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Abstract

There is substantial evidence for individual differences in personality and cognitive abilities, but 

we lack clear intuitions about individual differences in visual abilities. Previous work on this topic 

has typically compared performance with only two categories, each measured with only one task. 

This approach is insufficient for demonstration of domain–general effects. Most previous work has 

used familiar object categories, for which experience may vary between participants and 

categories, thereby reducing correlations that would stem from a common factor. In Study 1, we 

adopted a latent variable approach to test for the first time whether there is a domain–general 

Object Recognition Ability, o. We assessed whether shared variance between latent factors 

representing performance for each of five novel object categories could be accounted for by a 

single higher–order factor. On average, 89% of the variance of lower–order factors denoting 

performance on novel object categories could be accounted for by a higher–order factor, providing 

strong evidence for o. Moreover, o also accounted for a moderate proportion of variance in tests of 

familiar object recognition. In Study 2, we assessed whether the strong association across 

categories in object recognition is due to third–variable influences. We find that o has weak to 

moderate associations with a host of cognitive, perceptual and personality constructs and that a 

clear majority of the variance in and covariance between performance on different categories is 

independent of fluid intelligence. This work provides the first demonstration of a reliable, specific 

and domain–general Object Recognition Ability, and suggest a rich framework for future work in 

this area.

*Corresponding author Isabel Gauthier, isabel.gauthier@vanderbilt.edu.
REGULAR MAIL (via U.S. Postal Service), Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240–7817, 
USA
COURIER MAIL (via Fed Exp, UPS), Department of Psychology, 301 Wilson Hall, Vanderbilt University, Nashville, TN 37240, USA
6Separate paired–sample t–tests for each exposed category revealed a significant congruency effect in RT for Categories 1–3 (ts = 
4.97–8.76, ps < .001, Cohen’s d = .48–.86), but not Category 4 (t = .50, p = .61, Cohen’s d = .05). In sensitivity, congruency effects 
were significant for categories 1 and 2 (ts > 4, ps < .001, Cohen’s d > .4) and marginally significant for categories 3 (t = 1.84, p = .068, 
Cohen’s d = .18) and 4 (t = 1.97, p = .05, Cohen’s d = .2).

HHS Public Access
Author manuscript
Psychol Rev. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Psychol Rev. 2019 March ; 126(2): 226–251. doi:10.1037/rev0000129.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

visual abilities; structural equation modeling; latent variable modeling; holistic processing; 
intelligence

Individual Differences in Object Recognition

There is substantial evidence for individual differences in personality and cognitive abilities. 

In the case of personality traits, although test–retest correlations across 1–3 years are in the .

2–.5 range during childhood, they are in the .6–.8 range among adults across even longer 

time spans (e.g., Hampson & Goldberg, 2006; Roberts & DelVecchio, 2000). Cross–

situational consistency of behaviors is not as high as we might intuitively believe (e.g., 

Mischel, 1968; Mischel & Peake, 1982), and r = .30 is the proverbial “personality 

coefficient” (Mischel, 1968). Nonetheless, personality traits: 1) often account for substantial 

variance in behaviors, thoughts, and moods averaged across situations, contexts, or measures 

(e.g., Rushton, Brainerd, & Pressley, 1983); 2) are generally associated with validity 

coefficients comparable to modal effect sizes found in experimental studies (Meyer, Finn, 

Eyde, et al. 2001); and 3) predict important life outcomes (e.g., mortality, occupational 

attainment, vulnerability to psychopathology), with effect sizes comparable to those of SES 

or cognitive abilities (e.g., Goodwin & Friedman, 2006; Roberts, Kuncel, Shiner, Caspi, & 

Goldberg, 2007). Similarly, psychometric intelligence is extremely stable over time (e.g., 

test–retest correlations generally in the .6–.8 range in the time span between childhood and 

old age, e.g., Deary, Whalley, Lemon, Crawford, & Starr, 2000; Deary, Whiteman, Starr, et 

al., 2004), and it predicts achievement and other important life outcomes (e.g., health and 

morbidity) independent of socio–demographic variables (e.g., Deary et al., 2004).

In contrast, we lack clear intuitions about individual differences in visual perception. We 

have little to no access to the quality of others’ perception and we are very poor at estimating 

our perceptual abilities, even in a specific domain, relative to other people (Barton et al., 

2009; McGugin et al., 2012). Studies of perceptual expertise that reveal variability in ability 

with specific object categories, such as birds (e.g., Gauthier et al., 2000; Tanaka et al., 2005), 

fingerprints (Busey & Vanderwolk, 2005), and cars (e.g., Gauthier et al., 2000, 2003) do not 

address the stability or consistency of individual differences in object recognition 

performance—is ability in one domain stable over time and related to performance in 

another domain? Does someone’s ability to recognize birds predict how well they will be 

able to recognize fingerprints? Surprisingly, despite decades of research on object 

recognition, there has been almost no work seeking to find evidence of a common “object 

recognition” ability across domains. Here, we test whether object recognition ability (o) is a 

valid and reliable construct that can account for performance across categories. The o we are 

speculating about here would be at least general enough to predict the ability to learn how to 

discriminate items in any subordinate–level category, such as different dogs, birds or 

fingerprints1.

1We do not at this point address the possibility of an even more general factor that would also encompass basic–level or 
superordinate–level visual judgments, or other visual tasks in very narrow stimulus domains such as those used in perceptual learning 
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The hypothesis of a general object recognition ability parallels a number of models in the 

areas of personality, psychometric intelligence, and cognitive abilities. In these areas, 

hierarchical structures for individual differences have predominated for a number of years 

(e.g., Guilford, 1967; Markon, Krueger, & Watson, 2005; Reeve & Bonaccio, 2011; Rushton 

& Irwing, 2011; Spearman, 1927). Such models posit superordinate dimensions or factors 

(e.g., the general intelligence factor g, negative affectivity in the domain of emotion and 

temperament) that account for substantial variability in both lower–order factors and 

observed measures (e.g., Markon et al., 2005; Reeve & Bonaccio, 2011; Zinbarg & Barlow, 

1996).

However, a great deal of vision research seems to suggest that visual abilities are more 

fractionated than common, with the visual system dividing things by the way they look. For 

instance, neuroimaging studies have identified different brain regions associated with the 

processing of basic visual properties such as symmetry (e.g., Sasaki et al., 2005), curvature 

(e.g., Yue et al., 2014), and rectangularity (e.g., Nasr et al., 2014), and with different object 

categories such as animals, tools (e.g., Chao et al., 2002), houses (e.g., Epstein & 

Kanwisher, 1998), and faces (e.g., Kanwisher et al., 1997). Measures of connectivity to face 

selective–areas are found to correlate with face, but not scene, recognition performance 

(Gomez et al., 2015). Such results raise the possibility that different brain networks support 

independent recognition abilities for different object categories, such that car recognition 

ability would not predict ability to match fingerprints or recognize faces.

Starting with the development of the Cambridge Face Memory Test (CFMT; Duchaine & 

Nakayama, 2006), which captures a wide range of face processing ability with high 

reliability (e.g., test–retest with 6 months delay =.70, Duchaine & Nakayama, 2006; 

Cronbach’s alpha = .91, Wilmer et al., 2012), the small body of work that speaks to this 

question has generally focused on the specificity of face recognition abilities; that is, is face 

recognitions an independent ability or a special case of a more global ability to learn and/or 

recognize objects? However, the conclusions that can be drawn from work in this area are 

limited because 1) the experimental designs typically only include one task (e.g., a single 

memory test) and two categories (e.g., faces and cars), and 2) only familiar object categories 

are used, so experience can vary between participants and categories. In what follows, we 

discuss each of these issues in turn and how they are addressed by the present study.

Importance of Using Multiple Tasks and Categories

Wilmer et al. found only 7% shared variance (r–squared) between the CFMT and 

performance on a similar task with unfamiliar abstract art (n = 3004, r = .26, Wilmer et al., 

2010; n = 1469, r = .26, Wilmer et al., 2012), and studies comparing the CFMT with a 

similar task using cars have found 8% shared variance (n = 1042, r = .29; Shakeshaft & 

Plomin, 2015) and 14% (n = 142, r = .37; Dennett et al., 2012). These small but significant 

relationships are difficult to interpret because performance with different categories was 

measured using a single task for all categories. Performance with faces, abstract art, and cars 

studies. For instance, a general visual ability factor may account for individual differences in object recognition (o) as well as more 
low–level perceptual factors like global vs. local processing style (Milne & Szczerbinski, 2009).
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could share a small amount of variance either due to the recruitment of a general object 

recognition system or due to task–specific processes such as working memory or sensitivity 

to proactive interference, and important to this task. Interpretation is further limited by the 

fact that only two categories of objects were compared (faces with either abstract art, cars, or 

houses; see Gauthier & Nelson, 2001).

When studies find only a moderate correlation between a face and a non–face object 

recognition task, authors often take it as evidence for a face recognition ability that is 

distinct from an object recognition ability (e.g., Dennett et al., 2012; Shakeshaft & Plomin, 

2015; Wilmer et al., 2010). An untested assumption, however, is that abilities to recognize 

different non–face categories would be more strongly related to one another than each of 

them would be to face recognition ability. Only a few studies have used several object 

categories but all with the same task (e.g., Ćepulić et al., 2018). In some of these studies 

using the VET (McGugin et al., 2012; Van Gulick et al., 2015), the average pairwise 

correlation between any two non–face categories is no larger (r=.34) than what is typically 

found between face and non–face object recognition tests (e.g. r=0.37 in Dennett et al, 

2012). In other words, when many categories are used, face recognition does not stand out as 

a particularly distinct ability. Testing with more than two categories shifts the question of 

whether face recognition ability is distinct to a more general question: given the domain–

specificity of performance in high–level vision, is there evidence for a strong domain general 

object recognition ability, o?

Beyond problems for interpretation, using only two categories each assessed with one task 

may underestimate true dependence on a common factor. Consider research in the area of 

personality, where the cross–situational consistency of behavioral measures (particularly 

when assessed on only one occasion) is typically rather low (e.g., Mischel, 1968; Mischel & 

Peake, 1982). Importantly, correlations are much higher when behavioral measures are 

aggregated across a number of situations and correlated with other behavioral aggregates or 

personality measures (e.g., Jaccard, 1974; Rushton, Brainerd, & Pressley, 1983). Thus, the 

correlation between one task for cars and one task for faces likely does not provide sufficient 

aggregation to reveal the influence of a broader construct. Indeed, the few studies that used 

multiple tasks treated as indicators of a higher–order category–specific latent variable (i.e., 

factor) found moderate to substantial relationships between distinct face and house 

perception factors (44–69% shared variance, Hildebrandt et al., 2013; 24% shared variance, 

Wilhelm et al., 2010). These studies still suffer from the interpretative problems described 

above, as only two categories were compared. To circumvent these problems, participants in 

our study completed three tasks of visual object perception and recognition for each of five 

object categories.

Importance of Controlling for Experience

Although some studies have measured performance for several categories (e.g., Gauthier et 

al., 2014; McGugin et al., 2012; Van Gulick et al., 2015), most used familiar object 

categories. This makes it difficult to disentangle variability due to experience from 

variability in a domain–general ability. Furthermore, differences in experience between 

categories for the same individual might reduce correlations that would stem from a 
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common factor (Gauthier et al., 2014; Ryan & Gauthier, 2016; Van Gulick et al., 2015). In 

recent work, object recognition ability was measured with three categories of novel objects 

(in three groups with ns >325, each tested on two of the three categories, with a single task). 

The average pairwise correlation (r=.48) was higher than the typical pairwise correlation for 

familiar object categories, consistent with the idea that differences in experience with 

familiar objects complicates the measurement of a common visual ability (Richler et al., 

2017). To circumvent the problems associated with variability in experience, here we used 

five categories of novel, unfamiliar objects. Because these novel object categories vary on 

several perceptual dimensions shown to be associated with unique neural substrates (e.g., 

animate/inanimate appearance, symmetry, and curvature), their use in the present study will 

provide a rigorous test of the presence of a common ability.

It is possible, however, that some amount of experience with a category is important for 

individual differences in ability to be fully reflected in performance. After all, one important 

component of object recognition is the ability to learn object categories. In other domains, 

differences among individuals in genetic or other predispositions commonly require the 

appropriate environmental inputs to be expressed behaviorally (for reviews see Dick, 2011; 

Manuck & McCaffery, 2014). Therefore, we tested four object categories following a 

training phase that provided participants with the same amount of controlled experience for 

each category. We tested performance with the fifth category without any prior training, to 

assess whether experience affects the expression of a domain–general ability. If so, this 

design leaves us with four categories to use in the main analyses. We used a training 

protocol that is relatively short and limits the contribution of non–visual abilities (e.g., it did 

not require naming). In addition, learning in this task transfers to new exemplars of the 

category and results in training effects typical of the early stages of perceptual expertise 

(Bukach et al., 2012).

Latent Variable Modeling Approach

Self–reports of visual abilities are generally poor predictors of performance for most 

categories (McGugin et al., 2012; Richler et al., 2017; see also Barton et al., 2009). Thus, 

individual differences in object recognition ability can only be inferred from behavioral 

measures of task performance. Whatever the nature of the measure, research in the areas of 

personality and temperament has shown that broad individual differences constructs are 

optimally assessed using multiple measures (to allow for conclusions that are appropriately 

generalizable across different measures) and often best modeled as latent variables. 

Narrowly defined, latent variables are constructs (e.g., ‘object recognition ability’) that are 

not directly observable. Latent variables are useful whenever unobserved constructs are 

invoked, for instance in behavioral and social sciences (e.g., Bollen, 2002). The present 

study adopts a latent variable analytic approach to test the hypothesis that the shared 

variance in performance across several object categories can be accounted for by a single 

domain–general visual ability that is modeled as a higher–order latent variable (i.e., factor). 

This structural representation will be tested using confirmatory factor analysis (CFA, for 

reviews see Brown, 2015; Tomarken & Waller, 2005). CFA confers several distinct 

advantages in the present context relative to exploratory factor analysis (EFA) or principal 

components analysis (PCA). These include the ability to: specify and test the absolute and 

Richler et al. Page 5

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative fit of competing models using a variety of indices; specify factor models that posit 

both lower–order factors that account for correlations among observed indicators and 

higher–order factors that account for the correlations among lower–order factors; estimate 

correlations among categories that are free from the attenuating effects of measurement error 

and category–irrelevant variance, and specify correlated error terms or task–specific method 

factors that can estimate the contribution of shared methods to correlations among measures 

(see, e.g., Brown, 2015; Hancock & Mueller, 2006; Tomarken & Waller, 2005).

In our study, participants completed three tasks of visual object perception and recognition 

for each of five novel object categories (four categories for which they received a fixed 

amount of training in a simple video game, and one for which they received no training). We 

then used CFA to estimate the correlations among the different categories in performance. 

Each category itself was represented as a first–order factor with task scores as observable 

indicators. Our primary interest was testing a related model that posited an overarching, 

second–order construct that we denote as ‘o’ representing individual difference in object 

recognition ability that influences performance on specific object categories. Our goal was to 

assess the fit of the second–order factor model and estimate the proportion of variance in 

performance on the lower–order, category–specific factors accounted for by the overarching 

factor. Finally, via CFA, we assessed the relation between individual differences on the 

object recognition latent factors and scores on measures of facial recognition and perceptual 

expertise with familiar objects.

Study 1

Methods

Participants—Two–hundred–and–eighty–five members of the Vanderbilt University 

Community were recruited for the experiment (123 male, 162 female; mean age = 21.5, age 

range = 18–38; Caucasian = 170, Asian = 70, African American = 35, Hispanic = 8, Other = 

2). There were four at–home sessions of approximately 1.75 hours each, and six lab sessions 

of one hour each. Participants were compensated $26.25 for each at–home session, and 

$15.00 for each lab session, for a total of $195.00 for the entire experiment (13 hours). 

Payment was based on the sessions participants completed, and was not contingent on 

finishing the experiment. Both the original sample size (285) and the sample size ultimately 

used for analyses (n=246, see Data Analysis section for elaboration) are very large for 

studies in the area of perception but on the small side relative to typical confirmatory factor 

analyses and structural equation models. The target N reflected a tradeoff between practical 

considerations (i.e., each participant attended 5 laboratory sessions with home sessions 

intermixed) and the desire to maximize sample size for a statistical procedure that typically 

requires large sample sizes. In this regard, two considerations are particularly relevant: (1) A 

priori power analyses indicated excellent power to detect misspecifications under a range of 

reasonable parameter values with n’s in the range of 250 or so; and, (2) Published simulation 

studies that mirror various features of the present experiment (e.g., the method of treating 

missing data, as discussed below) have demonstrated good performance (e.g., empirical 

Type 1 error rates that correspond to nominal levels) when n’s are in the same range (e.g., 

Savalei & Falk, 2014).

Richler et al. Page 6

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stimuli—We used five novel object categories (vertical Ziggerins, asymmetrical Greebles, 

symmetrical Greebles, horizontal Ziggerins, and Sheinbugs; arbitrary numbers were 

assigned to categories to simplify data coding and presentation of results, see Figure 1) with 

80 exemplars each, and two views per exemplar. Categories were defined by general 

configuration of parts and color. Thirty exemplars (approximately 1 × 1 degree of visual 

angle) were used in the training phase, and the remaining 50 exemplars (approximately 2 × 2 

degrees of visual angle) were used for testing. A sixth novel object category (YUFOs, 

Gauthier et al., 2003) was used to practice the training task during an introductory lab 

session and in the instructions for all test tasks.

General Procedure—The general procedure is illustrated in Figure 2. First, participants 

came to the lab for an introductory session in which they completed measures of familiar 

object recognition (described below), and practiced the training game. At the end of the 

introductory session (and all subsequent lab sessions), participants scheduled their next lab 

session and were given a passcode to access the training game that had to be completed at 

home prior to that date. Participants were told that they should return to the lab within five 

days of completing the game, and this was taken into consideration during scheduling 2. 

Participants completed the assigned training game for a category at home, and then 

completed three test tasks (described below) with the same category in the subsequent lab 

test session (e.g., participants completed the training game with Cat–1 at home, then 

returned to the lab to complete the test tasks with Cat–1). Home–training and lab–test 

sessions were repeated until participants completed test sessions for all five categories, with 

the exception that there was no training session prior to the test session for Cat–0. Category 

order was randomized for each participant.

Training Game—The training game was modeled after the classic arcade game Space 

Invaders (see Bukach et al., 2012). In each wave, an array of nine objects moved laterally 

and downward toward participants’ avatar. Objects in the array and the avatar could appear 

in one of two viewpoints. The arrow keys moved the avatar left and right. Pressing “z” 

produced a laser that changed the invader’s identity on contact, and pressing “x” produced a 

laser that eliminated the invader if it matched the identity of the avatar. If an invader with a 

different identity from the avatar was shot with an “x,” the speed of array movement 

increased. Importantly, the target invader and avatar could be shown in the same or different 

viewpoint. Thus, successful task performance required matching on object identity, 

regardless of viewpoint. Participants had to successfully clear 250 waves (approximately 90 

minutes). Because the training game was relatively easy across categories, on average 

participants initiated 276.41, 259.69, 271.20, and 272.22 waves for categories 1–4, 

respectively (overall mean = 269.88). A repeated measures linear mixed effects analysis of 

variance (ANOVA) and subsequent pairwise comparisons indicated that category 2 was 

associated with fewer waves than the three other categories (category 2 pairwise ps < .025; 

all other pairwise ps > .20; omnibus test F(3,219) = 7.52, p <.0001). Waves did not have to 

be completed during a single sitting. Avatar identity and array composition were 

2This was not as precisely controlled as might be desirable, but in a study of this magnitude, where the time demands on participants 
were high, we had to make a compromise between control and reasonable expectations for our participants to reduce non–compliance 
and drop–outs.

Richler et al. Page 7

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



randomized. During the introductory session participants had to clear 30 waves of YUFOs to 

familiarize themselves with the task.

Introductory Lab Session—Example trials for the familiar object recognition measures 

(CFMT and VET) are shown in Figure 3. Task order and trial order within each task were 

the same for all participants.

Cambridge Face Memory Test (CFMT)– Long Form.—In the CFMT (Duchaine & 

Nakayama, 2006), participants complete an 18–trial introductory learning phase, in which a 

target is presented in three views, followed by three forced–choice test displays containing 

the target face and two distractor faces. Then, participants study frontal views of all six 

target faces together for a total of 20 s, followed by 30 forced–choice test displays. 

Participants are told to select the face that matches one of the original six target faces. The 

matching faces vary from the studied versions in terms of lighting condition, pose, or both. 

Next, participants are given another opportunity to study the six target faces, followed by 24 

test displays presented in Gaussian noise. Finally, the last block includes 30 “difficult” test 

displays where faces are shown as silhouettes, in extreme noise, or with varying expressions. 

The CFMT is scored as accuracy (percent correct) across all blocks, excluding the 

introductory learning trials, for a total of 84 trials. Previous work found that the CFMT 

produces measurements of high reliability in a normal adult population (e.g., test–retest with 

6 months delay = .70, Duchaine & Nakayama, 2006; Cronbach’s alpha = .91, Wilmer et al., 

2012).

Vanderbilt Expertise Test (VET).—The Vanderbilt Expertise Test (VET; McGugin et 

al., 2012) is similar in format to the CFMT. Participants study six target exemplars from a 

category, and are then presented with triplets and asked to indicate by key–press which 

object is the same identity (but different image) as any of the targets. Five categories were 

tested in the following order: houses, cars, birds, planes, and butterflies. There were 51 trials 

for each category. Three trials were catch trials that were not analyzed. Participants were 

also asked to rate their experience with each of the five categories (“interest in, years 

exposure to, knowledge of, and familiarity with” from 1 to 9). Accuracy (percent correct) 

was computed separately for each VET category. Previous work has produced good 

reliability in measurements with a normal adult population on the various VET subscales 

(e.g., Cronbach’s alpha = .64–.85 in McGugin et al., 2012; Cronbach’s alpha = .71–.93 in 

Van Gulick et al., 2015).

Test Sessions—Example test task trials are shown in Figure 3. Test task order was the 

same for all categories and participants. One trial order was generated for each test task for 

each category and was the same for all participants.

Learning Exemplars Task.—Thirty–six test objects (6 targets, 30 foils) from each 

category were used. The Learning Exemplars task was similar in format to the CFMT and 

VET. Participants studied an array of six target objects (three in view A, three in view B). 

On the subsequent test trials, three objects were shown in any combination of views A and 

B, and participants had to indicate by key–press which object matched the identity of any of 

the targets, regardless of changes in viewpoint. Chance was .33. There were two blocks of 
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24 trials. In the first block, targets were shown in the same view as during study. In the 

second block, targets were shown in the unstudied view. In the last six trials of block 1 and 

the last 12 trials of block 2 objects were presented in visual noise. All targets were shown 

with an equal frequency for each trial type (e.g., same/different identity x same/different 

viewpoint), and the same target was never presented on consecutive trials. Performance was 

scored as accuracy (percent correct) across all 48 trials. Cronbach alphas were .73–.89 (see 

Table 1). For cross–reference, this task is an earlier version of the Novel Object Memory 

Test developed later for 3 of the categories (Richler et al., 2017).

Matching Task.—All 50 test objects from each category were used. On each trial, a study 

object was presented (300 ms in block 1, 150 ms in block 2), followed by a category–

specific random pattern mask (500 ms), then a second object was presented (until response 

or a maximum of 3 s; time–out trials accounted for less than 1% of the data and were 

excluded from the analyses). Participants had to indicate by key–press whether the two 

objects were the same or different identity, regardless of changes in viewpoint or size (on 

different–size trials the test object was approximately 1.3 × 1.3 degrees of visual angle). 

There were 45 trials for each combination of correct response, viewpoint (same or different), 

and size conditions (same or different) for a total of 360 trials. Due to a minor programming 

error, the number of same and different trials were not evenly divided between blocks (range 

= 84–96 trials per block). Sensitivity (d’) was calculated separately for each block. 

Sensitivity was computed using Zhit rate – Zfalse alarm rate, adjusting for hit rates of 1 or 

false alarm rates of 0 using 1 – 1/(2N) and 1/(2N), respectively where N is the number of 

same (or different) trials. These scores were correlated (rs = .57–.78, all ps < .001) and were 

averaged to create a single matching task score for each category with Cronbach alpha .88–.

96 (see Table 1).

Composite Task.—Because prior work suggested that using a small number of stimuli 

improves the reliability of the composite task (Ross et al., 2015), the tops of five objects and 

the bottoms of a different five objects were used to make composites for each category. 

These ten objects were not used in the Learning Exemplars task. Trial timing was based on 

Wong et al. (2009). On each trial, a study composite (top of one object combined with the 

bottom of another object) was presented (500 ms), followed by a category–specific mask 

(2900 ms). A cue indicating whether the top or bottom was the target was presented during 

the last 500 ms of the mask presentation. Then, a test composite was presented with the cue 

(until response, maximum 3 s; time–out trials accounted for 1% of the data and were 

excluded from the analyses) and participants had to indicate by key–press whether the cued 

part was the same or different as the study composite, while ignoring the uncued half. On 

congruent trials, the cued and uncued parts were associated with the same response (i.e., 

both parts were the same or both parts were different); on incongruent trials, the cued and 

uncued parts were associated with different responses (i.e., one part was the same, the other 

part was different). There were 36 trials for each combination of correct response (same/

different), cued part (top/bottom), and congruency (congruent/incongruent) for a total of 288 

trials. Sensitivity (d’) was calculated separately for top–congruent, bottom–congruent, top–

incongruent, and bottom–incongruent conditions. These scores were correlated (average rs 
= .41–.60, all ps < .001) and were averaged to create a single composite task score for each 
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category with Cronbach’s alpha .91–.97 (see Table 1). This average composite score indexes 

overall performance on the task, which is the construct that is most similar to that measured 

by the other two tasks. It does not reflect congruency (the difference in performance between 

congruent and incongruent trials), which is an index of holistic processing (Richler & 

Gauthier, 2014). We did however compute congruency effects for use in an analysis 

comparing the 4 categories that received pre–training to the 5th, untrained, category.

Data Analysis—The data and software code for the primary analyses are available in the 

figshare repository (see supplemental online material). Due to experimenter or computer 

error, VET data for one or more subscales were missing for five participants and CFMT data 

were missing from one participant. Thirty–six participants withdrew from the study after the 

pre–test session (leaving 249 participants from the original 285). CFMT accuracy did not 

differ between participants who withdrew after the introductory session (M % correct = 

61.77, SD = 10.85) and those who completed test sessions for at least one category (M % 

correct = 63.22, SD = 14.23; t282 = 0.59, p = .56, Cohen’s d = .11); however, VET accuracy 

(aggregated across all categories) was significantly lower for participants who withdrew (M 
% correct = 63.00, SD = 9.87) vs. those who completed any number of test sessions (M % 

correct = 66.96, SD = 9.60; t278 = 2.30, p = .022, Cohen’s d = .41). Data from three 

participants were excluded for not completing the exposure game for any category. Thus, 

data from 246 participants (86% of sample; 105 male, 140 female, 1 not disclosed; mean age 

= 21.4 years; Caucasian = 144, Asian = 64, African American = 30, Hispanic = 6, Other = 2) 

are included in the analyses.

Among the 246 participants included in analyses, data for some task–category combinations 

were not collected due to experimenter or computer error (2.68%) or because participants 

withdrew from the study after completing at least one test session (n = 30; 8.21% of 

expected data). Both the intraclass correlation analyses and the confirmatory factor analyses 

that we report below can accommodate such participants with incomplete data. Of the 

collected data, 96.95% was included in the analyses. The remaining 3.05% of observations 

were excluded because of: 1) Failure to finish the exposure game for a given category or 

excessive delay between home–exposure and lab–test sessions for that category (1.38%); 

and, 2) Median RTs less than 200 ms for individual Composite and Matching Task 

categories and median RTs less than 1000 ms for individual Learning Exemplars categories 

(1.67%).

Intraclass Correlations.—We computed intraclass correlation coefficients (ICCs) on a 

within–task basis to assess the consistency of individual differences in task performance 

across categories. ICCs indicate the proportion of the total variability in the data due to 

consistent differences among people. They are simultaneously a measure of between–

subjects variability and within–subjects similarity (for reviews, see, e.g., Shrout & Fleiss, 

1979; Strube & Newman, 2007). Here, ICCs assessed the proportion of the total variability 

in the data due to differences among subjects that are stable across categories.

We computed two different types of ICCs because we think that a case could be made for 

each. Because we did not equate categories on task difficulty, we calculated the consistency 
of individual differences (Shrout and Fleiss, 1979). Like a Pearson correlation, it rewards 
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consistency in the relative ranks of a given participant across categories and does not 

penalize for overall shifts in category means due to variations in task difficulty or other 

factors that can produce absolute shifts in a participant’s scores across categories. Because 

categories were made of novel objects, one could argue that the specific categories we used 

are a random sample from a hypothetical universe of categories. This perspective would 

favor a second ICC model (categories as random effects) and so we computed a measure of 

agreement (Shrout and Fleiss, 1979). Within each ICC type, we computed two measures. 

The first (denoted ICC1 below) indicates the proportion of variance in performance on one 

category that is due to individual differences and is analogous to a test–retest correlation 

coefficient. The second (denoted ICC5 below) applied the Spearman–Brown formula to the 

ICC1 values and assesses the proportion of variance in composite scores averaged across the 

5 categories that is due to individual differences.

To estimate ICCs including participants with incomplete data and compute confidence 

intervals, we adopted a Bayesian analytic approach previously implemented by Tomarken, 

Han, and Corbett (2015) (cf. Spielhalter, 2001; Turner, Omar, & Thompson, 2001) using 

SAS PROC MCMC, Version 9.4 of the SAS System for WindowsTM (Copyright © 2002–

2014 SAS Institute Inc). We computed medians of the posterior distribution as our ICC 

estimates and formed 95% Bayesian Highest Posterior Density (HPD) intervals that 

represent the narrowest intervals with 95% probability (e.g., Christensen, Johnson, Brascum, 

& Hanson, 2011).

Confirmatory Factor Analyses.—Confirmatory factor analyses were conducted using 

EQS Version 6.3 (Bentler, 2008). The top panel of Figure 4 depicts the base model that was 

elaborated in subsequent steps. This model specifies that each of the 15 tasks (Matching 

(MA), Composite (CO), and Learning Exemplars (LE), for each of the five categories) loads 

on the factor denoting individual differences in performance on the target category. 

Rectangles denote observed measures (e.g., MA1) and ovals denote latent variables or, 

equivalently, factors (e.g., Cat1). The directed arrows from factors to observed measures 

specifies that a proportion of the variance of each observed task measure is influenced by the 

latent construct indicating individual differences in ability on a given category. Each directed 

arrow is associated with a factor–loading coefficient denoting the regression of the observed 

measure on the latent factor. The double–headed arrows among the category factors specify 

covariances among the factors. The small circles shown at the bottom of the model (e.g., 

em0) are residual (i.e., error) terms that denote a combination of reliable influences on 

observed scores that is specific to that indicator and random measurement error.

We developed a systematic sequence of models to test both substantive and methodological 

questions of interest. First, we tested Model 1, depicted in the top panel of Figure 4, that 

specifies five correlated lower–order category factors. Model 2 assessed whether task–

specific influences on the correlations among the observed indicators should be added to the 

specifications of Model 1. Such influences, often termed “method effects”, could partially 

account for the inter–correlations among measures of a given task (e.g., MA) assessed across 

different categories. If so, such effects should be specified and estimated to obtain a better 

fitting model and less biased estimates of the covariances and correlations among category 

factors. Although, in theory, the optimal approach would be to specify three method factors, 
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CFA models with a full array of method factors commonly run into failures to converge and 

inadmissible estimates due to empirical under–identification and other factors (see, e.g., 

Kenny & Kashy, 1992; Lance, Noble, & Scullen, 2002). We experienced such difficulties 

when trying to fit models specifying three method factors, one each for the LME, CO, and 

MA tasks. Instead we estimated task–specific components of variance by specifying 

covariances among the residual terms (e.g., em0–em4) for a given task. We specified 

correlated errors among each of the five LME, CO, and MA performance measures, 

respectively. This correlated uniqueness (CU) (e.g., Lance et al., 2002) approach to 

modeling method effects is commonly used in confirmatory factor analyses and structural 

equation modeling (SEM) (Brown, 2015).3 In terms of our sequence of models, we adopted 

the decision rule that, if, as we expected, the correlated uniqueness model (Model 2) fit 

better than Model 1 this feature would be included in all subsequent models that we tested. 

For clarity, Figure 4 omits correlated error terms.

Model 3 built on the best–fitting model from the previous stage and constrained the factor 

loadings of the three tasks to be equal (i.e., invariant) across the five categories. These 

constraints were imposed on a within–task cross–category basis (e.g., each of the five MA 

factor loadings were constrained to be equal). This specification did not reflect a strong 

prediction of invariance because categories were not equated on task difficulty and other 

psychometric features. However, this model was of interest because it provided a rather 

rigorous test of the consistency of individual differences across categories. It additionally 

allowed us to assess whether the category for which participants received no training 

(category 0) had a different psychometric structure than the trained categories (1–4).

Model 4 directly tested our prediction that performance across all categories is driven by a 

higher–order construct that reflects a general visual ability with objects. As shown in the 

bottom panel of Figure 4, this is a second–order factor model specifying that an over–

arching Object Recognition Ability (o) dimension of individual differences influences 

performance on the lower–order factors. The residual terms (e.g., R_C0) that also influence 

the lower–order factors represent category–specific influences on individual differences in 

performance. Model 4 specifies that the higher–order factor is the only determinant of the 

correlations among the lower–order category factors. It can be shown that this model is a 

restricted version of the correlated factors model shown in the top panel of Figure 1, such 

that the relative fit of the two models can be directly compared (see details below). A 

popular alternative to the second–order factor model is a bifactor model (e.g., Chen, West, & 

Sousa, 2006; Reise, 2012). The online supplemental discusses bifactor modeling in the 

present context and why we have chosen to focus on the second–order factor model.

After modeling the internal structure of the performance on the five categories, we addressed 

the issue of relations to external variables. In model 5, using the best–fitting model from the 

3There are alternatives to the CU approach, the most viable of which at the present time is the correlated traits, correlated methods 
minus 1, or CT–C(M–1)) approach (Eid, 2000; Eid, Lischetzke, Nussback, & Trierweiler, 2003) characterized by specification of one 
less method factor than the full array possible (e.g., 2 task factors in the present context). Although these two approaches have relative 
advantages and disadvantages (see, e.g., Eid et al., 2003), our results and conclusions were unchanged when we applied the most 
conceptually meaningful version of a CT–C(M–1) model instead of the CU model. A summary of these analyses is available upon 
request. This issue is also discussed in the Supplemental Section.
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previous sequence of models 1–4, we examined the correlation between individual 

differences in performance on the manipulated categories and individual differences in the 

ability to recognize familiar object categories as assessed by the VET and CFMT. We 

computed two sets of correlations. The first set is between the observed measures and the 

latent factor or factors of interest. Using estimated reliabilities, the second set corrected the 

individual difference measures for measurement error using a latent variable approach in 

which: 1) Each measure constituted a factor with a single indicator; and, 2) The variances of 

error terms were fixed at values that yielded the appropriate true score variance estimate for 

the factor. Random measurement error can attenuate correlations and such reliability 

corrections are consistent with our emphasis on latent variables.

To estimate all models, we used the robust two–stage estimator (TS) developed by Savalei, 

Bentler, and colleagues (Savalei & Bentler, 2009; Savalei & Falk, 2014; see also Yuan & Lu, 

2008) because of two features of our data: 1) The presence of some missing data; and 2) 

Non–normality. For the 246 participants included in analyses (i.e., those who completed at 

least one task for at least one category), 14.94% of the maximal possible number of data 

points across tasks and categories were missing. In addition, although the most commonly 

used SEM estimators assume multivariate normality, the set of 15 tasks demonstrated 

deviations from multivariate normality according to the Doornik–Hansen (2008) test, χ2(30) 

= 412.42, p < .001 and to Yuan, Lambert, and Fouladi’s (2004) extension to incomplete data 

structures of Mardia’s (1970) test of multivariate kurtosis, z = 21.78, p < .001. On univariate 

assessments, the Shapiro–Francia tests of non–normality (Shapiro & Francia, 1972; 

Royston, 1983) and assessments of skew and kurtosis (D’Agostino, Belanger, & 

D’Agostino, 1990) indicated significant deviations from normality for all five of the 

Matching tasks, three of the five Learning Exemplar tasks, and one Composite task (see 

Table 1). Violations of normality were not extreme but of sufficient magnitude to warrant a 

robust estimator.

In the first stage of the robust TS algorithm, maximum likelihood (ML) estimates of the 

vector of means and the covariance matrix of the observed data (including observations with 

incomplete data) are obtained from a saturated (i.e., unrestricted) model. In the second stage, 

the specified model is estimated with the covariance matrix generated in the first stage used 

in place of the observed sample covariance matrix typically used for maximum likelihood 

(ML) estimation of CFA models. These steps allow for the inclusion of observations with 

incomplete data. The robust TS estimator uses two additional mechanisms to correct for 

non–normality: (1) A sandwich–type covariance matrix (Yuan & Lu, 2008) that yields 

standard errors for parameter estimates that are adjusted for non–normality and for the fact 

that a two–stage estimation procedure is used; and, (2) The Satorra–Bentler (SB; Satorra & 

Bentler, 1994) scaled chi–square correction to adjust the overall chi–square test of model fit 

and fit indices. This correction is used by a variety of SEM estimation methods when data 

are non–normal and is specifically designed to adjust for non–normal kurtosis. In accord 

with the statistical theory underlying structural equation modeling (e.g., Cudeck, 1989), all 

analyses were performed on the covariance matrix estimated in the first–stage and not the 

correlation matrix. To aid interpretation, however, at several points below we report 

standardized results (e.g., correlations among factors) calculated either directly (when 
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models allowed fixing factor variances at 1) or from re–scaling of the non–standardized 

estimates yielded by the TS estimator.4

We assessed both the absolute and relative fit of models using several measures. In 

conventional null hypothesis testing, the hypothesis tested is typically not the researcher’s 

substantive hypothesis (which is typically aligned with the alternative hypothesis). In 

contrast, in CFA and structural equation modeling (SEM) in general, the model being 

directly tested often reflects the researcher’s substantive hypothesis. Thus, non–significant 

results often favor the researcher’s hypothesis. In terms of absolute fit, although we report 

the chi–square test of exact fit, it has well–known limitations: 1) There is a strong influence 

of sample size such that models with only rather trivial misspecifications can be rejected 

(e.g., Tomarken & Waller, 2003). Although our sample size was on the small side for a SEM 

analysis, such influence might still have been operative to some extent; 2) It is a measure of 

model “mis–fit” that favors binary reject/no–reject decisions rather than an evaluation of 

degree of fit on a more continuous metric; and, 3) It imposes a criterion – that a model fits 

perfectly – that may be too stringent considering that SEM models have numerous facets and 

that all models are, at best, approximations (e.g., MacCallum, Browne, & Sugawara, 1996). 

For this reason, SEM analysts almost always rely on other indices to evaluate model fit. We 

used the root mean–squared error of approximation (RMSEA; Steiger & Lind, 1980), 

standardized root mean squared residual (SRMR; Bentler, 1995), and Comparative Fit Index 

(CFI; Bentler, 1990) to assess model fit. The SRMR is a measure of absolute fit that can be 

interpreted as the average discrepancy between the correlations among the observed 

variables and the correlations predicted by the model. Lower values indicate better fit. The 

RMSEA is an estimate of a parsimony–corrected fit index because it assesses the degree of 

discrepancy between the observed and model–implied covariances while also penalizing for 

model complexity (e.g., for equivalent discrepancy it rewards the more parsimonious model 

that estimates fewer parameters and has more degrees of freedom). Smaller values indicate 

better fit. The RMSEA is typically treated as the degree to which a model fits approximately 

in the population, with values < .06 typically taken to indicate close fit (e.g., Hu & Bentler, 

1998, 1999). Confidence intervals can also be formed around the estimated RMSEA value in 

a given sample. We computed the RMSEA estimate and confidence bounds for non–normal 

data that was developed by Li and Bentler (2006; see Brosseau–Liard, Savalei, & Li, 2012) 

and that is an option in EQS. The CFI is an index of the incremental or comparative fit of the 

target model relative to a baseline model of independence in which all the covariances 

among the observed indicators are fixed at 0. CFI values vary from 0 to 1, with values closer 

to 1 indicating better fit. Given that the comparison is to the independence model, the CFI 

often tends to indicate better fit than the other indices. Based on simulations, Hu and Bentler 

(1998, 1999) recommend the following criteria for adequate fit on these measures: SMSR ≤ .

08, RMSEA ≤ .06, and CFI ≥ .95. The RMSEA and CFI were computed using the Satorra–

Bentler scaled chi–square values.

A primary focus was the comparison of alternative models, most of which were nested 

versions of one another. Model A is nested in model B if it is a restricted version of model 

4See the online supplemental material for further discussion of the TS robust approach and our rationale for using it instead of a robust 
full–information maximum likelihood (FIML) approach or other robust alternatives for incomplete, non–normal data.
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B; that is, if it is identical to model B except that certain parameters that are freely estimated 

in B are restricted in A by being fixed at specific values (often 0) or constrained to be equal 

to other parameters or combinations of parameters. Nested models were compared using the 

scaled χ2 difference test (Satorra & Bentler, 2001) that is appropriate when the Satorra–

Bentler (S–B) correction for non–normality is used. We used the version of the scaled 

difference test developed by Satorra and Bentler (2001) that computes a scaling factor for 

the test as

cdi f =
d f M0

× cM0
− d f M1

× cM1
d f M0

− d f M1
,

Where d f M0
 are d f M1

 the degrees of freedom for the more and less restrictive models, 

respectively, and cM0
 and cM1

 are the scaling factors for the two models (equal to the ratio of 

the uncorrected χ2 value for the test of exact fit to the S–B corrected value for each model) 

(e.g., Bryant & Satorra, 2012). In turn, the scaled difference test is computed as the 

difference between the uncorrected tests of exact fit divided by cdif, with degrees of freedom 

equal to the difference in degrees of freedom between the two models. We used an Excel 

macro written by Bryant and Satorra (2013) to conduct the S–B difference tests.5 If 

restrictions imposed by Model A do not impair overall model fit relative to Model B, the 

result would be a non–significant χ2 test. Thus, in the context of nested tests, non–

significant results often serve to corroborate the researcher’s hypotheses.

In addition, we report values of the Akaike Information Criterion (AIC; Akaike, 1973) and 

the Bayesian Information Criterion (BIC; Raftery, 1995; Schwarz, 1978) to convey the 

relative fit of both nested and non–nested models. Both indices penalize for model 

complexity, operationalized as the number of free parameters estimated by a given model. 

To compute these indices. we used what is probably the most common approach in SEM 

analyses, adding to the chi–square test of overall fit a penalty factor that is a function of the 

number of free parameters estimated by a model (denoted below as k).

We computed these indices using the following formulae:

AIC = χSB
2 + 2k

BIC = χSB
2 + kln(N)

We also present a small–sample corrected version of the BIC (e.g., Enders & Tofigi, 2008), 

computed as,

5Satorra and Bentler (2010) proposed an updated scaled difference chi–square test primarily because the original test can sometimes 
produce a negative correction factor. The original test never yielded negative correction factors for our data and we used the original 
test primarily because it is more widely used and easier to perform than the updated version.
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SBIC = χSB
2 + kln N + 2

24

Lower values of all three indices indicate better fit. The information indices were computed 

using the Satorra–Bentler scaled chi–square values.

A major focus of our analyses was not simply evaluation of model fit but examining and 

interpreting parameter estimates of interest (e.g., correlations among factors). Much of the 

discussion of results below emphasizes model fit not only because it is important in its own 

right but also because good fit can be considered a necessary condition for examination and 

evaluation of parameter estimates.

Results

Univariate Descriptive Statistics

Reliability (Cronbach’s alpha), mean performance measures (mean accuracy or d’) and tests 

of normality (skewness, kurtosis, Shapiro–Francia normality test) for the test tasks and 

familiar object recognition measures (CFMT and VET) are shown in Tables 1 and 2, 

respectively. All tasks demonstrated good internal consistency reliability and 10 of the 15 

tasks demonstrated statistically significant violations of normality. It is also of interest that 

average performance on the Learning Exemplar task ranged from .48 to .68 depending on 

the category. Coupled with the fact that per–subject proportions were calculated across 48 

trials, these values indicate that ceiling and floor effects were not significant factors and that 

transformations of proportions (e.g., computing odds or log odds) were not necessary.

Effect of Training

Because we did not equate categories for difficulty, we cannot directly compare mean 

performance to test for a training effect (in fact, Table 1 suggests that the non–exposed 

category was generally one of the easier categories). However, the composite task has been 

used in previous studies to assess training effects, and controls for difficulty differences 

across categories as it includes its own baseline, allowing a within–category measure of 

whether training had an influence on performance. Specifically, a difference in performance 

between congruent and incongruent trials (in either accuracy or RT) is a common marker of 

face–like expertise (see Richler & Gauthier, 2014), and has been observed following 

individuation training for novel objects like the ones used here (e.g., Chua et al., 2015; Wong 

et al., 2009). Indeed, we based the composite task parameters on Wong et al. (2009), who 

found slower response times on incongruent compared to congruent trials only in 

participants trained to individuate objects from the tested category.

To test whether a similar effect of training was observed here on the same dependent 

measures as in Wong et al. (2009), we conducted 2 × 2 repeated measures ANOVAs on 

sensitivity (d’) and correct RT in the composite task with category (untrained vs. average of 

trained categories) and congruency (congruent vs. incongruent) as factors. The qualitative 

effects were the same for both RT and d’ (see Figure 5). There were significant main effects 

of training (RT: F1,219 = 9.18 , MSE = 15999.67, p = .003, ηp2 = .04; d’: F1,219 = 81.59 , 
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MSE = .40, p < .001, ηp2 = .27) and congruency (RT: F1,219 = 17.26, MSE = 1561.11, p < .

001, ηp2 = .07; d’: F1,219 = 7.06, MSE = .18, p = .008, ηp2 = .03). More importantly, the 

interaction between training and congruency was significant (RT: F1,219 = 46.34, MSE = 

1659.16, p < .001, ηp2 = .18; d’: F1,219 = 8.13, MSE = .16, p = .005, ηp2 = .04), such that 

there was a significant congruency effect for the trained categories (RT: F1,219 = 99.60, MSE 
= 978.16, p < .001, ηp2 = .31; d’: F1,219 = 37.20, MSE = .07, p < .001, ηp2 = .15), but not 

the untrained category (RT: F1,219 = 2.85, MSE = 2242.11, p = .09, ηp2 = .01; d’: F1,219 < .

00, MSE = .27, p = .99, ηp2 < .00)6.

We also computed correlations between all categories for each task to determine whether 

some amount of experience is necessary for individual differences in ability to be reflected 

in performance. As indicated in Table 3, for each of the three tasks, the means of the 

correlations between the untrained and trained categories were almost identical to the 

average of the correlations within trained categories. Thus, although training influenced 

performance, resulting in effects similar to those seen in previous studies (e.g., Wong et al., 

2009) only for trained categories, it does not influence the expression of individual 

differences. We therefore included the untrained category in the ICC and CFA analyses. As 

described below, the results of specific CFA analyses also underscore the similarity between 

the untrained category and the trained ones.

Intraclass Correlations

Intraclass correlations and 95% HPD intervals are shown in Table 4. Several patterns are 

evident. First, the ICC1 values indicate that a significant proportion of the variance in task 

performance on any single category was attributable to individual differences among 

participants. Across the three tasks, when consistency of performance was assessed (i.e., 

category is modeled as a fixed effect), approximately 50–60% of the total variability in the 

data was due to individual differences. When category was modeled as a random effect and 

agreement assessed, the proportions of variance were lower, especially for the LE and MA 

tasks, but by no means trivial. Measurably lower correlations for the agreement measure 

would be expected in this case because no attempt was made to equate categories on 

difficulty level. Finally, the ICC5 values indicating the reliability of task performance 

averaged across categories were quite high and either approached or exceeded the expected 

range (≥.70) for measures of individual differences in the areas of personality and 

temperament. This conclusion holds for both measures of consistency and agreement. These 

results exemplify the beneficial effects of aggregation on reliability and consistency (e.g., 

Rushton et al., 1983).

Confirmatory Factor Analysis

Fit statistics for the sequence of CFA models are provided in Table 5. As summarized above, 

we relied more on other indices than the chi–square test of exact fit. Model 1 specified five 

correlated category factors, with the relevant LE, MA, and CO task performance measures 

serving as the observed indicators for each factor. As anticipated, the overall fit of this model 

was unsatisfactory because it omitted parameters reflecting the correlations within a task 

(e.g., MA) across categories (see Table 5). For example, the RMSEA was clearly above the 

range typically recommended for evaluation of fit as adequate. Model 1 also was associated 
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with several inadmissible estimates (e.g., covariances among factors that implied 

correlations greater than 1) that may also indicate model mis–specification, although other 

factors (e.g., the generally high correlations among variables) may also have contributed.

As expected, when correlated errors among the observable task indicators were added in 

Model 2, the fit was notably improved (nested χ2(30) = 108.61, p < .0001). The values of 

the RMSEA, CFI, and SMMR all indicate that this model met conventional criteria for 

adequate fit. Although the AIC and SABIC values for Model 2 were notably lower than the 

corresponding values for Model 1, somewhat surprisingly the model 2 BIC was higher. This 

discrepancy is likely due to the fact that the BIC more strongly favors parsimony than the 

other indices. Nevertheless, the clear weight of the evidence and the plausibility of task–

specific shared variance favors Model 2 relative to Model 1.

Using Model 2, we also assessed whether the correlations involving the factor for the 

untrained category (denoted category 0) were different from the correlations involving only 

the other four categories. We imposed the linear constraint that the average of the four 

correlations involving category 0 was equal to the average of the six correlations not 

involving category 0. That this constraint did not produce a significant impairment in fit 

relative to Model 2 (S–B nested χ2 (1) = 1.51, p = .22) indicates that correlations involving 

the untrained category were not unique. Similarly there were no differences when the same 

linear constraint was imposed on factor covariances rather than correlations (S–B nested χ2 

(1) = 0.80, p = .37).

We also assessed whether correlations within the two relatively visually similar Ziggerin 

(categories 0 and 3) and the two Greeble (categories 1 and 2) stimulus types were higher 

than the between–type correlations. We conducted four sets of analyses, each of which 

compared within–type to across–type correlations. Specifically we tested whether: (1) 

r03=r01=r02; (2) r03=r13=r23; (3) r12=r01=r13; and, (4) r12=r02=r23. In all four cases, Satorra–

Bentler nested chi–square tests indicated that these equality constraints induced no 

significant impairment in model fit, or even trends, relative to Model 2 (χ2 (2) = 3.03, p=.

22;χ2 (2) = 1.69, p=.44;χ2 (2) = 2.58, p=.28; χ2 (2) = 1.75, p=.42, respectively). Thus, 

correlations within a stimulus type were not different from correlations across stimulus 

types.

Model 3 built upon Model 2 but imposed the restriction of equal factor loadings across 

categories (e.g., the loadings of MA1–MA5 on their respective category factors were 

constrained equal). This model also fit adequately (see Table 5). Although the value of the 

SRMR clearly increased in Model 3 relative to Model 2, it still falls within the conventional 

range of good fit on this measure. The other 5 indices all adjust for complexity to some 

degree (i.e., rewarding more parsimonious models) and indicate much smaller differences 

between the two models (RMSEA, CFI) or favor Model 3 (AIC, BIC, SABIC). A nested 

chi–square test indicated that the restrictions imposed by Model 3 did not significantly 

impair fit relative to Model 2, although caution is necessary because the significance level 

was very close to the rejection threshold (nested χ2(8) = 15.36, p = .052). On balance, we 

think that these results indicate that the restrictions imposed by Model 3 fit well enough to 

use it as the starting point for the next steps in the modeling sequence. However, we report 
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below the fit of separate higher–order factor models that include and do not include the 

restrictions on the loadings. Overall the Model 3 results indicate that the factor structure of 

the three tasks could be considered reasonably invariant across categories. Such invariance is 

another indication that that the untrained category (0) did not have a unique structure relative 

to the other categories.

A notable feature of Model 3 (also characteristic of Model 2) is the magnitude of the 

association among the category factors. Table 6 shows the correlations among the factors 

generated by the standardized solution and 95% bias–corrected bootstrap confidence 

intervals (Williams & MacKinnon, 2008) around these values. As indicated, the correlations 

among the category factors were quite high, ranging from .82 to .96 (mean r = .895), with 

even the lower bounds of confidence intervals at very high values (all were greater than .73).

Using Model 3 as a starting point, Model 4 specified the higher–order factor (o) to account 

for the covariances and correlations among the category factors. This model did not 

significantly impair fit compared to Model 3 (nested χ2(5) = 2.11, p = .83) and fit well in an 

absolute sense (see Table 5). Indeed, as indicated by Table 5, the Model 4 values of the fit 

indices that most explicitly penalize for model complexity were the lowest (RMSEA, AIC, 

BIC, and SABIC) or essentially tied for the lowest (CFI) among the four models tested. This 

provides support for our hypothesis that performance across novel object categories can be 

accounted for by a single overarching Object Recognition Ability factor.

Model 4 is shown in Figure 6 with standardized parameter estimates. The lower–order 

loadings of the observed measures on factors are generally high, with values for MA, CO 

and LE ranging, respectively from .68 to .80, .73 to .80, and .47 to .56.7 The most notable 

feature of Model 4 is that the standardized loadings from the higher–order factor (o) to 

lower–order category factors are quite high (.910–.995; all ps highly significant based on 

bootstrap assessments), suggesting that the higher–order o factor accounts for on average 

89% of the variance in lower–order category factors (% variance = .83, .85,.91,.99, and .89 

for categories 0–4). Because of the borderline acceptability of the model imposing invariant 

factor loadings, we also specified a higher–order factor model in which the lower–order 

loadings (i.e., of observed indicators on category factors) were not constrained to be equal 

and compared its fit to model 2 rather than model 3. This model also fit well in an absolute 

sense (e.g., Satorra–Bentler χ2(55) = 81.10, RMSEA=.050), with no impairment in fit 

relative to model 2 (nested χ2(5) = 7.16, p

Correlations Between o and Familiar Object Recognition

Results summarized so far indicate that a single higher–order factor, o, accounts for 

performance across novel object categories. To test whether o also predicts recognition 

performance on familiar object categories, we specified a fifth model that examined 

correlations between o and each familiar object category (faces measured with the CFMT; 

birds, butterflies, houses, cars, and planes measured with the VET). Table 7 presents 

7Model 4 specifies invariance of the unstandardized lower–order factor loadings per measure. This restriction does not imply complete 
invariance of standardized loadings. =.21) and almost identical factor loadings proportions of variance accounted for by the higher–
order factor as Model 4.
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correlations when the familiar object measures were corrected for unreliability (using the 

values of coefficient alpha summarized in Table 2), and uncorrected values. We reliability–

corrected the latter by specifying each individual measure as a latent variable and fixing the 

error variance and factor loading at appropriate values such that the proportion of variance of 

the observed measure accounted for by the latent factor equaled the reliability of the 

variable. We then allowed these latent variables to be freely correlated with each other and, 

most importantly, with o. Other model specifications were identical to that of Model 4. As 

indicated by Table 5, this model fit well. Because Model 5 introduces several additional 

variables not included in Models 1–4, its fit indices should not be directly compared to those 

of the other models. As shown in Table 7, all corrected correlations were statistically 

significant, with o more highly correlated with performance on birds, butterflies, houses, and 

planes than faces and cars. The un–corrected correlations shown in the right–hand columns 

are slightly attenuated but still statistically significant.

Study 2

In Study 1 we found evidence for o, a higher order factor supporting object recognition 

performance across different tasks and categories. In Study 2, as an initial effort to establish 

the divergent validity of o, we explore the extent to which it is related to a battery of 

cognitive and perceptual constructs, as well as measures of personality. The primary goal is 

to quantify how much of the individual differences captured in our tasks remain after 

controlling for such factors. To this end, we measured performance on all three tasks with 

two of the object categories from Study 1. Although we use a smaller sample in Study 2, we 

expected to replicate results from Study 1 with moderate to strong relations between 

categories and object recognition tasks but, at the same time, evidence for discriminant 

validity.

Prior work with LE tasks with both familiar and novel objects found that performance for 

each object recognition task was correlated with IQ (r ~ .1–.3) but that virtually none of the 

shared variance among different categories was explained by IQ (Richler et al., 2017). Here, 

we also assess IQ, using tests associated with fluid intelligence (gF) and targeting the ability 

to solve new problems (Engle, Tuholski, Laughlin & Conway, 1999). We expect that despite 

moderate correlations with some individual object recognition tasks, most of the shared 

variance between object recognition tasks will not be accounted for by IQ.

Aside from IQ, we selected a variety of tasks from prior individual differences research that 

could be plausibly expected to account for some of the variance in o (note that our goal was 

not to decompose o into its constituent parts). We included tasks that tap into different 

aspects of executive function (Miyake & Friedman, 2012): two Stroop tasks and a shifting 

task that requires switching between mental sets. We also included a measure of visual 

short–term memory capacity and a measure of local/global perceptual style. Finally, because 

our approach requires completion of a large number of tasks (over many sessions in Study 

1), we were concerned that more conscientious subjects may have performed better, 

accounting for some of the shared variance across tasks and categories in Study 1. In Study 

2 we gave subjects a personality inventory that includes a measure of conscientiousness. 

Aside from this self–report measure, the contribution of any aspect of motivation or 
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personality to our object recognition tasks would also be evidenced by strong correlations 

between object recognition tasks and any of the other performance measures mentioned 

above.

Methods

Participants

We analyze data for fifty–four participants (13 male, 41 female, 0 not disclosed; mean age = 

20.4 years; 50 right–handed). Sixty–six Vanderbilt University Community members were 

originally recruited (15 male, 51 female, 0 not disclosed; mean age = 20.5 years; 61 right–

handed). Four participants only completed the first session and were thus excluded. 

Additionally, data from 5 participants were excluded because of median RTs less than 200 

ms for Composite or Matching Tasks and/or median RTs less than 1000 ms for individual 

Learning Exemplars categories. Lastly, all data from 3 additional participants were excluded 

because of too many (>57 out of 144 trials) timed–out trials on the Composite task (on 

which trials timed out after 3 seconds). Thus, data from 12 total participants were excluded. 

Power calculations for Pearson correlations indicated that with n=54 we would have 80% 

power to detect a correlation of .37 or higher and 70% power to detect a correlation of .33 or 

higher. Note that our primary concern was not so much whether there was any correlation 

between our object recognition measures and individual difference measures but whether 

there was a sufficiently large correlation to warrant significant concern that the strong 

correlations between categories were largely due to associations with individual difference 

measures.

Of these remaining 54 participants, Fluid IQ data for 3 participants, Stroop data for 1 

participant and VSTM data for 1 participant were missing due to computer error, but the rest 

of their data were analyzed. Finally, due to experimenter error, Stroop data from 4 additional 

participants were missing after the first session. Thus, these participants completed the 

Stroop task again at the beginning of the second session.

Test Sessions and Tasks

Participants completed all tasks in two 1.5–hour sessions occurring a maximum of seven 

days apart and were compensated a total of $45. Because the results of Study 1 suggested 

that measurement of o was not strongly influenced by whether participants received 

experience in the Space Invaders Game or not, we did not include a training phase in Study 

2. In the first session, participants completed the Stroop tasks, the IPIP, Learning 

Exemplars–0, Composite–0, Matching Task–0, L–EFT and Number/Letter Shifting Task. In 

the second session, participants completed the Fluid IQ tasks, the Learning Exemplars–2, 

Composite–2, Matching–2 and VSTM tasks. Participants completed all tasks in the same 

order and were allowed to take a break between each task.

Learning Exemplars Task.—This task was identical to that used in Study 1. Here, 

participants completed the task for categories 0 and 2.
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Composite Task.—Participants completed this task as in Study 1, for categories 0 and 2, 

with the following modifications. Because of the high reliability of this task in Study 1, we 

shortened the task by using a random selection of only half of the trials (144 instead of 288), 

with the constraints of keeping the number of trials of each condition type equal (same/

different, top/bottom, congruent/incongruent).

Matching Task.—Participants completed this task as in Study 1, for categories 0 and 2, 

with two modifications. Because reliability of the previous matching tasks was high, to 

shorten the task we randomly selected half of the original 360 trials to include in this task. 

Study objects were all presented for 300 ms (instead of both 150 ms and 300 ms in Study 1).

Stroop.—In the first of two blocks, participants reported the color of a word and the word 

was presented in either a congruent or incongruent color. In a second block, participants 

reported the quantity of a group of numbers while the numbers themselves were either 

congruent or incongruent with the quantity (e.g., “4444” is congruent and “33” is 

incongruent). In each block, trials began with a 500 ms fixation cross followed by a 250 ms 

inter–stimuli interval and then the stimuli (either words or numbers) presented until a 

response was made. The Stroop task taps into individual’s selective attention and cognitive 

flexibility. We calculated a Stroop interference index using the average response time on all 

correct congruent trials minus that on all correct incongruent trials.

Number/Letter Shifting.—We modified the shifting task from Friedman et al. (2008). 

Here, we only used the number–letter shifting version of the task (adapted from Rogers and 

Monsell, 1995). Participants first saw a square appearing above or below a horizontal 

midline dividing the screen in half for 150 ms. Then a number–letter (5G) or letter–number 

(A4) pair appeared within the square. When the pair was in the square above the line, 

participants indicated whether the number was odd or even (2, 4, 6, and 8 for even; 3, 5, 7, 

and 9 for odd) and when the pair was in the square below the line, participants indicated 

whether the letter was a consonant or a vowel (G, K, M, and R for consonant; A, E, I, and U 

for vowel). Participants were instructed to be “as accurate and fast as possible; accuracy is 

more important.” Two 24–trial practice blocks and 6 warm–up trials at the beginning of each 

block were not analyzed. Trial order was randomized but constrained such that no more than 

four switch trials could occur in a row (randomization occurred once and then every subject 

completed trials in this same randomized order). To prevent item–specific negative priming, 

trial order was also constrained so that the stimulus on a switch trial was never the same as 

that on the previous trial. To index shifting ability, we calculated the “switch–cost” 

(Friedman et al., 2008), which is the difference between the mean reaction times on correct 

trials in which no switch occurred and mean reaction times on correct trials in which a 

switch occurred. Individual trials (3.4%) were excluded because reaction times were less 

than 200 ms or more than 5000 ms.

Leuven Embedded Figures Test (L–EFT).—In the L–EFT, participants have to find a 

target shape embedded within a larger figure. Participants were shown the target shape and 

three figures simultaneously and chose which of the three figures contained the target shape. 

Participants could make a response via button press at any point, but after three seconds, the 
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target shape and three options disappeared. There were two practice trials followed by 64 

experimental trials. The L–EFT stimuli were developed specifically to vary in perceptual 

grouping features like closure, symmetry and complexity so that trial difficulties varied (de–

Wit et al., 2017). The test is considered an index of perceptual style (local information 

processing). We indexed performance using response times for correct answers.

Fluid Intelligence (FIQ).—Following several previous studies (e.g., Redick et al., 2013; 

Hambrick et al., 2007; Hambrick et al., 2008. Van Gulick et al., 2016), we included three 

different tasks known to load highly on fluid intelligence (gF) and targeting the ability to 

solve new problems (Engle, Tuholski, Laughlin & Conway, 1999). There were specific time 

limits for each block, but no time limits for a response on each trial and within each block, 

trials were ordered from easiest to most difficult with practice trials preceding every block. 

In the first task, participants completed as many of 18 trials from the Raven’s Advanced 

Progressive Matrices (RAPM; Raven, Raven, & Court, 1998) as possible in ten minutes. In 

the RAPM, a 3 × 3 array of images is presented in which the bottom–right image has been 

removed. Participants must choose with of eight options is the removed piece based off of 

patterns within the matrix. This task was followed by a block of Letter Sets (Ekstrom, 

French, Harman, & Dermen, 1976) in which participants saw five sets of letter strings with 

all but one of the letter strings following a specific rule. Participants had seven minutes to 

complete as many of the 30 trials as possible. The final task was number series (Thurstone, 

1938), in which each trial presented an array of 5–12 numbers forming some type of pattern. 

Participants had to choose which of 5 number options would follow the presented array (e.g. 

if the array was 1 2 3 4 5, the correct response was 6). Participants had five minutes to 

complete as many of the 15 trials as possible. Fluid intelligence was indexed by the total 

number of correct responses made for all three tasks given time constraints.

Visual Short–Term Memory Task.—To index visual short–term memory capacity, we 

used a change detection task in which participants reported if a change occurred between 

two arrays of colored squares (Xu et al., 2017). Each trial began with a 1,000 ms fixation, 

followed by an array of colored squared presented for 150 ms. After a 1,000 ms delay 

period, a probe square appeared at one of the square locations and participants responded if 

this square was the same or a different color from the original square presented at that 

location in the array. Here, we only presented arrays of six squares and, based on the results 

reported in Xu et al., (2017), we used three blocks of 50 trials each with 30 seconds rest in 

between each block. Trials were randomized across participants. Performance was scored as 

the total number of correct responses over the 150 trials.

International Personality Item Pool (IPIP).—The IPIP (Goldberg, 1999) requires 

participants to rate 50 items on a 5–point Likert scale from “Very accurate” to “Very 

inaccurate.” Subjects completed a paper–version of the questionnaire and were not given any 

time limit. An average score is computed for each Big–Five personality factors 

(Extraversion, Agreeableness, Conscientiousness, Emotional Stability, Intellect).
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Results

Means and reliability indices for each measure are found in Table 8. The shorter versions of 

the MA and CO tasks provided measurements that were as reliable as in Study 1. Reliability 

was above .8 in all cases except the Stroop cost (.50, difference scores often have limited 

reliability and in the present case it is due to the high correlation between congruent and 

incongruent RTs, r =.92), and the short versions of each FIQ task (.72–.79), although their 

combined reliability is .87.

Correlations among Observed Measures

The first two columns of Table 9 present the zero–order Pearson correlations between the 

cognitive and personality measures and performance on each of the two categories. To form 

an overall category score for each participant we first standardized each of the three category 

tasks (CO, MA, and LE) across participants and computed the mean of the three 

standardized scores for each participant. As expected, the correlation between the Cat0 and 

Cat2 aggregate scores was very high (r = .71, 95% CI = .54 to .82).

Similar to Study 1, normality assessments indicated that most of the measures had at least 

some degree of non–normality. Deviations from univariate or bivariate normality can yield 

confidence intervals for Pearson correlations with inaccurate coverage if conventional Z or t 
tests are used (e.g., Beasley, DeShea, Toothaker, Mendoza, Bard, & Rogers, 2007; Bishara & 

Hittner, 2017). For this reason, we computed confidence intervals for correlations using 

bootstrapping. For each correlation of interest, we used the observed–imposed (OI) 

univariate sampling bootstrap (e.g., Beasley et al., 2007; Lee & Rodgers, 1988) to generate 

1000 samples, after which we computed bias–corrected and accelerated (BCA) confidence 

intervals (e.g., Efron, 1987; Efron & Tibshirani, 1993, pp. 184–188 and 326–328). Note that 

95% confidence intervals that do not include 0 indicate rejection of the two–tailed null 

hypothesis that the population correlation equals 0. Such cases are indicated in bold in Table 

9.

The highest and most consistently statistically significant correlations involved the three FIQ 

measures (Ravens, Letter Sets, and Number Scores). All three were positively correlated 

with category performance, with 5 of the 6 confidence intervals having lower bounds greater 

than zero. The proportions of variance (i.e., r2) in the category measures accounted for by 

the FIQ measures vary between 5.76% and 21%. The other significant correlations were 

those between Category 0 and Category 2 scores and the shift cost measure and between 

Category 2 scores and Visual STM performance. Lower shift costs and better short–term 

memory performance predicted better category performance, with proportions of variance in 

the 11–14% range.

Table 9 also presents four additional indices that address a different question: To what 

degree is the correlation between Cat 0 and Cat 2 accounted for by their associations with 

the other individual difference measures? First, we computed partial correlations between 

Category 0 and Category 2 that adjusted for their common association with each of the 

individual difference measures. These correlations assessed the strength of the association 

between those components of variance in category performance that were independent of the 
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cognitive measures (i.e., they are identical to zero–order correlations between the Cat0 and 

Cat2 residuals formed from the regression of each on a given external measure). As the 

values and BCA confidence intervals shown in Table 9 indicate, partial correlations were 

quite high (all are > .62), with the great majority very close to the zero–order correlation (r 

= .71) between the two categories.

We also decomposed the overall correlation between Cat 0 and Cat 2 into two constituent 

components: The component that can be accounted for by the associations of the two 

categories with a given individual difference measure and the component that is independent 

of (i.e., orthogonal to) that measure. The top panel of Figure 7 graphically portrays the logic 

of the procedure, with Ravens used as the exemplar external measure. The directed arrows 

from Ravens to the two categories denote the effect of this component of fluid intelligence 

on individual differences in category performance. The ‘a’ coefficient denotes the effects of 

Ravens on Cat 0 and the ‘b’ coefficient denotes its effects on Cat 2. It can be easily shown 

that for a path model of this sort a and b are simply the β coefficients that would be yielded 

by two simple linear regression analyses regressing Cat 0 on Ravens and Cat 2 on Ravens. 

D0 and D2 depict the residuals from these two regressions and the double–headed arrow 

connecting them indicates the covariance between these residuals (analogous to the partial 

correlations discussed above). Using the tracing rule (Kenny, 1979), it can be shown that the 

overall covariance between Cat0 and Cat2 can be decomposed into the path through Ravens 

and the path through the residual terms. For the model depicted,

σCat0, Cat2 = (a)(b)σRavens
2 + σd0d2

The first term to the right of the equal sign in formula 1 is the component of the covariance 

between Cat0 and Cat 2 that is contributed by the Ravens path and the second term is the 

component of the covariance that is independent of the Ravens path and due to other 

sources. If all three variables are standardized, then it can be shown that the correlation 

between Cat 0 and Cat 2 can be analogously decomposed as:

rCat0, Cat2 = (rRavens, Cat0)(rRavens, Cat2) + rCat0, Cat2.ravens 1 − rRavens, Cat0
2 1 − rRavens, Cat2

2 ,

where rcat0,cat2,ravens denotes the partial correlation between Cat0 and Cat2 adjusting for 

Ravens. The first term to the right of the equal sign in formula 2 denotes the correlation 

component through Ravens and the second denotes the component through the residuals. 

Because correlations are more readily interpretable than covariances, in Table 9 we present 

the decomposition of the overall correlation between Cat0 and Cat2 (r =.71) into its two 

constituent components across each of the external individual difference measures. In 

addition, we present the proportion of the correlation between these two measures that is due 

to the residual component. These proportions can be greater than 1 if the pathway through a 

given individual difference measure produces a predicted negative correlation. Also included 

are percentile bootstrap confidence intervals for these indices.8,9
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As shown by Table 9, for each variable the component of the correlation through the residual 

path (column 6) was notably greater than the component of the correlation through the 

individual difference measure path (column 5). Only three measures of the individual 

difference component had confidence intervals that did not encompass 0, while the lower 

bound for all residual–path measures was notably greater than 0. The lowest proportions of 

the total correlation through the residual path (column 7) were .72 (number scores) and .82 

(shift cost), with the rest of the proportions greater than or equal to .86. As a whole, the 

results summarized in Table 9 strongly indicate that, considered in isolation, the individual 

difference measures account for only a small proportion of the association between the 

categories.

We also conducted a multiple regression analysis that predicted Cat0 and Cat2 from the 

three FIQ measures, Visual STM, and Shift Cost. We selected these variables because they 

were significantly correlated with at least one of the two categories (see Table 9). Using 

MPLUS software (Muthén, L.K. and Muthén, 1998–2017), we estimated a multiple–

predictor version of the observed–variable model shown in Table 9 and, in addition, 

estimated the covariance between the Cat0 and Cat2 residual terms. The proportions of the 

variance of the category variables accounted for by the set of four predictors were 35% and 

31 % respectively. If we apply standard adjusted R square formulae from ordinary least 

squares regression, these values drop to 28% and 23%, respectively. In addition, the partial 

correlation between Cat0 and Cat2 was .60 (p < .001) and the set of predictors accounted for 

43% of the total correlation between Cat0 and Cat2 with the remaining 57% running through 

the residual paths. Although these analyses are informative, we should caution that: (1) With 

six predictors and a sample size = 51 (due to 3 participants with missing observations), there 

is some potential for bias and overfitting (i.e., reproducibility of the results is an issue); and, 

(2) These variables were selected post–hoc based on the results of prior analyses of 

individual external variables. Similar to the issues that arise with stepwise regression, this 

latter factor might well produce inflated estimates of the effects of the predictors and under–

estimate the strength of the alternative, residual path.

Latent Variable Analyses

The correlational results among the observed measures indicate relations between the 

individual difference measures category performance that, at best (e.g., IQ measures), would 

be described as medium in strength, with generally small associations evident on the other 

measures. As noted above, however, measurement error attenuates correlations. Components 

of variance that are reliable but construct–irrelevant can also attenuate correlations.

8We used percentile confidence intervals because in a couple of cases where correlations between the Category measures and an 
individual measure were very low (e.g., Extraversion and Emotional Stability) the BCA intervals appeared unduly narrow relative to 
confidence intervals generated by simulated data specifying low population correlations. With the exception of these few cases, 
confidence intervals were very similar whatever the bootstrapping approach used.
9Consistent with formula 2, it should be emphasized that the amount or proportion of the overall correlation between the two 
categories that is attributable to the residual pathway is not the same as the partial correlation between the two categories. The former 
quantities are also dependent on the variances of the residual terms. For example, even if the correlation between two residual terms is 
very high (i.e., the partial r is high), the amount or proportion of the total correlation due to the residual pathway could be much lower 
if residual variances are only very small proportions of the total variance of the category factors.
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These points suggest the advantages of including SEM analyses in Study 2. Unfortunately, 

CFA and SEM are based on large–sample theory and the available evidence indicates that 

N=54 is too small, particularly when data are not multivariate normal (e.g., Bentler & Chou, 

1987; Boomsma, 1982; Boomsma & Hoogland, 2001). The most common problems are 

convergence failures (the iterative algorithm does not reach an optimal, final set of parameter 

estimates) and improper solutions (models with parameter estimates that are outside a 

permissible range, e.g., negative values of variances, Gagné & Hancock, 2006). Somewhat 

surprisingly, however, we found that when we ran SEM models that corresponded to the 

analyses presented in Table 9 but included latent variables for each construct, there were no 

convergence failures and solutions were proper. Likely, these results are due to the generally 

high construct reliability (i.e,. quality of measurement) in the models that we specified (e.g., 

Gagné & Hancock, 2006; Hancock & Mueller, 2001).

Although the results of latent variable SEM analyses should be viewed with caution in the 

present study, for several reasons we think that it is informative to present two models that 

focus on the relation between Fluid IQ and category performance: (1) We included three 

distinct measures of Fluid IQ (Ravens, Letter Sets, and Number Scores) and thus the 

analyses presented in Table 9 leave particularly unclear the strength of the association 

between a Fluid IQ latent variable and latent variables that mark the two categories; (2) The 

Fluid IQ measures had the highest correlations with the category measures when analyses 

were conducted on observed variables and yet their reliabilities were in the .72 to .79 range. 

Given that analyses of observed measures alone can attenuate correlations due to 

measurement error, we used the SEM approach to explore the magnitude of the association 

between constructs assessed as latent variables; (3) As reported below, the models that we 

ran assessing relations between FIQ and category performance had good fit; and, (4) Our 

primary focus was on parameter estimates and small ns tend to have smaller effects on 

estimation bias than on measures of fit or the magnitude of standard errors (e.g., for a 

review, see e.g. ,Boomsma & Hoogland, 2001).

Two SEM models were run to generate indices that paralleled those shown in Table 9 for 

observed variables. The first was a CFA model that simply specified three latent variables 

(FIQ, Cat0, Cat2, each with three indicators) that were freely correlated with one another. 

We used the MLR estimator in MPLUS (Muthén, L.K. and Muthén, 1998–2017)10,11 and 

formed bias–corrected bootstrap intervals around parameter estimates (Williams & 

MacKinnon, 2008). This model fit very well (χd f = 24
2  test of exact fit = 25.56, p=.25, 

RMSEA = .03, CFI=.994, SRMR =.059). Consistent with the results of Study 1, the 

correlation between the Cat0 and Cat2 factors was .89 (95% bias–corrected bootstrap CI = .

70 to 1.00). Both Category factors were significantly correlated with the FIQ factor, (Cat0 r 

10We felt comfortable using this alternative to the EQS TS estimator because of the very small percentage of missing data for this 
analysis (1.8% of all possible observations) and the ease with which bootstrap confidence intervals for derived estimates (those that are 
linear or nonlinear combinations of other estimates) can be computed in MPLUS. Identical conclusions were reached when the EQS 
TS estimator employed in Study 1 was used to analyze these data.
11Somewhat surprisingly we found that the inclusion of correlated errors across the two category factors for CO, MA, and LE failed 

to improve model fit, S–B difference χd f = 3
2 = 5.19, p > .16. For this reason and because we wanted to limit the number of 

parameters estimated due to the sample size, we omitted such correlated errors in the SEM analyses for Study 2.
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= .57, 95% CI = .23 to .77; Cat2 r =.46, 95% CI = .10 to .67), which accounted for 32% and 

21% of the variance of Cat0 and Cat2, respectively.

The second model is shown in the bottom panel of Figure 7. It is analogous to the model 

shown in the top panel and was designed to decompose the covariance between Cat0 and Cat 

2 into paths through FIQ and through the residual terms. It can be shown that this model is 

an equivalent model (e.g., Tomarken & Waller, 2003) to the factor–analytic FIQ model: 

Although the specified parameters differ, the overall fit of the two models is identical 

because they impose the same restrictions on the data. Similar to the computations used for 

the observed data, we used this model to compute partial correlations between Cat0 and 

Cat2 and to decompose the correlation between Cat0 and Cat2 into the components due to 

and independent of FIQ.12 Despite the non–trivial zero–order correlations between FIQ and 

the two Category latent factors, the partial correlation between Cat0 and Cat2 was a robust .

86 (95% CI = .62 to 1.00). The component of the correlation between Cat0 and Cat2 (r=.89) 

through the FIQ path was .26 (95% CI =.05 to .54), while the component through the 

residual was .63 (95% CI = .38 to .85). Thus the overall proportion of the total correlation 

between Cat0 and Cat2 that was independent of linkages to FIQ was 71% (95% CI = .42 to .

94). All told, these results indicate a very strong relation between those components of Cat0 

and Cat2 that are independent of FIQ.

We also conducted two–stage least squares estimation (TSLS, Bollen, 1996) because it has 

been suggested that this limited information estimator might perform better with small 

sample sizes (although the evidence in support of this point is rather equivocal, e.g., Bollen, 

Kirby, Curran, Paxton, & Chen, 2007). The results were very similar. For example, while the 

residual path accounted for 71% of the total correlation between Cat0 and Cat2 when robust 

ML was used, this path accounted for 72.6% of the correlation when TSLS was used.

The online supplemental material contain additional results for latent variable assessments 

of the relation between the external individual difference measures and performance on the 

two categories.

General Discussion

Study 1 offered strong support for the hypothesis that individual differences in object 

recognition ability can be identified that are consistent across different categories of objects. 

The intraclass correlation coefficients conducted on a task–per–task basis indicated that 

performance across categories was rather stable. When consistency was assessed, the ICC1 

values indicated that the correlations in performance between any pair of categories ranged 

from about .50 to .60 depending on the task. When category was treated as a random effect 

and agreement was assessed, ICC1’s were lower but still indicated a notable effect of 

individual differences. Given the well–known importance of aggregation for accurate 

assessment of individual differences, the ICC5 values are more critical because they estimate 

the correlation between the average performance of a given participant across the five 

12Similar to the procedure used for the observed data, we generated 1,000 bootstrap samples and computed bias–corrected confidence 
bootstrap confidence intervals (Williams & MacKinnon, 2008) for the partial correlations and percentile confidence intervals for the 
other measures. Given the sample size, we regard the CIs reported for the FIQ models as approximate (e.g., Nevitt & Hancock, 2001).
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categories and a hypothetically equivalent average. Across the two specifications for 

category (fixed vs. random effects), the ICC5 values ranged from .69 to .89. Thus, between 

approximately 70% and 90% of the variance in performance averaged across categories 

reflects individual differences that are stable across categories. Conversely, only a relatively 

small proportion of the variance of aggregate scores would be deemed due to random error. 

Using familiar terms derived from the analysis of variance, our findings indicate a strong 

main effect for persons and a relatively weak person X category interaction.

The confirmatory factor analyses (CFAs) extended the ICC results in several important 

respects. First, by combining performance across tasks, CFAs allowed for more general 

conclusions than analyses conducted on a task–by–task basis. In addition, they allowed us to 

estimate effects due to individual differences in object recognition (i.e., category 

performance) with the effects of random measurement error and construct–irrelevant 

variance removed and task–specific components of variance accounted for. Finally, the CFA 

approach allowed us to assess the overall proportion of variance in lower–order category 

factors due to the hypothesized object recognition ability o.

The sequence of CFA models offered strong support for our hypotheses. First, as long as 

task–specific method factors were accounted for, a model (Model 2) that specified correlated 

category factors fit well according to conventional criteria. A subsequent model (Model 3) 

that constrained factor loadings to be equal across categories for each task fit adequately – 

although the value of the nested χ2 test indicated some, though non–significant, detriment in 

fit. This result indicates reasonable consistency of the factor structure of individual 

differences across categories. This model also indicated very high correlations among 

category factors, with rs ranging from .82 to .96.

Perhaps most importantly, we found that a model (Model 4) specifying a higher–order object 

recognition ability (o) fit (see Table 5), with o accounting for a substantial proportion of the 

variance (on average 89%) of the lower–order factors. Subsequent correlational analyses 

indicated that o is significantly correlated with individual measures of expertise in the 

domains of face processing and non–face objects. This result indicates convergent validity.

We found that o correlated more strongly with birds, butterflies, planes and houses than with 

faces and cars. The first four categories are likely representative of most categories of 

familiar objects, as previous work with several categories has consistently found faces and 

cars to be outlier categories (McGugin et al., 2012; Van Gulick et al., 2015, Richler et al., 

2017, Ćepulić et al., 2018). Several factors may dampen the correlation between o and 

performance with familiar objects in this work. First, while we reliability–corrected the 

expertise measures, we used only a single task for each category. A point that we have 

emphasized throughout is the importance of aggregation across multiple measures to provide 

measures that are optimal from a psychometric perspective and thus have a higher ceiling for 

observable correlations. Second, both variability in experience (Gauthier et al., 2014) and 

amount of experience (Sunday et al., in press) likely contribute to variability in performance 

for familiar objects.

Richler et al. Page 29

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At the other end of the spectrum of experience, we assessed whether a small amount of 

exposure influenced the correlation with o. We used novel objects so that we could eliminate 

confounds from variability in experience, and we provided all subjects with the same 

amount (about 90 min) of exposure to objects from each of four of the novel categories, 

testing them with the fifth category without any prior exposure. Importantly, we found 

evidence that while short, this exposure was sufficient to increase holistic processing –– a 

behavioral marker of face perception (see Richler & Gauthier, 2014 for a review) –– for the 

pre–exposed categories (see also Chua et al., 2015; Wong et al., 2009). However, despite the 

evidence that on average, experience led performance with novel objects to become more 

“face–like”, our findings do not indicate that performance with trained objects recruit a 

different ability. On observed measures, performance on all tasks was equally correlated 

between the trained and untrained categories. A variant of Model 2 that specified equality 

constraints indicated that the average correlation involving the untrained category failed to 

differ from the average correlations among the trained categories. These results converge 

with a number of studies that suggest holistic processing and part–based processing may be 

quantitatively, but not qualitatively, different (Sekuler, Gaspar, Gold & Bennett, 2004; 

Richler, Mack, Palmeri & Gauthier, 2010; Chua et al., 2015) – such that object recognition 

may rely on o regardless of the processing strategy. In addition, it is worth pointing out that 

the increase in holistic processing is based on a different dependent variable (the congruency 

effect) then the average score in the Composite task used in individual differences models. 

As such they may reflect entirely different mechanisms. Congruency effects in the standard 

composite task are typically not sufficiently reliable for individual differences analyses 

(Ross et al., 2015) and while one test of holistic processing for faces was developed for this 

purpose (Richler et al., 2014), similar tasks do not yet exist for objects.

Taking what we learned from manipulating experience with novel objects and predicting the 

recognition of familiar categories, our results certainly suggest that experience influences 

object recognition, but also that o appears relevant to the prediction of performance across a 

range of objects, novel and familiar, and may help in predicting who can achieve high levels 

of performance in object recognition when provided with experience.

In Study 2, we found evidence for the specificity of o relative to a variety of constructs. 

Overall, FIQ measures displayed the strongest correlations with category performance. In 

the SEM analyses the FIQ latent variable accounted for between 21% and 32% of the 

variance in the category factors and in the observed–variable analyses, the proportions of 

variance for individual FIQ measures ranged from .06 to .21. Although these associations 

are by no means trivial, it is also the case that the clear majority (70 to 80%) of the variance 

in category performance was independent of FI. Similarly, in the latent–variable analyses, 

while approximately 30% of the covariance between the two Category factors was due to 

their common association with FIQ, 70% was independent of FIQ. Further, the Cat0 and 

Cat2 residual components that were independent of FIQ were very highly correlated. This 

overall pattern suggests that while individual differences in o are, perhaps not surprisingly, 

associated with FIQ, the magnitude of the relation is not sufficient to support the argument 

that FIQ acts as a potent third variable that accounts for the covariation in performance on 

different categorization tasks. The results of Study 2 also indicate that other individual 

difference measures assessing a variety of cognitive, perceptual, and personality–

Richler et al. Page 30

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motivational constructs tend to have only weak associations with o, with the possible 

exception of shifting and visual short–term memory, the associations for which are probably 

best described as moderate. Further, a regression analysis combining all predictors that 

yielded at least one significant effect in the univariate analyses revealed that approximately 

60–70% of the variance of and covariance between the category factors was independent of 

these predictors. Therefore, while we acknowledge that individual differences in o share 

some components of variance with these other measures, it is clear there must be other 

processes and factors implicated in object recognition ability. Put another way, we believe 

that the results of Study 2 indicate the discriminant validity of the o construct.

We believe that the present work has several strengths. One was the selection of five novel 

object categories that varied on dimensions (e.g., animate/inanimate appearance, symmetry, 

and curvature) shown in previous work to engage different neural substrates. We also 

deliberately had pairs of categories (the two Greeble categories and the two Ziggerin 

categories) that could have been expected to cluster if visual similarity contributed to 

individual difference effects. Yet models imposing equality constraints indicated that the 

within–Greeble and within–Ziggerin correlations were no greater than the across–type 

correlations. While it is still possible that o is not equally relevant to all kinds of object 

geometries, we made reasonable efforts to allow evidence for differences due to geometry to 

emerge and found none. The finding that o also correlates with performance with familiar 

objects also speaks to its generality over object category.

Cautions and Limitations

Although our findings offered strong support for hypotheses, several cautions and limitations 

should be noted. First, 36 of the original 285 participants withdrew from Study 1 after the 

pre–test session. It is conceivable that those who dropped out differed meaningfully from 

those who stayed in the study, a factor that would somewhat constrain the generalizability of 

our conclusions. We did find that individuals who withdrew after the introductory session 

had lower VET accuracy. Although this factor suggests that the sample may have been 

skewed slightly toward those with better object recognition ability, we were still able to 

detect strong individual differences in o. People with higher motivation to perform in the 

first visit may also be more likely to continue or complete the long protocol for reasons 

unrelated to o (e.g., conscientiousness).

Relatedly, 15% of the possible data points among those continuing in the study beyond the 

pre–test were missing. Given the time demands on participants, this figure is probably not 

surprising. We used data–analytic approaches that can incorporate participants with 

incomplete data and that provide valid inference as long as missing data meet the 

assumptions of missing completely at random (MCAR) or missing at random (MAR). In 

future studies – particularly those with similar time demands – it is important to assess as 

well as possible the reasons for incomplete data and to assess auxiliary variables that predict 

missingness and can be included in statistical models (e.g.,Yuan & Lu, 2008). That being 

said, it is important to note that across both the ICC and CFA analyses we found strong 

effects of individual differences. On that basis, we believe that we would find highly similar 

effects had there been no missing data.
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While our sample size (N = 246) in Study 1 was substantially larger than the typical N’s 

used in studies in the area of perception, it is on the small side for a typical CFA or SEM 

study. Although prior simulation studies with conditions that map onto those operative in the 

present study indicate the likely validity of our results (e.g., Savalei and Falk, 2014), there is 

still a need for additional research to clarify the precise boundary conditions linked to factors 

like non–normality, missing data, and sample size and to comparatively evaluate the full 

range of robust SEM estimators that could potentially be used in such circumstances.

In addition, while our effects were strong (e.g., proportion of variance in lower–order factors 

accounted for by o) and our final models fit well, there is still clearly room for improvement 

(e.g., ideally one might like to see RMSEA’s in the .01–.03 range and stronger evidence of 

factorial invariance than we found). One potential way to optimize fit may be to match 

psychometrically categories on task difficulty and related factors. This is clearly a goal for 

future studies.

It is also important to note that the assessment of model fit is a complex task in the context 

of confirmatory factor analyses or other types of structural equation models (e.g., Tomarken 

& Waller, 2003). Indeed, it is paradoxically the case that models with better measurement 

quality (i.e. high proportions of variance of lower–order indicators accounted for by factors) 

can demonstrate worse fit on some indices than models with poor measurement quality 

(Hancock & Mueller, 2011; Heene, Hilbert, Draxler et al., 2011). As noted above (see Study 

1 Results), the measurement quality in the present study was generally high. Given this 

consideration, the fact our final models consistently met conventional cutoffs indicates that 

they strongly fit the observed data.

In addition, the results of any CFA analyses are dependent on the specific array of measures 

used to assess constructs of interest. The LE, CO, and MA tasks have good reliability, have 

been used successfully by our laboratory in prior studies, and their correlations with each 

other suggest that they are valid measures of object recognition. That being said, is 

important to assess whether our conclusions are generalizable across other potential 

measures of o. We note that the observed measures of Learning Exemplars had a smaller 

proportion of variance accounted for by the Category factors (and ultimately o) than the 

Composite and Matching tasks. This difference may be at least partially due to the fact that 

the Composite and Matching performance measures were d’ while the Learning Exemplars 

task used percent correct. Perhaps most important is that the Composite and Matching tasks 

are more similar to each other by requiring perceptual matching across short delays within a 

trial, whereas Learning Exemplars requires memory for multiple learned objects across 

trials. The category factors might have accounted for more variance in Learning Exemplars 

if we had included another task that was more similar to it. These considerations support the 

importance of: 1) Accounting for task–specific effects by correlated error terms (as we did) 

or by other means; and, 2) Creating a wider range of psychometrically adequate tasks to 

explore object recognition abilities in future studies. Increasing the number of observed 

measures beyond three per category would have the added benefit of providing a more 

precise measure of the latent constructs of interest (e.g., Hancock & Mueller, 2001) and 

more rigorous tests of model fit (Tomarken & Waller, 2003).
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Given the markedly high correlations among the category factors, it is reasonable to ask 

whether they are at least somewhat inflated by shared method variance (i.e., the fact that 

each of the same three tasks was used across all factors). We addressed this issue by 

specifying correlated errors among all the indicators of a given task. These terms allowed for 

an additional pathway by which within–task correlations could be manifest. While this 

correlated uniqueness approach is the one most commonly used to model method variance in 

CFA studies, one limitation is that it is not able to model correlated method effects that 

might occur when two tasks share several features. As noted above, CO and MA share 

several features that discriminate them from the LE task. As discussed in footnote 3, there is, 

however, an alternative approach for modeling method effects known as CT–C(M–1) (Eid, 

2000; Eid et al., 2003) that involves specification of one less method factor than the total 

number of possible methods. When we specified a CT–C(M–1) model that included method 

factors for CO and MA that were allowed to be freely correlated, the loadings of the CO and 

MA indicators tended to be evenly split between the category and task factors. Even so, the 

correlations among the category factors were essentially the same as those yielded by the 

CU approach (mean r for CT–C(M–1) = .882, mean r for CU =.895). Similarly the loadings 

on o were very comparable across the two approaches. This finding indicates that the high 

correlations among the category factors that we observed were not inflated by task–specific 

components of variance.13

Our efforts in establishing the discriminant validity of o were limited to cognitive skills, 

some aspects of visual perception and personality. Future work could explore whether o is 

related to individual differences in lower level visual abilities that feed all the higher–level 

functions that are relied upon for object recognition. Although there is agreement that the 

range of individual differences in such low level visual abilities is larger than was once 

assumed, there are only a few studies testing large number of participants with a range of 

basic visual tasks. Some conclude there may be a single visual ability (Halpern et al., 1999) 

whereas other work suggests at least two factors corresponding to processing of low vs. high 

spatial frequencies (a magno/parvo distinction, see Ward et al., 2017). In addition, it is 

important for future studies to use larger sample sizes.\

Summary

In summary, we applied approaches rooted in the rich history of measuring individual 

differences in areas like personality and intelligence to the study of individual differences in 

visual abilities. Using confirmatory factor analysis, we showed that a substantial amount of 

shared variance in performance across five novel object categories could be accounted for by 

a single higher–order factor. This higher–order factor also predicted performance with 

several familiar object categories. This is the first demonstration that visual object 

recognition performance can be accounted for by a domain–general Object Recognition 

Ability, o. Future research should investigate its relation to various cognitive skills and 

lower–level abilities, as well as its real–world relevance.

13On the whole we prefer the CU approach for interpretive reasons. Because only two method factors could be specified in the present 
study using the CT–C(M–1) approach, the category factors become, in effect, imbalanced in favor of the task that does not have a 
method factor.
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Figure 1. 
Example stimuli from the five novel object categories used in this study. Numbers were 

arbitrarily assigned to categories to simplify data coding and presentation of results. 

Category 0 was the non–exposed category for all participants.
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Figure 2. 
General experiment procedure. Participants completed an introductory lab session on Visit 1, 

followed by home–training and lab–test sessions for four novel object categories (Cat–1–4), 

and a lab–test session only for one novel object category (Cat–0). Home sessions and lab 

visits were grouped for Cat–1–4, such that the home and test sessions for a given category 

were always consecutive and separated by no more than five days. Category order was 

randomized.
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Figure 3. 
A) Example trials for familiar object recognition measures (CFMT and VET). B) Example 

trials for each of the three test tasks (Learning Exemplars, Matching Task, Composite Task, 

denoted by LE, MA and CO in Figure 1).
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Figure 4. 
Confirmatory Factor Analysis models for measurement structure of five latent category 

factors (represented as ovals) each assessed with three measures (indicators) of visual object 

perception and recognition (represented as rectangles). Both models specify that each of the 

three tasks assessing performance with a given category loads on the appropriate lower–

order category factor. The directed arrows from the factors to each observed measure reflects 

the specification that a proportion of the variance of each observed task measure (e.g., MA1) 

is due to the latent construct (e.g., Cat1) of individual differences in ability with a given 
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category. Task–specific correlated errors are not shown for the sake of brevity. Top panel: 

1st–order Correlated Factor Model. Bottom panel: 2nd–order Factor Model specifying that 

covariances among category factors are entirely accounted for by one over–arching Object 

Recognition Ability (o). The R terms (e.g., R_C0) in the 2nd order model denote the 

component of the variance of each category factor that is not due to o.
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Figure 5. 
Mean correct RTs (left) and sensitivity (d’; right) for congruent and incongruent composite 

task trials for the non–exposed category and average of exposed categories. Error bars show 

95% confidence intervals for within–subject effects.
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Figure 6. 
Higher–order factor model standardized solution (both factors and observed measures 

standardized). For the sake of clarity, correlated errors among within–task errors are not 

shown but were specified as part of the model. Factor loadings for a given task are not 

invariant because invariance was imposed on the non–standardized solution based on 

covariances instead of correlations.
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Figure 7. 
Top panel: Observed variable model for effects of Ravens on category performance. Bottom 

panel: Latent variable model assessing the effects of fluid intelligence on category 

performance.
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Table 1.

Reliability (Cronbach’s α), mean performance measures, and tests of normality for each test task and category 

(see Figure 2 for number–category mappings).

Category N Cronbach’s α
Mean (SD) accuracy (% correct or 
d’) Skewness Kurtosis

Shapiro–Francia Normality Test 
(V’)

Learning Exemplars

0 225 .84 65.16 (15.04) −0.44 3.37 2.59*

1 199 .78 49.82 (14.02) 0.17 2.81 1.46

2 208 .89 68.35 (17.69) −0.58* 3.16 4.45***

3 201 .74 48.05 (12.68) 0.62*** 3.58 3.62**

4 212 .73 50.47 (12.36) 0.14 2.68 0.81

Matching Task

0 225 .95 1.62 (.62) −1.07*** 6.49*** 10.82***

1 203 .92 1.04 (.50) −0.79*** 5.77*** 6.22***

2 212 .96 1.83 (.71) −1.26*** 6.71*** 12.10***

3 210 .91 1.03 (.42) −0.50 4.72 4.86***

4 218 .88 .82 (.40) −0.55** 3.83** 3.57**

Composite Task

0 225 .91 1.72 (.92) −0.29 3.38 1.83

1 208 .95 1.25 (.71) −0.10 3.34* 0.87

2 213 .97 1.69 (.97) 0.17 3.23 1.11

3 208 .95 1.23 (.73) −0.29 3.03 1.99

4 215 .95 1.12 (.69) −0.42** 3.56** 2.30*

Note. Accuracy measures are percent correct for Learning Exemplars and d’ for Matching and Composite tasks. Under normality, the expected 
values of measures of skewness and kurtosis are 0 and 3, respectively. Under normality, when scores are sampled from a normal distribution, the 
median value of the Shapiro− Francia V’ measure equals 1 (Royston, 1991).

*
p < .05

**
p < .01

***
p < .001
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Table 2.

Reliability (Cronbach’s α), mean performance measures, and tests of normality for the CFMT and VET sub

−scales.

N Cronbach’s α Mean (SD) Accuracy (% correct) Skewness Kurtosis Shapiro−Francia Normality Test

CFMT (faces) 245 .90 63.27 (14.23) −0.22 2.07*** 3.26*

VET Subscales

Birds 243 .83 68.98 (13.44) −0.52*** 3.44 3.61*

Butterflies 241 .80 60.17 (13.71) −0.39* 2.82 2.50*

Cars 243 .80 59.60 (14.60)  0.17 3.09 1.11

Houses 243 .83 75.90 (13.10) −0.33* 2.63 2.05

Planes 242 .77 70.38 (12.02) −0.40 3.35 3.39**

Note. Under normality, the expected values of measures of skewness and kurtosis are 0 and 3, respectively. Under normality, when scores are 
sampled from a normal distribution, the median value of the Shapiro−Francia V’ measure equals 1 (Royston, 1991).

*
p < .05

**
p < .01

***
p < .001
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Table 3.

Correlations (Pearson’s r) between all categories for each task. Correlations with the untrained category are 

highlighted in gray. N per cell ranges from 182 to 207. All correlations are significant at p < .001. (See Figure 

2 for number−category mappings).

Category 0 1 2 3 Mean untrained Mean trained

Learning Exemplars .50 .49

1 .43

2 .53 .54

3 .52 .52 .56

4 .50 .32 .53 .42

Matching Task .54 .52

1 .52

2 .S .45

3 .60 .46 .56

4 .52 .55 .50 .59

Composite Task .61 .62

1 .64

2 .64 .64

3 .60 .66 .59

4 .60 .61 .61 .59

Note. Correlations were Fisher−transformed before averaging.
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Table 4.

Intraclass correlations for each measure.

 ICC1  ICC5

Measure Consistency Agreement Consistency Agreement

Learning Exemplars .50 (.44,.55) .34 (.17,.46) .83 (.80, .87) .72 (.52,.82)

Matching Task .49 (.43,.56) .31 (.15,.43) .83 (.79, .86) .69 (.49,.81)

Composite Task .62 (.56,.68) .55 (.40,.65) .89 (.87, .91) .86 (.78,.90)

Note: ICC1 estimates both the average correlation in performance among pairs of categories and the proportion of variance in a given category due 
to between−person differences. ICC5 is the estimated correlation between the aggregate of scores across the five categories and a hypothetical 
equivalent set of aggregate scores. It estimates the proportion of variance in the average score across categories due to between−person differences. 
95% Bayesian highest posterior density (HPD) intervals are shown for each measure. The category factor is modeled as a fixed effect when 
consistency is assessed and as a random effect when agreement is assessed.
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Table 5.

Fit statistics for confirmatory factor analyses.

Model Description df Robust χ 2 RMSEA (90% CI) CFI SRMR AIC BIC SABIC

1 Correlated Categories (No Task 
Effects) 80 218.17, p < 001 .116 (.098, .134) .977 .078 298.17 438.38 311.59

2 Model 1 +Errors Across Tasks 50 73.95, p=.02 .050 (.022, .073) .996 .030 213.95 459.32 237.43

3
Model 2 +Within−task 
Invariant Loadings on Category 
Factors

58 89.56, p=.005 .054 (.030, .074) .995 .069 213.56 430.89 234.35

4 Model 3+Second−order 
Category Factor 63 92.01, p=.01 .049 (.025, .070) .995 .048 206.01 405.82 225.22

5 Model 4 + CFMT and VET 
measures 147 216.34 P <.001 .050 (.035, .064) .967 .064 384.34 678.79 412.51

Note: Robust χ2 =Satorra−Bentler robust chi−square test of overall fit generated by the Savalei−Bentler robust two−stage estimator. RMSEA = 
root mean squared error of approximation. CFI = Comparative Fit Index. SRMR = standardized root mean squared residual. AIC = Akaike 
Information Criterion. BIC = Bayesian Information Criterion. SABIC = Small− sample corrected Bayesian Information Criterion. Lower scores on 
the RMSEA, SRMR, AIC, BIC, and SABIC and higher scores on the CFI indicate better fit. Hu and Bentler (1998, 1999) recommended the 
following criteria for adequate fit on the first three measures: CFI ≥ .95, RMSEA ≤ .06, and SRMR ≤ .08. Because Model 5 includes measures not 
included in Models 1−4, its values for the AIC, BIC, and SABIC are not directly comparable to those of Models 1−4.
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Table 6

Correlations among the Category Factors (Model 3)

Category 0 1 2 3 4

0 ––––––––

1 .82 (.74,.89) ––––––––

2 .87 (.78,.96) .90 (.81,.98) –––––––

3 .91 (.81,.98) .96 (.88,1.00) .93 (.85,1.00) –––––––––

4 .92(.84,.99) .84(.74,.92) .92(.85,1.00) .91(.80,.99) –––––––––

Note: All ps < .001. 95% bias–corrected bootstrap confidence intervals are shown in parentheses. When an upper bound slightly exceeded 1.00,it 
was fixed at 1.00.
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Table 7.

Correlations between o and each familiar object category.

Predictor Reliabilty Corrected Un–corrected

r r2 r r2

Faces .28 .08 .26 .07

Birds .43 .18 .39 .15

Butterflies .60 .36 .54 .29

Cars .27 .07 .24 .06

Houses .47 .22 .42 .17

Planes .53 .28 .46 .21

Note: All ps <.001
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Table 8.

Mean and standard deviations, and reliability (Cronbach’s α for Cat 0 and Cat 2 tasks, Fluid Intelligence and 

IPIP, average of 10 split–half estimates for other measures).

N Mean (SD) Reliability

Category 0

 Learning Exemplars (% correct) 54 66.40 (16.26) 0.87

 Matching Task (d’) 54 1.67 (.52) 0.88

 Composite Task (d’) 54 1.61 (.73) 0.91

Category 2

 Learning Exemplars (% correct) 54 66.44 (17.17) 0.91

 Matching Task (d’) 54 1.57 (.67) 0.96

 Composite Task (d’) 54 1.59 (.86) 0.95

Stroop Cost (delta RT) 53 80.35 (46.79) 0.50

Shift Cost (delta RT) 54 371.29 (286.79) 0.91

L–EFT (RT) 54 1935.10 (267.45) 0.87

Fluid Intelligence

 Ravens (no. correct) 51 11.78 (2.98) 0.72

 Letter Sets (no. correct) 51 17.67 (3.72) 0.79

 Number Scores (no. correct) 51 10.27 (2.56) 0.72

Visual STM (% correct) 53 68.62 (10.43) 0.88

IPIP

 Conscientiousness 54 35.02 (8.28) 0.89

 Extraversion 54 30.43 (8.41) 0.90

 Emotional Stability 54 29.70 (8.16) 0.90

 Agreeableness 54 41.13 (5.67) 0.87

 Intellect 54 36.98 (6.29) 0.83
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