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ABSTRACT

The failure to predict kidney toxicity of new chemical entities early in the development process before they reach humans
remains a critical issue. Here, we used primary human kidney cells and applied a systems biology approach that combines
multidimensional datasets and machine learning to identify biomarkers that not only predict nephrotoxic compounds but
also provide hints toward their mechanism of toxicity. Gene expression and high-content imaging-derived phenotypical
data from 46 diverse kidney toxicants were analyzed using Random Forest machine learning. Imaging features capturing
changes in cell morphology and nucleus texture along with mRNA levels of HMOX1 and SQSTM1 were identified as the most
powerful predictors of toxicity. These biomarkers were validated by their ability to accurately predict kidney toxicity of four
out of six candidate therapeutics that exhibited toxicity only in late stage preclinical/clinical studies. Network analysis of
similarities in toxic phenotypes was performed based on live-cell high-content image analysis at seven time points. Using
compounds with known mechanism as reference, we could infer potential mechanisms of toxicity of candidate
therapeutics. In summary, we report an approach to generate a multidimensional biomarker panel for mechanistic de-
risking and prediction of kidney toxicity in in vitro for new therapeutic candidates and chemical entities.
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The kidneys are the main site for the elimination of drugs and
chemicals from the body. This critical role renders kidney epi-
thelial cells uniquely susceptible to damage induced by xenobi-
otics and their metabolites/intermediates. It is estimated that
19%�33% of acute kidney injury (AKI) cases in the hospital are
attributed to drug nephrotoxicity (Choudhury and Ahmed, 2006;
Kleinknecht et al., 1987). The most frequently cited kidney toxic
drugs include aminoglycoside antibiotics, analgesics, contrast
media, chemotherapeutic agents, and immunosuppressants.

However, exposure to environmental contaminants such as
cadmium, mercuric chloride, and aristolochic acid can also lead
to AKI (Vaidya et al., 2008). Kidney toxicity seen in animal toxi-
cology studies is a major factor in the failure of drug candidates
and is responsible for 8% and 9% of drug development failures
in preclinical as well as clinical stages, respectively (Cook et al.,
2014). Therefore, accurate methods for predicting kidney toxic-
ity as early as possible are critical for the development of safe
drugs and the risk assessment of chemicals, to allow the

VC The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

54

TOXICOLOGICAL SCIENCES, 169(1), 2019, 54–69

doi: 10.1093/toxsci/kfz021
Dryad Digital Repository DOI: https://datadryad.org/review?doi:10.5061/
dryad.646v2r1
Advance Access Publication Date: January 15, 2019
Research Article

https://academic.oup.com/


management of the health and environmental hazards posed
by these compounds.

Currently, the main approaches for predicting potential kid-
ney toxicity in humans include animal testing, calculation of
quantitative structure-activity relationships (QSAR), and in vitro
cell-based assays. Animal toxicity studies are a regulatory re-
quirement and are therefore performed routinely. However,
they are usually expensive, low-throughput, and time-consum-
ing (Krewski et al., 2010). Furthermore, societal concern regard-
ing excessive animal experimentation, coupled with guidance
form regulatory authorities, has made reduction, refinement,
and replacement of the use of animals a primary goal in toxicol-
ogy (National Research Council, 2007). Computational modeling
of structure-activity relationship is much better in handling a
large number of compounds in a very short period of time.
However, although QSAR works well for compounds with spe-
cific or well-understood chemical structures or mechanisms
(Cherkasov et al., 2014; Myshkin et al., 2012), the models often do
not take the biological contexts into account and thus have lim-
ited applications in predicting complex biological responses.

In vitro assays with renal epithelial cells could be used as a
bridge between throughput and physiological relevance. Studies
have shown the applicability and reproducibility of primary hu-
man proximal tubule cells in identifying predictors of toxicity
(Su et al., 2016). However, all of the currently proposed in vitro
biomarkers of kidney toxicity were only used in libraries of com-
pounds with well-known effects and not put to the test in com-
pounds that are in their early stages of development.
Furthermore, in addition to the testing of large number of com-
pounds, the current interest in alternatives to animal testing is
driven by the requirement for the identification of injury mech-
anisms, which cannot be achieved by the analysis of a small
number of injury biomarkers.

Therefore, the objective of this study was to develop a com-
bined approach to not only identify biomarkers that allow clas-
sification of compounds as kidney toxic, but also to offer insight
into the potential mechanisms of toxicity in vitro. We conducted
a comprehensive study that integrates cellular perturbation sig-
nals (transcriptomics) along with cellular phenotypic changes
(imaging-based structure, function, and behavior) to identify a
sensitive and specific biomarker panel to predict toxicity.
Additionally, phenotypic imaging data were used for network
analyses to identify similarities between compounds with
known and unknown mechanisms of toxicity. We then applied
this approach to predict kidney toxicity in a new set of com-
pounds that were discontinued in pharmaceutical development
due to kidney-related findings, identified only in late stages of
in vivo and clinical testing.

MATERIAL AND METHODS

Cell culture. Preparation and culture of primary human proxi-
mal tubule epithelial cells (HPTEC) were performed as de-
scribed previously (Adler et al., 2016; Ramm et al., 2016). Briefly,
HPTECs were purchased from Biopredic International (Rennes,
France) and were cultured in supplemented DMEM/Ham’s-F12
with GlutaMAX medium on Poly-D-lysine coated black clear
bottom 384-well plate (Corning Life Science) for high-content
imaging (HCI) experiments and on collagen VI-coated black
clear bottom 96-well plates for cell viability assays and L1000
gene expression. Cells were not used after passage 4. Human
liver epithelial cells (HepG2) were obtained from ATCC (Wesel,
Germany) and cultured in Dulbecco’s modified Eagle medium

(DMEM, low glucose) with 10% fetal calf serum (FCS), 2 mM L-
glutamine and penicillin/streptomycin (Sigma Aldrich).

Compounds. For development of the predictive models, a com-
pound library was custom made. Most compounds were pur-
chased from Sigma-Aldrich (St. Louis, Missouri), Enzo Life
Sciences Inc. (Farmingdale, New York), and TRC Inc. (Toronto,
Canada) and three synthesized compounds (GSH and CYS con-
jugates of halogenated alkenes) were kindly provided by
Edward A. Lock (Liverpool) (Figure 2). The 46 library compounds
were dissolved in DMSO or water at 100 or 200 mM, depending
on solubility.

The selection of kidney toxic compounds was performed to
provide a library as broad as possible to avoid selection bias.
Therefore, the library contains drugs and chemicals with (1) dif-
ferent pharmacological targets, (2) different exposure levels,
and importantly (3) different degrees of evidence for kidney tox-
icity in humans. For some compounds, robust evidence exists of
their ability to damage the kidney in experimental settings and
in patients (cyclosporine A, cisplatin, gentamicin), whereas
others were included with case reports of toxicity only in
patients with pre-existing disease states (eg, rapamycin).
Finally, we also included acetaminophen as a parent compound
that would require liver metabolism to be toxic in vivo, as well
as toxic hepatic metabolites (4-aminophenol, halogenated vinyl
cysteines and glutathione).

Pharmacological information associated with the library
compounds was derived from the DrugMatrix database (https://
ntp.niehs.nih.gov/results/dbsearch/index.html#DrugMatrix-and-
ToxFx-Databases) in which a curation team extracted all rele-
vant information on the compounds from the literature, the
Physicians’ Desk Reference, package inserts, and other relevant
sources (Supplementary Table 1). Physicochemical information
associated with the library compounds was derived from
PubChem (Supplementary Table 1). Pharmaceuticals and chemi-
cals were used at six concentrations, selected to either cover or
slightly exceed the human maximum plasma concentration
(Cmax) or human maximal exposure (Figure 2, Supplementary
Table 1).

Concentrations are nominal, without further assessment of
bound and unbound compound concentrations, plastic binding,
or cellular concentrations.

Antimycin A (2.5–80 mM), carbonyl cyanide 3-chlorophenyl-
hydrazone (CCCP) (0.16–5mM), chloroquine (1–316 mM), oligomy-
cin (1.25–40 mM), thapsigargin (0.13–4mM), tunicamycin (0.31–
10 mg/ml), and hydrogen peroxide (0.16–5 mM) were included in
the high-content imaging experiments as controls with defined
mechanism of toxicity (Supplementary Table 1). Final DMSO
concentration of all treatments was 0.5%, which also served as
control condition for all normalizations. Although DMSO is not
generally given in vivo, the relatively high concentration of 0.5%
DMSO is commonly used in vitro to ensure solubility of the toxic
compounds. To ensure that DMSO itself had no significant ef-
fect on any of the readouts, medium without DMSO was in-
cluded as a condition in all analyses and served as internal
control.

For validation of the predictive models, six pharmaceutical
compounds were selected by and donated by AstraZeneca
(Figure 5A) (AZD6906, AZD6610, AZD5985, AZD8075, AZD7507,
and AZD4282). These compounds were discontinued during de-
velopment due to their preclinical or clinical kidney toxicity and
were not marketed drugs. Additionally, six not previously used
nontoxic control compounds were selected from the literature
(Lin and Will, 2012) and purchased from Sigma-Aldrich and
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Enzo (antipyrine, atorvastatin, nadolol, candesartan, MK-801,
and ramatroban). These 12 validation compounds were dis-
solved at 100 mM in DMSO or water, depending on solubility.
Compound concentrations were selected based on each com-
pound’s peak plasma concentration (Cmax), with 12 concentra-
tions spanning 30� Cmax as the highest concentration and 0.06�
Cmax as the lowest (Figure 5B).

Cell viability measurements. Cell viability based on ATP concentra-
tions was measured using the CellTiter-Glo (CTG) Luminescent
Cell Viability Assay (Promega, Madison, Wisconsin). Cells were
cultivated in 96-well plates for 3 days and then incubated with
either a vehicle control (0.5% DMSO) or 46 toxic and nontoxic li-
brary compounds in six concentrations for 3, 6, 12, and 24 h
(n¼ 3).

Association analyses. Binary logistic regression models were used
to evaluate associations of the physicochemical properties,
Cmax, and CTG results per time point with the odds of toxicity.
Data were nontransformed and analyses were performed using
Stata 13.0 (StataCorp, College Station, Texas).

High-content live-cell imaging. HPTECs were cultivated in 384-well
plates for 3 days and then incubated with 30 ml of either a struc-
tural panel or a functional panel mixture of dyes in phenol red-
free medium for 45 min. The structural panel consisted of
MitoTracker Deep Red (0.5 mM) for mitochondria, ER-Tracker
(0.5 mM) for endoplasmic reticulum (ER), LysoTracker (20 nM) for
lysosomes, and Hoechst (0.5 mM) for nuclei. The functional
panel consisted of TOTO-3 iodine (0.4 mM) for dead cells, tetra-
methylrhodamine (TMRM) (0.1 mM) for mitochondrial mem-
brane potential (MMP), CellROX Green (4.5 mM) for reactive
oxygen species (ROS), and Hoechst (0.5 mM) for nuclei. All dyes
were purchased from Molecular Probes Inc. (Eugene, Oregon).
After the staining, cells were washed twice with 50 ml phenol
red-free medium and treated with 30 ml of either a vehicle con-
trol (0.5% DMSO), medium-only control, or toxic and nontoxic
compounds diluted in phenol red-free DMEM cell culture me-
dium in six concentrations.

Automated live-cell, multicolor image acquisition was per-
formed on an Operetta High-Content Imaging System (Harmony
software) with attached plate handler and live-cell incubator
(Perkin Elmer, Waltham, Massachusetts) using a 20� objective
with high numerical aperture (NA), in a single focal plane across
each plate. The fluorescence images were captured according to
the optimal excitation and emission wavelengths of each probe.
Additionally, brightfield images were captured in both panels:

1. Structural plate
MitoTracker Deep Red: 620–640/650–700 nm, exposure time
15 ms, focal plane �4 mM
LysoTracker: 560–580/590–640 nm, exposure time 20 ms, fo-
cal plane �6 mM
ER-Tracker: 460–490/500–550 nm, exposure time 20 ms, focal
plane �6 mM
Hoechst: 360–400/410–480 nm, exposure time 25 ms, focal
plane �8 mM
Brightfield: Transmission/650–700 nm, exposure time 35 ms,
focal plane �6 mM

2. Functional plate
TOTO-3 Iodine: 620–640/650–700 nm, exposure time 60 ms,
focal plane �6 mM
TMRM: 560–580/590–640 nm, exposure time 25 ms, focal
plane �8 mM

CellROX: 490–510/530–590 nm, exposure time 50 ms, focal
plane �8 mM
Hoechst: 360–400/410–480 nm, exposure time 25 ms, focal
plane �8 mM
Brightfield: Transmission/650–700 nm, exposure time 35 ms,
focal plane �6 mM

Images were captured at 7 time points every 4 h, starting
right after the treatment (0 h) to 24 h. Although it would have
been ideal to also conduct chronic exposure to kidney toxicants,
cell density of HPTECs was too high after 3 days to perform ac-
curate image analysis. Two fields of view were imaged per well,
capturing on average 1000 cells at 0 h and 1500 cells after 24 h.
Quantitative image analysis was performed after automatic up-
load of the images to the Columbus 2.4.2 Software (Perkin
Elmer). Based on the images obtained for each drug in the
brightfield, nuclei, mitochondria, lysosomes, ER, ROS, TMRM,
and dead cell channels, 629 numerical imaging features were
analyzed, including nuclei count, area, and roundness, mito-
chondria intensity, standard deviation, texture, and contrast,
ROS and ROS spots intensity, TMRM intensity, and texture. In
brief, the Operetta algorithm “B” was used for nuclear segmen-
tation based on Hoechst nucleus staining and algorithm “A” for
detection of cytoplasmic area based on the respective mito-
chondria dyes in both staining panels (MitoTracker and
CellROX). Second and third level parameters (eg, area, thresh-
old, split factor, and contrast) were kept at the default setting of
the software. Furthermore, the STAR method was selected to
calculate a large and diverse set of morphology properties for
phenotype classification and quantification of morphology
changes. According to the software, “morphology” includes the
outer shape of objects but also the distribution of intensity in-
side the objects as secondary papameters, eg, symmetry, pro-
file, and threshold compactness. As third level parameters, we
selected the Texture SER feature option. Detailed descriptions of
the algorithms underlying the individual features can be found
in the Columbus imaging software manual.

Four biological replicates were measured with technical
duplicates per plate. Features were exported as mean of 2 fields/
well and the data were normalized via calculating the z-scores
to the average and standard deviation of the 8 vehicle (0.5%
DMSO) treated control wells on each plate for each time point.
Therefore, all the vehicle-treated wells in a 384-well plate had
an average value of 0 in all imaging outputs and each drug-
treated response is represented in positive or negative values
relative to 0.

Gene expression profiling using L1000 platform. HPTECs were cul-
tured in 96-well plates for 3 days and then treated with toxic
and nontoxic compounds for 6 and 24 h. Cells were lysed with
100 ml of TCL buffer (Qiagen) and cell lysates were added to a
TurboCapture 384 plate to perform mRNA isolation and cDNA
synthesis in the same well (TurboCapture 384 mRNA kit,
Qiagen). High-throughput gene expression analysis was per-
formed based on the measurement of 1000 transcripts as de-
scribed previously (Adler et al., 2016; Peck et al., 2006;
Subramanian et al., 2017). The method involves ligation-
mediated amplification (LMA) using locus-specific probes engi-
neered to contain unique molecular barcodes, universal biotiny-
lated primers, and 5.6-micron optically addressed polystyrene
microspheres coupled to capture probes complementary to the
barcode sequences (Duan et al., 2014). Specific probes were
annealed to HPTEC cDNA, ligated by a Taq ligase, amplified, and
then hybridized to barcoded Luminex beads. Beads are analyzed
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using Luminex FLEXMAP 3D instrument (Thermo Fisher) by
identifying specific bead region and measuring the density of
the hybridized probes on each bead with laser beams. Data
were calibrated and normalized first to 80 invariantly expressed
transcripts in each well and then to the controls treated with
0.5% DMSO in each plate.

Real-time PCR. HPTECs were cultured in collagen VI-coated 48-
well plates for 3 days and then treated with toxic and nontoxic
compounds for 24 h. Total RNA was isolated using RNeasy Mini
Kit (Qiagen) and transcribed into cDNA with the QuantiTect
Reverse Transcription Kit (Qiagen). Real-time PCR (qPCR) was
carried out on QuantStudio 7 (Thermo Fisher) using QuantiFast
SYBR Green PCR Kit (Qiagen). All samples were measured in
duplicates and normalized to GAPDH. Changes in the mRNA ex-
pression were calculated using the DDCt method relative to 0.5%
DMSO control. Following primers were used: GAPDH_forward
GAA GGT GAA GGT CGG AGT, GAPDH_reverse GAA GAT GGT
GAT GGG ATT TC, HMOX1_forward AAG ACT GCG TTC CTG CTC
AA, HMOX1_reverse GGG GGC AGA ATC TTG CAC TT,
SQSTM1_forward AAG CCG GGT GGG AAT GTTG, and
SQSTM1_reverse CCT GAA CAG TTA TCC GAC TCC AT.

Preparation of imaging and L1000 gene expression data for Random
Forest machine learning. Random Forest (RF) machine-learning
algorithms were used for the systematic identification of imag-
ing features and genes with the highest predictive power.
Clinical observations of kidney toxicity in humans
(Supplementary Table 1) were used as the anchor (target vari-
able) for the RF training and testing for the kidney toxicity clas-
sification. Class labels as nontoxic ¼ 0 (10 instances, including
8 compounds, DMSO, and medium controls) or toxic ¼ 1 (38
compounds) to the kidney were used. To account for the imbal-
ance in the number of nontoxic versus toxic conditions, we ap-
plied balancing weights to the class labels during the training of
each RF tree. The datasets were subjected to the following steps
of clean-up. First, median values for every feature across all rep-
licates of each compound � concentration combination were
picked. Second, to capture the responses with the greatest mag-
nitude for each compound, maximum vectors of the imaging
and gene expression datasets were constructed for use with RF
classifiers. For imaging data, z-scores with the greatest magni-
tude, maximum or minimum, for every feature across all doses
of a compound were selected. For gene expression data, the
maximum log2(fold changes) for every gene across all doses of a
particular compound were selected. This produced a maximum
vector for each time point with dimensions of n rows and f col-
umns, corresponding to the number of compounds and fea-
tures, respectively. Third, to remove noise from the data, gene
expression maximum vectors were filtered such that log2(fold
change) values between �1 and 1 were set to zero, and imaging
maximum vectors were filtered such that z-score values be-
tween �1 and 1 were set to zero.

Finally, we chose early (4 h for imaging and 6 h for gene ex-
pression) and late (24 h for imaging and gene expression) time
points from each dataset and concatenated the max vectors in
order to produce two matrices with shapes of (n rows and 2f col-
umns), where rows correspond to compounds and columns cor-
respond to measured features at a particular time point.

Random Forest-based identification of predictive imaging features and
genes. To score and select features for subsequent steps, the
scikit-learn Python package was used (Pedregosa et al., 2011).
Recursive feature elimination (RFE) was performed using a RF

classifier, trained to predict whether compounds were toxic to
proximal tubule cells or not. Maximum vectors were supplied to
a k-fold cross-validation scheme, in which the maximum vector
was split into two parts where a fraction of compounds was
used to train the classifier, and the remainder of compounds
were used to test and assess the performance of the classifier.
This 9-fold cross-validation was repeated until the classifier
had returned predictions for every compound in the dataset af-
ter training on the other compounds. One hundred different
combinations of cross-validation splits were predefined, such
that the same splits could be performed multiple times on im-
aging and gene expression data. For each of these cross-valida-
tion, split combinations RFE would be performed twice: once
using the true class labels for compounds (toxic or not) and
once using shuffled class labels, to compare how the model per-
forms with real and randomized class labels. During each round
of RFE, an RF model with 100 trees was fit, where each tree was
trained on a balanced subsample of the data (ie, the class labels
were weighed to account for the imbalanced number of nephro-
toxic vs nonnephrotoxic compounds). The scikitlearn imple-
mentation of RF produces a variable importance score for each
feature based on Gini impurity (Menze et al., 2009). The variables
with the lowest scores were recursively cut from the dataset un-
til only one variable remained. At each step, the importance for
all variables and the predictions made by the model via cross-
validation were recorded. Ultimately, this produced 100 differ-
ent runs of the RFE trained on data with true and randomized
class labels.

Performance for each run was computed as the area under
the receiver operator characteristic (AUROC) curve. Statistical
and visual comparisons were carried out via the seaborn Python
package to determine that the performance of the model was
better than random with true as opposed to randomized/scram-
bled class labels. Inspection of AUROC versus number of fea-
tures plots depicting the decay in performance as features
decreased. Here, this was at roughly 20 genes and imaging fea-
tures. At this stage, the features were ranked in importance,
and a cut-off was set around rank 20. The number of times each
feature occurred at or below this rank cut-off was counted and
used to sort the features for selection and use in further
applications.

Network analysis of imaging data and hierarchical clustering. To gen-
erate a network that allows distinguishing between different
mechanisms of toxicity, we selected 18 compounds with known
mechanism of toxicity to create a “background network.” They
consisted of 7 compounds with well-defined mechanism of ac-
tion (CCCP, antimycin A, tunicamycin, chloroquine, hydrogen
peroxide, oligomycin A, and thapsigargin) and additionally, 11
compounds from the library of kidney toxic compounds
(Figure 6).

The networks were created using the Ayasdi software plat-
form (ayasdi.com, Ayasdi Inc., Menlo Park, California). This
software employs a technique called Topological Data
Analysis (TDA) to compare multidimensional features within
a highly complex dataset and cluster based on similarities of
the data, successfully used in a variety of scientific questions,
eg, breast cancer subgroups (Nicolau et al., 2011). This ap-
proach displays high dimensional data (such as the imaging
dataset with 629 numerical features for each of the 18 com-
pounds at seven time points and six concentrations) as a 3D
network in which each “node” comprises conditions similar to
each other (eg, different concentrations of the same drug) in
multiple dimensions. Lines or “edges” are drawn between
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nodes that contain similar and slightly overlapping data
points. This method combines features of standard clustering
methodologies and also provides a geometric representation
of the data (Lum et al., 2013).

Here, TDA was performed using variance normalized
Euclidean (VNE) distance as a metric to normalize the z-score
data, considering that each column in the dataset could have
significantly different variance. Subsequently, TDA used two fil-
ter functions, called “Neighborhood Lenses 1 and 2.” These fil-
ters generate an embedding of the high-dimensional VNE
distance data into two dimensions by embedding a k-nearest
neighbors graph of the data. A k-nearest neighbors graph is gen-
erated by connecting each point to its nearest neighbors. This
graph is embedded in two dimensions using Ayasdi’s proprie-
tary graph layout algorithm used in their visualizations. These
filters work to emphasize the structure of the data.

Statistical methods and software. Unless otherwise indicated, data
are presented as mean 6 SD. Statistical difference (p< .05) as
calculated by Student’s t test. Multiple group comparison was
conducted by ANOVA followed by Dunnett’s post hoc test.
p< .05 was considered significant and represented by * as com-
pared with corresponding controls. All graphs were generated
using GraphPad Prism (GraphPad, Inc., La Jolla, California) or
JMP Pro 12.0.1 (SAS, Cary, North Carolina). Hierarchical cluster-
ing was performed using GeneE software (software.broadinsti-
tute.org/GENE-E). Logistic regression analyses were performed
using Stata 13.0 (StataCorp, College Station, Texas). RF analyses
pipelines, report generation, and figure visualization were per-
formed using Python.

Data and code availability. The gene expression and high-content
imaging datasets generated during and/or analyzed during the
current study, as well as Source code and Python scripts for RF
analyses are available in the Dryad repository (https://doi.org/
10.5061/dryad.646v2r1).

RESULTS

Overview of the Experimental Design
We generated a library of 46 drugs and chemicals, classified to
cause drug-induced kidney injury (DIKI) (38) or nontoxic con-
trols (8) (Figs. 1 and 2, Supplementary Table 1). Previously char-
acterized human proximal tubular epithelial cells (HPTECs)
(Adler et al., 2016) were challenged with six concentrations of
each compound, selected to span or exceed the human maxi-
mal exposure to achieve robust toxic responses (Figure 2).

To identify biomarkers that predict compound toxicity in a
sensitive and specific manner, we generated two main datasets
with the compound library:

1. Gene expression analysis was conducted in six concentra-
tions after 6 and 24 h of treatment by measuring 978 tran-
scripts (plus 22 housekeeping genes for normalization).
These transcripts, called L1000, represent a selection of
landmark genes characteristic of the variability of the tran-
scriptome (Adler et al., 2016; Lamb, 2007). Due to high noise
and only 80% confidence, we did not infer the L1000 data to
the whole transcriptome. All 978 transcripts were used for
RF feature reduction.

2. Automated high-content live-cell imaging was performed
with the library compounds at six concentrations and seven
time points (0–24 h, every 4h). We quantified and extracted
629 cellular imaging features, including changes in the

structure, intensity, texture, and shape of the nucleus, mito-
chondria, ER, and lysosomes. We also measured three func-
tional changes relevant to cell viability: MMP, ROS, and
plasma membrane integrity (Figure 1). All 629 features were
used for RF feature reduction and for mechanistic network
analyses. In addition to the 46 library compounds, we im-
aged seven compounds that served as mechanistic controls,
such as tunicamycin for ER-stress or antimycin A for mito-
chondrial damage (Supplementary Table 1).

Random Forest Machine Learning to Identify Genes and Imaging
Features Predictive for Toxicity

Performance of the Random Forest model. The first aim of our study
was to identify a panel of biomarkers across both gene expres-
sion and imaging datasets that are most accurate in distin-
guishing between kidney toxic and nontoxic compounds
(Figure 1). We decided to apply a RF machine-learning algorithm
for the systematic identification of imaging features and genes
with the highest predictive power. RF produces highly accurate
classifiers, it runs efficiently on large databases, and although it
can handle thousands of input variables without variable dele-
tion, it provides estimates of what variables are important in
the classification (Breiman, 2001; Shi and Horvath, 2006). In a
RFE step, the gene/imaging feature with the lowest importance
score was removed and area under the receiver operating char-
acteristic (AUROC) curve was monitored as performance param-
eter across the elimination cycles until only one gene/imaging
feature was left (Figs. 3A and 3B). To assure that associations of
selected genes/features with kidney toxicity were statistically
significant and not due to chance, we randomized/scrambled
the compound labels and ran the RF again (Figs. 3A and 3B). As
expected, the scrambled run type generated on average AUROC
values around 0.5, indicating no predictivity. Feature reduction
of 978 genes at two time points (¼ 1956 total variables) yielded
on average AUROC values of 0.8 (Figure 3A). This performance
started to drop slightly when the elimination reached around 20
genes and went down to an AUROC of 0.6 with just one gene
left. RF-based reduction of 629 imaging features at two time
points (¼ 1258 total variables) performed better than the genes
with average AUROC values of >0.9 (Figure 3B). Additionally,
this good predictivity was maintained longer, and started drop-
ping at around 3 imaging features until it reached an AUROC of
0.8 with just one feature left.

Identification of most predictive genes and imaging features. To iden-
tify genes and imaging features that were the least likely to get
eliminated during the RF, the number of times each variable oc-
curred at or below the last 20 RF cycles was counted and used to
sort the features based on their counts (Figs. 3C and 3D).

Among all 978 genes across two time points (¼ 1956 total
variables), heme oxygenase-1 (HMOX1 at 6 h and 24 h) and
sequestosome-1 (SQSTM1 at 24h) appeared the most times
among the most predictive 20 genes (Figure 3C). Both genes be-
long to the Nrf2 pathway and are relevant signaling hubs for di-
verse cellular events such as oxidative stress response (Agarwal
and Bolisetty, 2013; Katsuragi et al., 2015). Overall, genes mea-
sured at 24 h performed better (33 of the most important 50
genes) than genes measured at the earlier 6 h time point (17/50).
However, in addition to HMOX1, several genes appear on the list
of final genes at both time points, including CDKN1A (Cyclin
Dependent Kinase Inhibitor 1A), LYN (Lck/Yes novel tyrosine ki-
nase), GADD45A (Growth arrest and DNA-damage-inducible
protein alpha), and ARPP19 (cAMP-regulated phosphoprotein
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19). Further genes that yielded high counts during the last 20 RF
cycles include PMAIP1 (Phorbol-12-myristate-13-acetate-in-
duced protein 1) and MMP1 (Matrix metalloproteinase-1)
(Figure 3C).

Of all 629 imaging features at two time points (¼ 1258 total
variables), Cell Radial Deviation SER-Dark, based on the mito-
chondrial dye and describing cell shape, ranked number one
among the last most important features (Figure 3D). Additional
features that are calculated based on changes in cell shape
appeared 20� among the 50 highest ranked. Other important
groups of features describe nucleus shape (7/50, eg, Nucleus
Profile 4/4 SER-Saddle), nucleus texture (6/50, eg, Texture
Nucleus SER-Saddle), and different mathematical ways to de-
scribe nucleus intensity (4/50), such as max, min, quantile, and
mean). Additional features that seemed of high predictive im-
portance include changes in the dye for ROS (both in “Spots,” la-
beling mitochondrial DNA, and throughout the “Cell”), and

changes in MMP. Similar to the genes, the list of most relevant
imaging features contained mostly features at the later time
point at 24 h (41/50) rather than very early at 4 h (9/50)
(Figure 3D).

Comparison of Most Predictive Genes and Imaging Features to
Standard Toxicity Assays and Physicochemical Properties
Next, we wanted to directly compare how standard toxicity and
cell viability assays perform in classifying the library of 46 kid-
ney toxic and nontoxic compounds versus the genes and imag-
ing features identified by the RF. Therefore, two new datasets
were generated by analyzing all 46 library compounds for their
ability to reduce cell viability (CellTiter Glo ATP assay)
(Supplementary Data 2) and to increase the number of dead
cells (uptake of TOTO-3 iodine dye). Similar to the gene expres-
sion and imaging dataset, a max vector (maximal response
across each six-point dose-response curve) was build.
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Using GraphPad Prism Software, we calculated ROC curves
at 24 h for the two standard assays (Cell Viability, Cell Death),
two highest ranked genes (HMOX1, SQSTM1), and three highest
ranked imaging features (Cell Radial Deviation SER-Dark ¼ “Cell
Shape,” Texture Nucleus SER-Saddle ¼ “Nucleus Texture,” and
Nucleus Profile 4/4 SER-Saddle ¼ “Nucleus Profile”) based on all
46 compounds (Figure 4A). The maximal achievable Youden
Index (YI ¼ Sensitivity þ Specificity � 1) of each ROC curve was
used to determine a cut-off for each of the seven readouts at
which the accuracy of the prediction reached a maximum
(Figure 4A).

In a second step, the ROC curve-derived cut-offs were ap-
plied to the max values of each compound to determine the
number of compounds correctly or incorrectly classified
(Figure 4B). Four of the seven assays misclassified one of the

eight nontoxic compounds as toxic, whereas Number of Dead
Cells, Nucleus Texture and Nucleus Profile showed 100%
Specificity. All assays failed to identify a certain number of toxic
compounds correctly, ranging from a maximum of 12 false neg-
ative compounds using Cell Viability and Number of Dead Cells,
to a minimum of only 6 false negative compounds using
Nucleus Profile (Figure 4B). Overall, the standard assays per-
formed worst with AUROCs of 0.829 for Cell Viability and 0.791
for number of dead cells, whereas Nucleus Profile and Nucleus
texture performed best with AUROCs of 0.92 (Figure 4A).

The only toxic compound misclassified by all seven assays
was acetaminophen, consistent with previous observations in
HPTEC cells showing a lack of necessary drug metabolizing
enzymes, thereby preventing this drug from exhibiting nephro-
toxicity in vitro (Adler et al., 2016). This was confirmed by the
correct identification of 4-aminophenol, an acetaminophen me-
tabolite responsible for toxicity, by all seven assays (Figure 4B).

In addition to standard toxicity assays, we were interested
whether physicochemical properties of our library compounds
could serve as predictors of toxicity. Therefore, a set of 10 stan-
dard physicochemical properties, such as lipophilicity, polar
surface area, molecular weight, acidity, and maximal plasma
concentration (Cmax) was collected for all 46 compounds. Yet, lo-
gistic regression modeling showed that none of the parameters
was associated with increased odds for a compound to be neph-
rotoxic in humans (Supplementary Data 3a).

Finally, because many of the extracted imaging features
were derived via algorithms specific to the Columbus analysis
software, we calculated the predictive performance of an imag-
ing feature that can easily be translated to any imaging soft-
ware. “Nucleus Intensity Maximum,” is calculated based on the
intensity histogram in the nucleus mask and describes the max-
imum intensity in the Hoechst channel as an average per well.
Nucleus Intensity Max ranked number 16 of 629 in the list of
most important features (Figure 3D), but it generated a
Sensitivity of 86.8% and Specificity of 75% (Supplementary Data
3b). The AUROC of 0.913 was very competitive to Nucleus Profile
and texture with 0.92.

Validation of RF-Derived Genes and Imaging Features by Predicting
Toxicity in a Set of 12 New Compounds
To further test the RF-derived genes and imaging features that
seem to perform better than standard assays in a library of 46
drugs and chemicals, we performed external validation by mea-
suring the two highest ranked genes and two best performing
imaging features in a set of 12 new compounds at 24 h. Six of
the compounds had previously been discontinued by
AstraZeneca (AZ), either in clinical or preclinical development,
due to kidney-related findings that were not anticipated based
on early toxicological in vitro testing (Figure 5A). Additional six
compounds were selected because they had no reports on kid-
ney toxicity in patients and some have overlapping targets with
the AZ candidates: MA-801/Dizocilpine is an NMDA receptor an-
tagonist like AZD4282, Ramatroban is a prostaglandin D2 recep-
tor CRTH2 antagonist like AZD8057 and AZD5985. All
concentration ranges were based on the respective plasma Cmax

of the compounds, with 30� Cmax as the highest concentration
(Figure 5B). Figure 5C shows a dose-dependent significant upre-
gulation of the two most predictive imaging features (Nucleus
Profile and Nucleus Texture) after treatment with four of the six
AZ compounds, ranging from a mean z-score increase of 2.0–
13.4. Notably, none of the six nontoxic controls crossed the line
of 1.96 for a significant z-score. Of the two most predictive
genes, HMOX1 showed a significant increase after exposure to
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all of the six toxic AZ compounds, varying in extend from a
mean upregulation of 1.8–96-fold compared with vehicle control
(Figure 5D). SQSTM1 was significantly upregulated for three of
the six toxic AZ compounds, ranging from a mean upregulation
of 5.6–20.4-fold.

To allow benchmarking against the currently used stan-
dard method of toxicity prediction, we also measured the 12

new compounds at the same concentrations using the ATP
Cell Viability assay (CellTiter Glo) after 24 h of exposure.
Again, none of the six nontoxic controls showed a decrease
in cell viability up to 30� Cmax (Figure 5E). However, only
two of the six toxic AZ compounds significantly decreased
viability of the cells, and this loss in cell viability was only
detectable at concentrations much higher than required for
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HMOX1 or Nucleus imaging feature upregulation (Figure 5E).
Finally, integration of the two types of readouts by plotting
the maximum upregulation of the Nucleus Profile imaging
feature against HMOX1 allowed clear separation of AZD4282,
AZD8075, AZD6906, and AZD5985 from the nontoxic control
compounds (Figure 5F) by applying the same ROC-derived
cut-offs that were determined previously with the 46 com-
pound library (Figure 4B).

Organ Specificity of Nucleus Texture Imaging Feature
A direct comparison of a subset of compounds in both liver
(HepG2) and kidney (HPTEC) cells showed that the Nucleus
Texture feature successfully detected the liver toxicant (acet-
aminophen) and the kidney toxicant (gentamicin) in the correct
cell type while general toxicants (aflatoxin B1 and cadmium
chloride) induced upregulation of Nucleus Texture in both cell
types (Supplemental Data 3c).
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Figure 4. Performance of standard toxicity assays compared with RF-derived most predictive genes and imaging features. (A) Receiver operating characteristic curve

(ROC) for (1) standard toxicity assays (cell viability: Celltiter Glo ATP assay; cell death: number of dead cells based on TOTO-3 iodine dye), (2) predictive genes, identified

by RF feature reduction (HMOX1 and SQSTM1), and (3) imaging features identified by RF feature reduction (Cell Radial Deviation SER-Dark, Texture Nucleus SER-Saddle,

Nucleus Profile 4/5 SER-Saddle). Data represent maximal upregulation of 38 kidney toxic compounds and 8 nontoxic controls across all concentrations at 24 h. Area un-

der the ROC curve (AUROC) was calculated using GraphPad Prism software. Cut-off was calculated using the maximum YI (Youden Index ¼ Sensitivity þSpecificity �
1). (B) ROC-derived cut-offs were used as a threshold to calculate number of False Positive (FP), True Positive (TP), False Negative (FN), and True Negative (TN) com-

pounds. Sensitivity or True Positive Rates (TPR) were calculated as #True Positive/All Positive. Specificity or True Negative Rates (TNR) were calculated as #True

Negative/All Negative. Accuracy was calculated as (TP þ TN)/(TP þ FP þ FN þ TN).
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Topological Data Analysis to Identify Compound-Induced
Mechanisms of Toxicity
The second aim of this study was to classify compounds by their po-
tential mechanism of toxicity with the help of network analysis. To
this end, we selected 18 compounds with well-described mechanism
of toxicity and used them to generate a “Background Network” in the
Ayasdi software that applies TDA to build networks from multidimen-
sional data (Figure 6). The complete high-content imaging dataset,
consisting of 629 imaging features for seven time points and six con-
centrations of the selected 18 compounds and nontoxic conditions
(0.5% DMSO control, aspirin, and sulfamethoxazole), was uploaded to
the software and embedded in a 3D network based on their k-nearest
neighbor similarity. Of the 12 mechanistic groups making up the

“Background Network,” seven were represented by one compound,
such as oligomycin A for Mitochondrial ATP-synthase inhibition
(Symersky et al., 2012), tunicamycin for ER-stress via protein accumulation
(Oslowski and Urano, 2011), cyclosporine A for Immunomodulation
(Yocum, 1996), and phenacetin for Analgesic nephropathy (Murray, 1972).
The remaining six assigned mechanisms were represented by two
compounds each, such as cadmium chloride and hydrogen peroxide
for ROS and Apoptosis (Khojastehfar et al., 2015), chloroquine & gentami-
cin for Lysosomal disorders (Anderson and Borlak, 2006), and cisplatin &
doxorubicin for DNA intercalation (Cheung-Ong et al., 2013) (Figure 6).

Locating the 12 groups in the network showed that individ-
ual mechanistic clusters exhibited little overlap and presented
distinct flares in the “Background Network” (Figure 7A). Only
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Figure 5. Validation of most predictive genes and imaging features in a set of 12 new compounds. (A) Six AstraZeneca (AZ) compounds were selected due to kidney

toxic signals during development. Additional six compounds were chosen with similar pharmacological targets but no reports of kidney damage as nontoxic controls.

(B) Concentration ranges (lines) of new nontoxic and AZ compounds used for following analyses with corresponding peak plasma concentrations (Cmax) (circle), span-

ning 12 concentrations from 30� to 0.006� Cmax. (C) Image analysis of most predictive imaging features (“Nucleus Profile 4/5 SER-Saddle_24h” and “Texture Nucleus

SER-Saddle_24h”) at 24 h showed dose-dependent increase in z-score for five of the six AZ compounds. Data represent mean of four biological replicates performed in

technical duplicates. Dotted line represents threshold for significant z-scores (�1.96 to 1.96), indicating two SD away from the mean of the control. (D) qRT-PCR results

of HMOX1 (black) and SQSTM1 (gray) after treatment with the 12 new compounds for 24 h in low (1.3-fold Cmax), medium (6.2-fold Cmax), and high dose (30� Cmax). Data

represent fold change to the average of the untreated control (dotted line) and is displayed as mean 6 SD (n ¼ 3). Multiple group comparison was conducted by one-

way ANOVA followed by Dunnett’s post hoc test. p < .001 (***). (E) CellTiter Glo analysis of 12 validation compounds at 24 h showed dose-dependent decrease cell viabil-

ity of two of the six AZ compounds. Data represent mean of three biological replicates performed in technical duplicates. (F) Scatter plot of z-score of Nucleus Profile 4/

5 SER-Saddle against fold change of HMOX-1. Data represent maximal upregulation across all concentrations at 24 h. Dotted lines represent threshold for positive sig-

nal based on cut-offs derived from full compound library.
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groups with mechanisms in which a certain degree of similarity
would be expected, as in Mitochondrial ATP-synthase inhibition &
ER-stress via Ca2þ ATPase inhibition, showed overlap of their loca-
tion in the network (Figure 7A).

In a next step, the remaining 25 library compounds were in-
dividually overlaid on the background landscape by creating

one new network analysis per compound. For this reason, each
of the 25 new networks looked slightly different than the origi-
nal Background Network as it had the additional dataset of one
more compound to consider. The overlap with the 12 previously
defined mechanistic groups allowed inference of information
about the new molecule (Supplementary Data 4). Figure 7B
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Figure 7. Network analysis of imaging data to identify mechanistic clusters. (A) Network of 18 background compounds with separation of 12 mechanistic groups based

on complete high-content imaging dataset (six concentrations, seven time points). Nodes in the network represent clusters of compounds with similar imaging profiles

and edges connect nodes that contain samples in common. Coloring represents concentration of the mechanistic category in each node as the �log10(p value) and

ranks from 0.2 (blue) to 67 (red). (B) Overlay of new compounds on the background network to infer mechanistic information. Examples displayed here: Tacrolimus

only overlaps with Immunomodulation (¼ cyclosporine A), Tobramycin overlaps with lysosomal disorders (¼ gentamicin, chloroquine), necrosis (¼ p-aminophenol,

amphotericin), and mitochondrial respiration (¼ CCCP, antimycin A). (C) Two-way hierarchical clustering of kidney toxic compounds based on their overlap (blue label)

with one or more of the 12 network-based groups shows formation of clusters of compounds with similar mechanism.
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shows the overlay of two example compounds on the
Background Network. Tobramycin nodes overlapped with the
clusters associated with Lysosomal disorders, Necrosis, and
Mitochondrial respiration, which is consistent with effects of
tobramycin seen in preclinical and clinical studies (Mingeot-
Leclercq and Tulkens, 1999). Tacrolimus, as a second example,
only overlapped with the cluster labeled Immunosuppression. The
background compound underlying this cluster was cyclosporine
A, a compound that is structurally unrelated to tacrolimus and
binds to different cytosolic proteins in target cells (Randhawa
et al., 1997), yet, both act as immunosuppressive drugs and both
have been reported to induce kidney toxicity. Therefore, al-
though the molecular basis of nephrotoxicity is not as well un-
derstood for these two compounds, using high-content imaging
data and the comparative network analysis, we were able to
confirm their overlap in toxicity profile (Randhawa et al., 1997).

In a last step, all overlaps with one or more of the 12 mecha-
nistic groups for the 46 kidney-toxic drugs and chemicals plus
the seven additional mechanistic compounds were submitted
as a binary matrix to two-way hierarchical clustering
(Figure 7C). Despite integrating concentrations and time points
into the initial network analysis at which no apparent cytotox-
icity was detectable, the analysis was able to cluster about 50%
of compounds into groups with distinct labels. These groups in-
clude for example a cluster with six compounds that are all
known to induce DNA damage (aristolochic acid, carboplatin,
cisplatin, doxorubicin, idarubicin, and mitomycin C). Another
cluster includes four different analgesics (ibuprofen, phenace-
tin, acetaminophen, and N-phenylanthranilic acid) and a third
cluster includes three antibiotics of the library (gentamicin,
tobramycin, and bacitracin) that are all inducing lysosomal
damage. The remaining compounds showed overlap with a
mixture of different mechanisms (eg, citrinin overlapped both
with Apoptosis/ROS and with Necrosis) and were therefore
harder to capture under one term. However, these mixed results
are both a reflection of the multifaceted behavior of toxic chem-
icals in the cells and also capture the time- and dose-
dependency of the imaging data across six doses and seven
time-points.

Overlap of AZ Compounds with Imaging Network to Infer
Mechanism of Toxicity
In addition to using the individual genes and imaging features
to predict the potential for drug-induced kidney toxicity
(Figure 5), we also used the complete imaging dataset (629 fea-
tures, 7 time points, 12 concentrations) of the six AZ com-
pounds to perform network analysis for identification of
potential mechanisms of toxicity. To that end, we overlaid each
AZ compound onto a network based on all of the library com-
pounds, instead of just the 18 background compounds.

Figure 8 shows the six networks that were formed by adding
the AZ compounds one at a time. Circles indicate the location of
nodes where the respective AZ compound clusters and they
were used to find overlaps with other drugs in the network.

AZD6906, a GABAB receptor agonist, showed distinct overlap
with calcineurin inhibitors cyclosporine A and tacrolimus. The
imaging feature responsible for the formation of this cluster
was an increase in MMP compared with the rest of the network.
AZD4282, a NMDA receptor antagonist, partly overlapped with
paclitaxel and cadmium chloride. AZD8075, a Prostaglandin D2
receptor (CrTh2) antagonist, showed overlap with four DNA-
damaging compounds, which was a very different profile than
the second compound with the same pharmacological target,
AZD5985, which overlapped with compounds related to

analgesic nephropathy and inhibition of ATP synthesis (N-phe-
nylanthranilic acid, indomethacin, and rapamycin). The last
two compounds, AZD7507 and AZD6610, were not identified as
toxic in the predictive analyses, however, in the network analy-
sis, they still formed separate clusters and did not overlap with
the nontoxic controls. Instead, AZD6610 showed overlap with
compounds like potassium dichromate and lead (IV) acetate,
known to induce cell stress and apoptosis. Therefore, imaging-
based network analysis could add sensitivity to a pure bio-
marker-based prediction.

Because these six compounds were discontinued in their de-
velopment and no details on their mechanism of kidney toxicity
are available, we could not confirm whether the overlaps we
identified in the network analysis are accurate. However, these
overlaps and similarities with known toxicants could be used to
help identify potential interactions of unknown compounds
with cells and thereby support toxicity mitigation strategies in
early drug development.

DISCUSSION

The etiology and pathophysiology of AKI are complex and often
multifaceted, (Makris and Spanou, 2016) and it is this complex-
ity that underlies the challenge of developing new treatments
for AKI (Gallagher et al., 2017). Notably, the complex physiology
of the kidney also renders it susceptible to a wide range of toxic
insults, an important consideration in early development of
drugs and chemicals. Currently, there is no well-established
in vitro method that screens large number of compounds for
their potential to induce kidney toxicity. Therefore, this study
aimed to develop an unbiased approach that combines multidi-
mensional datasets and machine learning to identify bio-
markers that not only predict nephrotoxic compounds but also
provide hints toward their mechanisms of toxicity.

Machine Learning to Identify Biomarkers
To avoid the pitfalls associated with either studying a small
number of compounds (limiting the generalizability of results to
compounds with disparate mechanisms) or employing a re-
stricted set of analytic readouts (Loo and Zink, 2017; Wilmes
et al., 2013), we accepted a diverse range of compounds’ dose to
response based on Cmax, time to response, mechanism of action,
and even degrees of evidence for kidney toxicity in humans.

RF identified two genes, HMOX1 and SQSTM1, as effective
discriminators between toxic and nontoxic compounds. Both
genes belong to the Nrf2 pathway and serve as signaling hubs
for diverse cellular events such as oxidative stress response
(Agarwal and Bolisetty, 2013; Katsuragi et al., 2015). Notably,
both genes and their products have previously been implicated
in renal injury response. Upregulated HMOX1 and SQSTM1 ex-
pression has been observed in vitro as a feature of cellular stress
responses to toxic chemicals (Adler et al., 2016; Alegre et al.,
2018), and greater HMOX1 expression has also been observed in
the setting of clinical AKI and inflammatory renal disease
(Yokoyama et al., 2011; Zager et al., 2012). Furthermore, HMOX1
upregulation is seen as part of the renal response to ischemia
reperfusion injury across several species (Grigoryev et al., 2013),
and SQSTM1 has been implicated in preventing oxidative stress-
induced apoptosis in kidneys of patients receiving cisplatin (Xia
et al., 2014). In addition, numerous other genes ranked by the RF
as being associated with nephrotoxicity (eg, PMAIP1, CDKN1A,
MMP1, GADD45A) have all previously been reported as impor-
tant components of cellular stress responses including
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apoptosis, DNA damage response, and remodeling of the extra-
cellular matrix (Lenz et al., 2000; Oda et al., 2000).

The highest ranked imaging features identified by the RF did
not include those readouts expected to be most tightly associ-
ated with cellular toxicity, such dead cell number, ROS induc-
tion, or loss of MMP. This might be because these commonly
assessed endpoints are often too selective and only perform
well for a subset of toxicants with a particular target (McKim,
2010). Rather, the unbiased feature selection identified more
general readouts as highly predictive of toxicity, including cellu-
lar shape and nuclear texture (Figure 3D). This finding is

consistent with previous reports that changes in chromatin and
actin cytoskeleton are highly predictive of the nephrotoxicity of
xenobiotics (Su et al., 2016). Changes to nucleus texture can oc-
cur for a wide variety of reasons, including DNA damage or sim-
ply apoptosis (Ziegler and Groscurth, 2004). In our work, such
changes were predictive of the toxicity of compounds affording
a broad range of insults, including DNA damage, activation of
oxidative stress pathways, and lysosomal damage.

The strength of detecting a broad range of toxic cellular
insults can also be a disadvantage because it can limit organ
specificity of the prediction. Using biomarkers of general cell
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�log10(p value) and ranks from 0.2 (blue) to 67 (red). Circles indicate the location of nodes where an AZ compound clusters and were used to find overlaps in the net-

work of new compounds with known library compounds to infer mechanistic information.
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stress rather than pathways specific for kidney cell damage
could lead to an increased number of false-positive hits as every
cytotoxic compound could be identified as positive. However, a
direct comparison of a subset of compounds in both liver
(HepG2) and kidney (HPTEC) cells showed that the Nucleus
Texture feature successfully detected the liver toxicant (acet-
aminophen) and the kidney toxicant (gentamicin) in the correct
cell type while general toxicants (aflatoxin B1 and cadmium
chloride) induced upregulation of Nucleus Texture in both cell
types (Supplementary Data 3c). These data suggest that our
Nucleus Texture imaging biomarker could potentially be used
in liver cells for the detection of hepatotoxicity, which also
poses a significant problem with candidate compounds in drug
development.

This result demonstrates that unbiased phenotypic profiling,
not geared toward prespecified mechanisms or narrow end-
points, can identify predictors of toxicity that have broader ap-
plicability across a diverse chemical space.

Understanding mechanisms for de-risking. Here we employed net-
work comparison based on TDA as a machine-learning frame-
work to classify compounds by mechanism of action. This
approach accurately clustered many of the compounds into dis-
tinct groups with overlapping toxicity, such as DNA damaging
agents, aminoglycoside antibiotics, analgesics, and immuno-
suppressants. Additionally, even for compounds that did not
fall into a specific cluster, we could make important mechanis-
tic predictions. As an example, diatrizoic acid, a radiocontrast
medication, clustered with drugs inducing DNA/RNA damage
and lysosomal pathology, consistent with previous reports that
(1) this hypertonic agent induces DNA fragmentation in renal
tubular cells (Hizoh et al., 1998); and (2) that radioconstrast
agents can induce reversible lysosomal alterations in rat kid-
neys representing first signs of cellular injury (Tervahartiala
et al., 1991).

Another advantage of mechanistic clustering is that it might
complement quantitative readouts for toxicity prediction to im-
prove assessment of potentially misclassified drugs. For exam-
ple, acetaminophen was not detected in the toxicity panel due
to a lack of hepatic biotransformation, which is a limitation of
an in vitro system with kidney cells only. However, in the mech-
anistic clustering based on all high-content imaging data, acet-
aminophen still overlapped with other analgesics,
demonstrating the superiority of examining both toxicity pre-
diction and mechanism. A second toxic and yet negatively clas-
sified compound was tenofovir, likely due to a low activity of its
uptake transporter OAT1 in our cells (Adler et al., 2016; Kohler
et al., 2011). However, based on our imaging-based network
analysis, we could again identify changes in the mitochondria
and similarities to analgesic-induced tubulointerstitial nephri-
tis. This is consistent with observations in patients, where teno-
fovir toxicity presents with the morphologic abnormalities in
proximal tubule mitochondria and renal Fanconi-Syndrome, a
milder case of tubulointerstitial nephritis (Hall et al., 2011).

A potential caveat in this analysis is that our method is based
on overlaps with a network of known compounds. This renders
the approach highly flexible but the mechanistic insight gained is
only as good as the mechanistic coverage of the library com-
pounds. Second, rather than getting specific activated or deacti-
vated pathways as readouts, our imaging panel yields
information on organelle changes, ROS, and loss of MMP. That
said, the main advantage lies in the depth of data obtained pro-
viding unique ability to pick up both early changes such as devel-
opment of oxidative stress and lysosomal alterations, as well as

late damage such as necrosis. Furthermore, by manually assess-
ing the overlap of new compounds with the background network,
new compounds need not be matched to only one mechanistic
category. Rather, it is acknowledged that one compound can clus-
ter with several different mechanisms of cellular response—
partly because of multifactorial mechanisms of toxicity, and
partly because of changes in cell response to injury over time.

Applying Biomarkers and Mechanistic De-risking Strategy to
Therapeutic Candidates
In our validation study, using one nucleus texture imaging fea-
ture and HMOX1 gene expression, we correctly classified four of
six toxic compounds whose adverse effects were previously
only detected in preclinical and clinical studies. The perfor-
mance of newly identified biomarkers was significantly better
than standard cell viability readouts, which could only identify
toxicity when using the highest concentration of two of the six
compounds.

It can be speculated that the false negative classifications
may be due to limitations in transporters or biotransformation
in the kidney cell system employed. For example, AZD6610 is
metabolized in vivo through hepatic CYP450 and UDP-
glucuronosyltransferase (UGT) enzymes (Darnell et al., 2012),
which could have led to a lack of toxic metabolites in our in vitro
system. Further, the chemical structure of the second com-
pound, AZD7507, contains an amino group that might, in its cat-
ionic form (NHþ3 ), bind to the megalin transporter located at the
brush-border membrane and expressed in HPTECs (Adler et al.,
2016). Subsequent internalization of the megalin-bound com-
pound by endocytosis could achieve 100–1000 times higher drug
concentrations in the proximal tubule cells that observed in se-
rum (Mingeot-Leclercq and Tulkens, 1999), such that our Cmax-
based concentration range would be underestimating the actual
intracellular concentrations. The mechanistic network analysis
of all of the six drugs showed at least a partial overlap with
some of the kidney toxic library compounds. Because these six
compounds were discontinued in their development and no
details on their mechanism of kidney toxicity were available,
we could not confirm whether the identified overlaps in the net-
work are accurate.

In summary, using RF feature selection and comparative
network analysis across two large omics datasets, we developed
an integrative systems toxicology approach that enabled two
goals: (1) A strict feature reduction, supported by highly accu-
rate machine learning algorithms, allowed the identification of
HMOX1 gene expression in combination with nucleus texture
imaging feature as robust biomarkers to predict drug toxicity.
(2) Measurement of as many readouts as possible, while using a
limited, yet diverse set of compounds, allowed insight into the
potential mechanisms of toxicity. Compounds flagged by this
in vitro screening can then be triaged for further testing in lower
throughput repeat-dose in vitro studies, 3D microphysiological
systems, or preclinical in vivo assays.
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