significantly associated with 

increased risk in all models, whereas Asp294His, Val92Met and Ile155Thr were not 

associated with BCC risk in any model. The association of Val60Leu variant with BCC risk 

was not significant only in one of the hierarchical models (model 8).

We constructed a multivariable second-level model using three selected representative 

measures: hair color as pigmentary phenotype, cell surface MSH ligand binding as cell 

surface expression, and kinetics (Ki) using α-MSH as MC1R coupling activity. The 

parameter estimates are listed in Table 4. By comparing the π estimates, we found that cell-

surface MSH ligand binding and Ki using α-MSH parameters showed relevance for BCC 

but not melanoma and SCC, while pigmentary hair color parameters did not strongly affect 

SNP parameters for any of the three outcomes. However the precision of these parameter 

estimates is low perhaps due to a small sample size. The results of the genetic main effect of 

each variant on each type of skin cancer are presented in Table 5. We found that the 

Val60Leu, Arg151Cys and Arg160Trp variants remained significant for the risk of each type 

of skin cancer. The Asp163Gln variant was associated with the risk of melanoma and BCC, 

but not SCC. The Asp294His and Val92Met variants were associated only with melanoma 

risk. The Ile155Thr variants were not associated with the risk of any type of skin cancer.

Joshi et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Hierarchical modeling has previously been used in genetic association studies. Aragaki et al. 

[Aragaki, et al. 1997] evaluated the NAT2 genotype-specific dietary effects on adenomatous 

polyps by constructing a Z matrix of conversion rates calculated for NAT2 genotype-specific 

enzymatic activity and dietary item-heterocyclic amine combinations. Hung et al. [Hung, et 

al. 2004] evaluated multiple polymorphisms in different pathways in relation to bladder 

cancer risk by constructing a Z matrix according to the involvement of each polymorphism 

in specific pathways. The genetic variants in the MC1R gene have been evaluated in relation 

to pigmentary phenotypes and the risk of melanoma and non-melanoma skin cancer, and 

characterized quantitatively in in vitro phenotypic assays. To our knowledge, this is the first 

report incorporating biological functional relevance in evaluation of associations between 

MC1R genetic variants and skin cancer risk. We incorporated the quantitative phenotypic 

parameters into the Z matrix construction. Consistent with previous reports, our data indicate 

that hierarchical modeling increases the precision of the risk estimates by tightening the 

confidence intervals.

Defects in MC1R function are attributable to either decreased affinity for the ligand α-MSH 

or altered G-protein coupling. These alleles have important structural functions and in turn 

influence the binding to the ligand and/or signaling process. In this study, we used some 

phenotypic parameters of the MC1R variants in the construction of the Z matrix such as 

correlations with constitutional phenotypes (hair color, skin color, and tanning ability), cell 

surface expression, and enzymatic kinetic parameters (dissociation constant Ki and 

maximum cAMP generation in response to MSH). The MC1R variants were characterized 

quantitatively in other assays, such as measurements of hair color [Naysmith, et al. 2004] 

and experimentally induced erythemal response to UV [Flanagan, et al. 2001]. However, 

only some, but not all, of the seven common variants were assayed in these studies. Hence, 

we were not able to use these data to evaluate the seven variants simultaneously.

We emphasize that the construction of the Z matrix, i.e., the specification of the prior, is a 

key component of this approach. The MC1R gene is involved in G-protein-coupled signaling 

transduction, which in turn is thought to be involved in multiple pathways in addition to 

pigmentation, such as immune response, inflammatory response, cell proliferation, and 

extracellular matrix adhesion [Kalden, et al. 1999; Luger, et al. 2003; Murata, et al. 1997; 

Naysmith, et al. 2004; Robinson and Healy 2002; Smalley and Eisen 2000]. In the 

construction of the Z matrix in this study, we used three series of parameters: the phenotypic 

associations in controls (models 2–4), cell surface expression (models 5 and 6), and 

enzymatic kinetics (models 7–9). The first of these parameters pertained primarily to the 

pigmentation pathway; the second and third may represent signaling transduction in multiple 

pathways.

In the multivariable second-level model using three selected representative measures, the 

two RHC variants, Arg151Cys and Arg160Trp, showed robust association with the risk of 

each type of skin cancer. This was consistent with the results from the conventional 

multivariate model. The other RHC variant, Asp294His, was associated only with melanoma 

risk in the conventional model. After taking into account the three functional parameters in 
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the hierarchical model, this variant became associated with the risk of SCC as well. This 

suggests that Asp294His may be involved in the etiology of SCC through these potential 

mechanisms. Neither the conventional model nor the hierarchical model indicated that 

Asp294His was associated with the risk of BCC. In addition, the Val60Leu variant was 

associated with the risk of BCC in most of the hierarchical models, but not in the 

conventional model. These results suggest that the hierarchical models may provide 

additional information on risk assessment by incorporating biological functional relevance.

We can also utilize the estimates of the second-level parameter vector, to make inferences 

about relevant mechanisms that may play a role in carcinogenesis for different skin cancer 

types. For example, altered affinity for the ligand α-MSH may play a role in basal cell 

carcinoma – as evidenced by higher estimates for cell-surface MSH ligand binding and α-

MSH Ki parameters for BCC risk. In contrast, higher estimates of prior-model hyper-

parameters suggest that variation in pathways relevant to hair color phenotype may play a 

bigger role in melanoma and SCC.

For this application several experimentally derived quantitative measures of variant effects 

on different etiologic pathways were available. However, this is not always the case. In the 

absence of such data, in silico estimates of variant effects could be used. For example, the 

effects of non-synonymous polymorphisms could be regressed on their SIFT score. The 

SIFT (Sorting Intolerant From Tolerant) algorithm predicts whether an amino acid 

substitution will have an impact on protein function based on the alignment of highly similar 

proteins by evaluating its identity and physicochemical characteristics [Ng and Henikoff 

2001; Ng and Henikoff 2002; Ng and Henikoff 2003]. The predictions rely on the 

evolutionary conservation of amino acids among the protein’s family members, which can 

suggest their importance for the function/structure of the protein. For example, Kanetsky et 

al. [Kanetsky, et al. 2004] used SIFT analysis to identify MC1R positions that were 

predicted to be intolerant of amino acid substitutions; the predicted intolerant variants were 

Asp84Glu, Arg142His, Arg151Cys, Ile155Thr, Arg160Trp, and Asp294His, which is in 

good agreement with previous publications on their reduced function.

One limitation of the study is our use of self-reported phenotypes such as hair color, skin 

color, and tanning ability. Self-report has been shown to be an appropriate and widely used 

method of assessing risk factors for skin cancer. Test-retest reliability of collecting 

information on phenotypic risk factors, including skin color, tanning/burning tendency, and 

sunburn history, from questionnaires is moderate to substantial [Branstrom, et al. 2002; 

Glanz, et al. 2003; Westerdahl, et al. 1996]. Several previous studies have evaluated the 

validity of self-reported melanoma risk factors. Kang et al. reported 85% agreement between 

self-reported skin phototypes and those determined by a dermatologist, and these phototypes 

had a positive correlation with the minimal erythemal dose [Kang, et al. 1992]. Self-reported 

skin characteristics predict melanoma risk reasonably well. In our study, we observed that 

the OR of self-reported skin color (fair vs. medium/olive) for melanoma risk was 2.24 (95% 

CI, 1.59–3.16), which is in good agreement with two previous reports. In a case-control 

study of 511 cases and 511 age- and gender-matched controls in Western Australia, 

reflectance-measured skin color was associated with melanoma risk (fair vs. medium/olive: 

OR, 2.54; 95% CI, 1.94–3.31) [Holman and Armstrong 1984]. In a meta-analysis of 31 case-
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control studies, fair skin color was associated with a two-fold increased risk of melanoma 

(fair vs. medium/olive: OR, 2.06; 95% CI, 1.68–2.52) [Gandini, et al. 2005]. For other 

constitutional risk factors, such as hair color, sunburn history, and mole counts, the relative 

risks in our study were also similar to previous reports [Cho, et al. 2005].

In summary, we performed hierarchical modeling analyses, incorporating quantitative 

information on the function of particular MC1R alleles in an association study with skin 

cancer risk. Hierarchical modeling stabilizes estimates and provides an alternative analytic 

approach in genetic association studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Beta estimates from the conventional, prior, and hierarchical models for association between 

MC1R variants and risk of melanoma.
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Figure 2. 
Beta estimates from the conventional, prior, and hierarchical models for association between 

MC1R variants and risk of SCC.
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Figure 3. 
Beta estimates from the conventional, prior, and hierarchical models for association between 

MC1R variants and risk of BCC.
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Figure 4. 
Standard error (se) of the beta estimates from the conventional and hierarchical models for 

the association between MC1R variants and risk of melanoma.
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Figure 5. 
Standard error (se) of the beta estimates from the conventional and hierarchical models for 

the association between MC1R variants and risk of SCC.
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Figure 6. 
Standard error (se) of the beta estimates from the conventional and hierarchical models for 

the association between MC1R variants and risk of BCC.
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Table 1.

Hierarchical modeling of MC1R variants

Model Wildtype Val60Leu Val92Met Arg151Cys Ile155Thr Arg160Trp Arg163Gln Asp294His

1 Assumes that all 
variants have the 
same effects

0 1 1 1 1 1 1 1

2 Regression 
coefficient with hair 
color in controls

0 −0.020 −0.092 0.368 0.195 0.539 0.028 0.605

3 Regression 
coefficient with skin 
color in controls

0 0.149 0.083 0.310 0.140 0.250 0.026 0.428

4 Regression 
coefficient with 
tanning ability in 
controls

0 0.317 0.259 0.625 0.477 0.453 0.136 0.899

5 Cell surface MC1R 
antibody binding

0
0.772 0.004 1.505 1.911 1.537 0.411 −0.378

6 Cell surface MSH 
ligand binding

0
1.234 0.126 1.966 3.808 2.137 0.648 −0.466

7 Kinetics, α-MSH Ki 0 0.276 3.191 −0.034 1,878 0.259 1.563 1.887

8 Kinetics, NDP Ki 0 −0.084 0.069 0.808 0.313 0.425 0.468 −0.166

9 Maximum cAMP 
generation in 
response to MSH

0

1.006 0.211 1.634 0.483 1.516 −0.401 2.088

Parameters for models 5–9 were log transformed.
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Table 2.

Estimates of prior-model hyper-parameters: univariate second-level models

Model Melanoma SCC BCC

π0 est (SD) π1 est (SD) π0 est (SD) π1 est (SD) π0 est (SD) π1 est (SD)

1 Fixed mean 0.63 (0.18) − 0.46 (0.17) − 0.38 (0.17) −

2 Hair color 0.52 (0.22) 0.56 (0.58) 0.33 (0.21) 0.61 (0.58) 0.30 (0.21) 0.38 (0.58)

3 Skin color 0.37 (0.30) 1.34 (1.24) 0.22 (0.29) 1.23 (1.25) 0.26 (0.29) 0.61 (1.22)

4 Tanning ability 0.29 (0.35) 0.79 (0.69) 0.20 (0.34) 0.59 (0.70) 0.34 (0.33) 0.10 (0.68)

5 Cell surface MC1R antibody binding 0.62 (0.24) 0.01 (0.21) 0.29 (0.24) 0.21 (0.20) 0.36 (0.23) 0.02 (0.20)

6 Cell surface MSH ligand binding 0.64 (0.24) −0.003 (0.13) 0.32 (0.24) 0.11 (0.13) 0.45 (0.24) −0.06 (0.14)

7 Kinetics, α-MSH Ki 0.67 (0.24) −0.03 (0.13) 0.61 (0.23) −0.13 (0.13) 0.57 (0.23) −0.16 (0.13)

8 Kinetics, NDP Ki 0.58 (0.22) 0.22 (0.47) 0.34 (0.21) 0.41 (0.46) 0.23 (0.21) 0.53 (0.46)

9 Maximum cAMP generation 0.48 (0.26) 0.16 (0.19) 0.27 (0.25) 0.20 (0.19) 0.31 (0.24) 0.08 (0.19)
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Table 3.

Hierarchical modeling of associations between MC1R variants and skin cancer risk

Val60Leu Val92Met Arg151Cys Ile155Thr Arg160Trp Arg163Gln Asp294His

Melanoma

Conventional model 1.52
(1.04 – 2.24)

1.64
(1.10 – 2.45)

2.47
(1.63 – 3.75)

1.87
(0.80 – 4.40)

1.79
(1.15 – 2.80)

1.71
(0.96 −3.04)

2.67
(1.35 – 5.31)

Model 1 1.60
(1.13 – 2.28)

1.69
(1.18 – 2.44)

2.30
(1.58 – 3.36)

1.88
(1.07 – 3.31)

1.82
(1.22 – 2.70)

1.78
(1.12 – 2.84)

2.22
(1.32 – 3.72)

Model 2 1.55
(1.09 – 2.23)

1.63
(1.12 – 2.37)

2.35
(1.61 – 3.44)

1.87
(1.06 – 3.44)

1.92
(1.27 – 2.88)

1.71
(1.06 – 2.75)

2.50
(1.42 – 4.41)

Model 3 1.58
(1.11 – 2.25)

1.63
(1.13 – 2.37)

2.39
(1.63 – 3.51)

1.79
(1.01 – 3.18)

1.86
(1.25 – 2.76)

1.62
(0.98 – 2.68)

2.63
(1.45 – 4.77)

Model 4 1.57
(1.10 – 2.23)

1.64
(1.13 – 2.37)

2.39
(1.63 – 3.50)

1.92
(1.09 – 3.38)

1.82
(1.23 – 2.71)

1.61
(0.97 – 2.66)

2.71
(1.47 – 4.98)

Model 5 1.60
(1.13 – 2.28)

1.69
(1.17 – 2.45)

2.31
(1.57 – 3.40)

1.90
(1.01 – 3.58)

1.82
(1.22 – 2.73)

1.78
(1.12 – 2.85)

2.20
(1.24 – 3.92)

Model 6 1.60
(1.13 – 2.28)

1.70
(1.17 – 2.45)

2.30
(1.57 – 3.37)

1.87
(0.92 – 3.80)

1.81
(1.21 – 2.71)

1.79
(1.12 – 2.85)

2.22
(1.26 – 3.93)

Model 7 1.61
(1.13 – 2.30)

1.67
(1.14 – 2.45)

2.33
(1.58 – 3.43)

1.86
(1.05 – 3.30)

1.83
(1.23 – 2.74)

1.78
(1.12 – 2.84)

2.19
(1.30 – 3.71)

Model 8 1.58
(1.10 – 2.26)

1.68
(1.16 – 2.42)

2.38
(1.59 – 3.56)

1.90
(1.08 – 3.33)

1.84
(1.23 – 2.73)

1.82
(1.14 – 2.92)

2.10
(1.20 – 3.70)

Model 9 1.60
(1.13 – 2.28)

1.65
(1.14 – 2.39)

2.37
(1.61 – 3.47)

1.79
(1.00 – 3.19)

1.86
(1.25 – 2.78)

1.62
(0.96 – 2.73)

2.46
(1.40 – 4.32)

SCC

Conventional model 1.43
(1.02 – 2.01)

1.25
(0.86 – 1.81)

2.13
(1.47 – 3.09)

1.61
(0.72 – 3.59)

1.97
(1.34 – 2.89)

1.27
(0.74 – 2.17)

1.55
(0.75 – 3.23)

Model 1 1.46
(1.06 – 2.00)

1.32
(0.94 – 1.85)

1.98
(1.41 – 2.79)

1.59
(0.92 – 2.73)

1.87
(1.31 – 2.66)

1.38
(0.89 – 2.13)

1.56
(0.93 – 2.62)

Model 2 1.42
(1.03 – 1.96)

1.26
(0.89 – 1.79)

2.03
(1.43 – 2.86)

1.58
(0.91 – 2.72)

1.96
(1.37 – 2.82)

1.32
(0.84 – 2.06)

1.79
(1.01 – 3.18)

Model 3 1.44
(1.05 – 1.99)

1.28
(0.90 – 1.81)

2.05
(1.44 – 2.90)

1.52
(0.88 – 2.65)

1.90
(1.33 – 2.71)

1.27
(0.79 – 2.03)

1.84
(1.00 – 3.89)

Model 4 1.44
(1.05 – 1.98)

1.29
(0.91 – 1.82)

2.03
(1.44 – 2.88)

1.61
(0.93 – 2.78)

1.88
(1.32 – 2.67)

1.28
(0.80 – 2.05)

1.83
(0.98 – 3.43)

Model 5 1.46
(1.06 – 2.00)

1.27
(0.90 – 1.80)

2.06
(1.45 – 2.92)

1.83
(1.00 – 3.33)

1.94
(1.35 – 2.78)

1.35
(0.87 – 2.09)

1.36
(0.75 – 2.45)

Model 6 1.46
(1.06 – 2.00)

1.28
(0.91 – 1.82)

2.02
(1.43 – 2.86)

1.87
(0.96 – 3.64)

1.91
(1.34 – 2.73)

1.35
(0.87 – 2.10)

1.40
(0.79 – 2.51)

Model 7 1.49
(1.08 – 2.06)

1.24
(0.86 – 1.78)

2.06
(1.45 – 2.93)

1.50
(0.86 – 1.78)

1.92
(1.35 – 2.75)

1.36
(0.88 – 2.11)

1.48
(0.87 – 2.52)

Model 8 1.42
(1.03 – 1.96)

1.29
(0.92 – 1.82)

2.08
(1.45 – 2.99)

1.61
(0.93 – 2.77)

1.90
(1.33 – 2.70)

1.43
(0.92 – 2.22)

1.40
(0.79 – 2.49)

Model 9 1.46
(1.06 – 2.01)

1.28
(0.90 – 1.80)

2.05
(1.44 – 2.90)

1.50
(0.86 – 2.62)

1.92
(1.35 – 2.74)

1.23
(0.76 – 2.01)

1.79
(1.01 – 3.17)

BCC

Conventional model 1.39
(0.99 – 1.95)

1.02
(0.70 – 1.50)

2.06
(1.41 – 2.99)

0.51
(0.15 – 1.73)

1.60
(1.07 – 2.37)

2.10
(1.32 – 3.35)

1.46
(0.71 – 3.04)

Model 1 1.40
(1.02 – 1.92)

1.13
(0.80 – 1.59)

1.90
(1.34 – 2.68)

1.11
(0.62 – 1.98)

1.57
(1.09 – 2.25)

1.85
(1.23 – 2.78)

1.47
(0.87 – 2.47)

Model 2 1.38
(1.00 – 1.90)

1.10
(0.77 – 1.56)

1.92
(1.36 – 2.72)

1.11
(0.62 – 1.98)

1.62
(1.12 – 2.34)

1.81
(1.20 – 2.74)

1.60
(0.90 – 2.85)

Model 3 1.40
(1.02 – 1.92)

1.11
(0.78 – 1.57)

1.93
(1.36 – 2.74)

1.09
(0.60 – 1.96)

1.58
(1.10 – 2.27)

1.79
(1.17 – 2.75)

1.60
(0.87 – 2.94)

Model 4 1.40
(1.02 – 1.92)

1.12
(0.79 – 1.59)

1.91
(1.34 – 2.70)

1.11
(0.62 – 1.99)

1.57
(1.10 – 2.25)

1.84
(1.20 – 2.81)

1.51
(0.80 – 2.85)
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Val60Leu Val92Met Arg151Cys Ile155Thr Arg160Trp Arg163Gln Asp294His

Model 5 1.40
(1.02 – 1.92)

1.12
(0.79 – 1.60)

1.90
(1.34 – 2.70)

1.13
(0.58 – 2.17)

1.57
(1.09 – 2.27)

1.85
(1.23 – 2.78)

1.45
(0.81 – 2.60)

Model 6 1.40
(1.02 – 1.92)

1.14
(0.80 – 1.62)

1.88
(1.32 – 2.66)

1.00
(0.47 – 2.15)

1.55
(1.07 – 2.23)

1.87
(1.24 – 2.80)

1.55
(0.87 – 2.74)

Model 7 1.45
(1.05 – 1.99)

1.04
(0.72 – 1.51)

1.99
(1.40 – 2.82)

1.03
(0.56 – 1.87)

1.62
(1.13 – 2.33)

1.83
(1.22 – 2.75)

1.38
(0.81 – 2.35)

Model 8 1.36
(0.98 – 1.87)

1.09
(0.77 – 1.55)

2.03
(1.41 – 2.91)

1.13
(0.63 – 2.01)

1.59
(1.11 – 2.89)

1.93
(1.28 – 2.91)

1.28
(0.72 – 2.28)

Model 9 1.40
(1.02 – 1.93)

1.11
(0.78 – 1.58)

1.92
(1.35 – 2.72)

1.08
(0.60 – 1.96)

1.58
(1.10 – 2.28)

1.79
(1.15 – 2.78)

1.55
(0.87 – 2.74)

Each model includes seven variants (carrier versus non-carrier) simultaneously and adjusts for age.

Conventional model is the logistical regression model. Models 1–9 utilize hierarchical modeling approach.

Model 1 assumes that all variants have the same effects.

Model 2 is based on the associations with hair color among controls.

Model 3 is based on the associations with skin color among controls.

Model 4 is based on the associations with tanning ability among controls.

Model 5 is based on cell surface MC1R antibody binding.

Model 6 is based on cell surface MSH ligand binding.

Model 7 kinetics, Ki-a-MSH.

Model 8 kinetics, Ki-NDP.

Model 9 is based on maximum generation of cAMP in response to MSH.
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Table 4.

Estimates of prior-model hyperparameters: multivariate second-level model

Melanoma SCC BCC

Variable π est (SD) π est (SD) π est (SD)

Mean 0.52 (0.43) 0.37 (0.41) 0.97 (0.45)

Cell surface MSH ligand binding −0.03 (0.15) 0.05 (0.15) −0.24 (0.18)

Kinetics, α-MSH Ki 0.02 (0.16) −0.06 (0.16) −0.28 (0.18)

Hair color 0.61 (0.65) 0.44 (0.65) 0.09 (0.64)
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Table 5.

Hierarchical modeling of MC1R variants using multivariate second-level model

Val60Leu Val92Met Arg151Cys Ile155Thr Arg160Trp Arg163Gln Asp294His

Melanoma 1.55 (1.07–2.24) 1.64
(1.11–2.42)

2.3
(1.58–3.44)

1.80 (0.80–4.05) 1.91 (1.26–2.88) 1.71 (1.06–2.77) 2.60 (1.37–4.95)

SCC 1.45 (1.04–2.02) 1.23 (0.85–1.77) 2.07 (1.46–2.94) 1.67 (0.78–3.57) 1.98 (1.38–2.86) 1.31 (0.84–2.06) 1.60
(0.82–3.14)

BCC 1.46 (1.05–2.03) 1.03 (0.71–1.50) 1.97 (1.39–2.81) 0.61 (0.22–1.97) 1.59 (1.09–2.31) 1.86 (1.23–2.81) 1.66 (0.85–3.24)

The model includes seven variants (carrier versus non-carrier) simultaneously and adjusts for age. We use multivariate second-level model 
incorporate three representative measures: cell surface MSH ligand binding, kinetics, α-MSH Ki, and hair color.
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