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Abstract: Differential artery-vein analysis promises better sensitivity for retinal disease 
detection and classification. However, clinical optical coherence tomography angiography 
(OCTA) instruments lack the function of artery-vein differentiation. This study aims to verify 
the feasibility of using OCT intensity feature analysis to guide artery-vein differentiation in 
OCTA. Four OCT intensity profile features, including i) ratio of vessel width to central 
reflex, ii) average of maximum profile brightness, iii) average of median profile intensity, and 
iv) optical density of vessel boundary intensity compared to background intensity, are used to 
classify artery-vein source nodes in OCT. A blood vessel tracking algorithm is then employed 
to automatically generate the OCT artery-vein map. Given the fact that OCT and OCTA are 
intrinsically reconstructed from the same raw spectrogram, the OCT artery-vein map is able 
to guide artery-vein differentiation in OCTA directly. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Early clinical diagnosis and prompt medical intervention are essential for preventing vision 
loss due to eye diseases. It is known that many eye diseases can target arteries and veins 
differently. For example, venous loops, venous beading [1–4], and arterial narrowing [5–7] 
have been reported in diabetic retinopathy (DR) and sickle cell retinopathy (SCR) patients. 
Therefore, differential artery-vein analysis promises better sensitivity for disease detection 
and staging classification. Artery-vein ratio of blood vessel caliber, for example, has been 
reported as a predictor of eye conditions [8–12]. Manual differentiation of retinal artery-vein 
is time consuming, and it can only be performed by experienced ophthalmologists. Therefore, 
a number of algorithms have been proposed to explore automated artery-vein differentiation 
in fundus photography [13–22]. However, a fundus image has limited resolution and 
sensitivity to reveal microvascular abnormalities associated with eye conditions [23]. Often, 
microvascular anomalies that occur early on in these ocular diseases cannot be reliably 
identified in traditional fundus photography [24–26]. 

By providing depth-resolved capability for visualizing multiple retinal layers with 
capillary level resolution, quantitative optical coherence tomography (OCT) and OCT 
angiography (OCTA) contribute to better clinical management of eye diseases. Multiple 
OCTA features have been developed for quantitative OCTA analysis and objective 
classification of DR [27], age-related macular degeneration (AMD) [28], glaucoma [29], and 
SCR [30,31]. Nonetheless, differential artery-vein analysis is not available for existing 
clinical OCTA instruments. Recently, we demonstrated the feasibility of using color fundus 
image to guide artery-vein differentiation in OCTA [32]. Two differential artery-vein 
features, i.e. artery vein ratio of blood vessel caliber (AVR-BVC) and tortuosity (AVR-BVT) 
improved the performance of OCTA detection and classification of DR. However, clinical 
deployment of this method is quite difficult due to the requirements of two clinical 
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instruments, i.e., fundus camera and OCTA system, along with a sophisticated image 
registration. 

In this study, we propose to use intensity based feature analysis in OCT to guide artery-
vein differentiation in OCTA. In principle, an en face OCT image functions as a near infrared 
fundus image, thus it retains reflectance intensity based features in the vascular profiles. It is 
known that the central reflex is larger in arteries; whereas the vessel caliber is larger in veins 
[33]. The brightness profiles and optical density in arteries are brighter compared to 
neighboring veins [33]. Therefore, intensity profile based feature analysis promises a feasible 
method to conduct artery-vein classification in OCT. Because en face OCT and OCTA 
images can be reconstructed from the same spectrogram data set captured with a single 
clinical OCT/OCTA device, the artery-vein information can be readily used to guide artery-
vein differentiation in OCTA. The proposed artery-vein classification algorithm is validated 
with a database that consists of a 100 OCT/OCTA image data set and verified by manual 
classification results prepared by two experienced ophthalmologists. The classification 
performance is further validated using sensitivity, specificity, and accuracy metrics along 
with graphical metrics, i.e., receiver operation characteristics (ROC) curve. 

2. Methods 

Figure 1 illustrates core steps of OCT guided artery-vein classification in OCTA. Technical 
details are provided in following sections. 

 

Fig. 1. Core steps of OCT guided artery-vein classification in OCTA. 
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2.1 Data acquisition 

This study, approved by the Institutional Review Board of the University of Illinois at 
Chicago (UIC) and in compliance with the tenets of the Declaration of Helsinki, used 100 
OCT/OCTA images captured from 50 subjects at the UIC Retina clinic. All OCT and OCTA 
images were acquired using a SD-OCT angiography system (Angiovue, Optovue, Fremont, 
CA, USA), with a 70-KHz A-scan rate, and axial and lateral resolutions of ∼5 μm and ~15 
μm, respectively. Among the 50 subjects, 20 had DR, 20 had SCR and 10 were control 
subjects. For every subject, images were acquired from both eyes (OD and OS). All DR and 
SCR patients underwent a complete anterior and dilated posterior segment examination (JIL). 
Control data were obtained from healthy volunteers who gave informed consent for OCT and 
OCTA imaging. Subjects with prior intravitreal injections, vitreous surgery or history of other 
eye diseases were not included. Eyes with significant ocular pathology, (epiretinal 
membranes, vein occlusion or macular edema) were also excluded. OCT or OCTA images 
with severe motion artifacts were excluded. 

All analyzed en face OCT and OCTA images were 8 mm × 8 mm scans (Angiovue SD-
OCT system, Revue software version 2018.0.0.14). The scan pattern was raster, with 304 A-
lines in each B-scan and 304 B-scans in each OCT/OCTA volume. The en face OCT images 
included all retinal layers and excluded the choroidal layer. OCTA images from the 
superficial layer, which generally includes 80% of ganglion cell complex (GCC), containing 
all structures of inner plexiform layer (IPL) up to the border with inner nuclear layer (INL), 
were used. The segmentation of the superficial layer has been conducted with the 
commercially available software of Angiovue SD-OCT system (ReVue). The en face OCT 
and OCTA data were exported from the ReVue, and further image analysis, feature extraction 
and artery-vein classification tasks were conducted in custom-developed MATLAB 
(Mathworks, Natick, MA, USA) procedures with graphical user interface (GUI). 

2.2 Artery-vein classification in en face OCT image 

OCT normalization and vessel segmentation 

Figure 2 illustrates key procedures of OCT normalization and vessel segmentation. The en 
face OCT images (Fig. 2(A)) are often affected by intensity inhomogeneity. This artifact can 
mislead further image analysis. In this study, a bias field correction technique [34,35] is 
implemented to remove the intensity inhomogeneity before performing OCT feature analysis. 
This technique estimates the bias field that accounts for the inherent intensity inhomogeneity 
(Fig. 2(B)) and divides the image by that estimated bias to generate a normalized intensity 
image (Fig. 2(C)). The en face OCT image can be modeled as, 

 ( )( , ) , ( , )trueI x y b x y I x y=  (1) 

where I(x, y) is the intensity of the recorded OCT image, b(x, y) is the estimated bias field 
that accounts for the intensity inhomogeneity of the en face OCT image, and Itrue(x, y) is the 
intensity normalized image. The bias field b(x, y) can be defined by, 
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where G is the set of smooth basis functions which ensures the smooth varying property of 
the bias field. 20 polynomials of the first three degrees are chosen as the basis functions 
[35,36]. The bias field estimation is performed by calculating the optimal coefficients w = 
[w1, w2, … … wM]. Then, the intensity normalized image Itrue(x, y) is obtained by dividing I 
(x, y) by the bias field b(x, y). 
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Fig. 2. OCT normalization and vessel segmentation. (A) Original en face OCT image. (B) Bias 
field estimation generated from the original en face OCT image. (C) Normalized intensity after 
bias field correction. (D) Edge enhanced using bottom hat filtering. (E) Binary vessel mask. 
(F) Segmented vessel map by multiplying images C and E. 

From the intensity normalized image (Fig. 2(C)), only the vessel information is required 
for following analysis. A matched filtering method is combined with bottom hat filtering to 
enhance and extract the blood vessel map from the en face OCT image. For the match 
filtering, 2D Gaussian kernels of 12 different orientations and 10 different sizes are 
implemented to match blood vessels. These kernels cover all the blood vessel diameters and 
directions. They are defined as [36], 
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where x, y are pixel coordinates; θ = rotation angle of each kernel, θ ranges from 0 to π; and σ 
= kernel width. The en face OCT image is convolved with 120 kernels after subtracting the 
mean from each kernel. In the process of cross-correlation, the features matching the kernels 
(representing blood vessels of various widths) produce larger coefficient values. Larger 
coefficient values representing the vessel structures are selected to produce the segmented 
blood vessel map (Fig. 2(D)) from a maximum intensity projection of all the convolved 
images. A bottom hat filter with dimension of 20 × 20 pixels is then used to reduce further 
background variance due to uneven illumination. A global thresholding method is used to 
extract the binary blood vessel map (Fig. 2(E)). The binary map is multiplied with the 
intensity normalized en face OCT image to generate the segmented vessel map of en face 
OCT image (Fig. 2(F)). This en face OCT vessel map is used for further source node 
identification and artery-vein tracking. 

Source node identification and classification 

The first step is to identify source nodes at the boundary, and extract features to classify them 
to artery or vein. Around each of the boundaries of the vessel map, a gradient line is drawn 
(green dotted lines in Fig. 3(A)). These gradient lines can identify blood pixels from the 
background based on intensity information. The identified source node points are marked 
with yellow crosses in Fig. 3(A). 
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Fig. 3. (A) En face OCT vessel map with source nodes identified with yellow crosses. (B) An 
enlarged sample source node segment (marked with red circle in (A)). Sample profiles (marked 
with yellow arrows) are extracted from each segment like this for further feature extraction and 
artery-vein classification. (C) En face OCT vessel map with identified source nodes as artery 
(red) or vein (blue). 

After the vessel source nodes along the boundary of the vessel map are selected, multi-
feature analysis is employed on the vessel source nodes to classify them into artery and veins 
(red/blue nodes at the boundary of Fig. 3(C)). The features are extracted from the source node 
segments and are based on the concept of ‘profile’ [37]. From each source node segment, 
multiple profiles perpendicular to the vessel skeleton along the vessel are extracted. The 
number of profiles depends on the size of the source node segments. The profiles are set to 
have a distance of two pixels among each other along the vessel skeleton. For example, if a 
vessel skeleton within the source node segment is 40 pixels long, the first profile will be 
extracted at the middle point, pixel 20. Then the profiles will be extracted at 2 pixel intervals 
in both directions. The maximum number of profiles is set at 20 and minimum is 5. In case of 
a segment smaller than 5 pixels long, profiles are taken from all of the pixels. From each 
source node segments (S), N numbers (range, 5 to 20) of profiles are extracted. So, each 
segment will have a profile set ‘PSi’ equal to S × N, where i is the number of source nodes in 
one image. Total profile set PS for one image is then [PS1, PS2, PS3, … … …PSi]. Four 
features are measured from each of the profiles: i) ratio of vessel width to central reflex, ii) 
average of maximum profile brightness, iii) average of median profile intensity, and iv) 
optical density of vessel boundary intensity compared to background intensity. The average 
normalized feature distribution in artery and vein is shown in Fig. 4. 

After the feature extraction, a clustering algorithm is used to classify source nodes as 
artery or vein. K-means algorithm [34] is chosen as the clustering algorithm due to its 
computational simplicity and efficiency. The centroids of each class (artery and vein in our 
case) are set initially to the maximum and the minimum of the K-means input set, as the 
cluster centers of two classes should be as far as possible. The cluster centers of both the 
classes are calculated by the algorithm, and feature vectors are classified thereafter using the 
standardized Euclidian distance metric. Theoretically, the empirical probability of a certain 
source node to be classified as an artery (PSA) or a vein (PSV) is defined by [37], 

 P   and PSA SV VA

A V A V

nn
n n n n

= =
+ +

 (4) 

The clustering algorithm consists of three approaches [37]: 1) the K-means algorithm is 
applied to all the source node segments; 2) the image is divided into four quadrants centered 
at the fovea, and the K-means of each quadrant is calculated separately. 
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Fig. 4. Normalized feature distribution in artery and vein vessels. RWCR: ratio of width to 
central reflex; AMPB: average of maximum profile brightness; AMPI: average of median 
profile intensity; ODVB: optical density of vessel boundary. 

Separate estimation of these four quadrants can minimize the effect of the uneven intra-image 
intensity distribution among the quadrants; 3) Four quadrants are rotated (Fig. 5), and the 
clustering algorithm is applied to each rotated quadrant. This allows overlapped areas and a 
vessel can be classified eight times (360 degrees, rotated each time by 45 degrees). These 
classification results are combined for taking the final classification decision so that the 
influences of different outliers are reduced. In this approach, the average classification 
probability P for an artery or vein source node is the mean of classification probability of all 
the quadrants where that vessel source node was found. 

 

Fig. 5. Illustration of quadrant rotation relative to the fovea center. 

Blood vessel tracking in en face OCT 

Once the source nodes are identified as artery and vein, the whole vessel map (skeleton) is 
tracked from the source nodes using a blood vessel tracking algorithm [38], which uses 
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curvature angle information, to classify the rest of the vasculature in to artery or vein. The 
skeleton map was generated from vessel map using MATLAB morphological functions 
(‘bwmorph’). Further morphological functions were used to remove spurs and unwanted 
pixels. The final artery-vein map derived from the en face OCT image is shown as OCT 
artery-vein map in Fig. 6(B). 

2.3 OCT guided artery-vein classification in OCTA 

The en face OCT artery-vein map (Fig. 6(B)) is overlaid with the OCTA vessel map to guide 
the artery-vein classification in OCTA. For generating the OCTA vessel map, a Hessian 
based multi-scale Frangi filter is first used on the original OCTA image (Fig. 6(C)) to 
enhance the vascular flow information. Frangi filtering methodology uses the Eigen vectors 
of Hessian matrices and computes the likeliness of an OCTA region being a vascular 
structure. Adaptive thresholding and morphological functions are further used for cleaning the 
vessel map and removing small capillary mesh structures that are not feasible for vessel 
tracking algorithms. The final vessel map (Fig. 6(D)) is then overlaid with the en face OCT 
artery-vein map (Fig. 6(E)). The en face OCT and OCTA images are generated from 3D 
projection of OCT B-scans and B-Scan speckle variance images, respectively. This means the 
structural coordinates of both images are same. Therefore, any process of image registration 
is not required for the overlaying process. So, artery-vein classification information of en face 
OCT (XOCT,YOCT) are transferred to corresponding OCTA(XOCTA,YOCTA) coordinates. The 
OCTA vessel map has some additional vascular structures compared to the en face OCT map. 
For each of the additional branches, the endpoints and corresponding branch points are 
identified in the skeleton using morphological functions in MATLAB. The endpoints are then 
back-tracked and linked to the already identified artery-vein branches. The tracking employs 
textural, morphological and optical density information and includes protocols for two, three 
or four-way intersections, gaps in the tracking path and overlapping of artery or vein. Further 
details of this tracking algorithm are explained in our recent publication [38]. The final 
OCTA artery-vein map is shown in Fig. 6(F). The performances of the artery-vein 
classification in en face OCT and OCTA images have been validated with ground truths 
prepared by two independent graders (JIL and DT). The ground truths only referred to vessel 
areas with identical artery-vein assignments by these two independent graders. 

2.4 Performance metrics 

The dataset used to test and validate the proposed en face OCT image guided artery-vein 
classification in OCTA consisted of 100 en face OCT and OCTA images from 50 subjects (20 
DR, 20 SCR, 10 controls, both eyes imaged). For evaluating the classification performance, 
sensitivity, specificity and accuracy metrics were calculated. A graphical metric, receiver 
operation characteristic (ROC) curve and corresponding area under the ROC curve (AUC) 
was also measured. ROC curve plots the ‘sensitivity’ (true positive rate) as a function of ‘1-
specificity’ (false positive rate) at different cutoff points. The closer the ROC curve is to the 
upper left corner, the more accurate the prediction is. AUC measures how well the classifier 
is able to identify the two classes (artery and vein). A 100% AUC represents a perfect 
prediction whereas lower than 50% represents bad prediction. Separate evaluation metrics for 
artery and vein are measured with respect to the labeled ground truths. 
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Fig. 6. Artery-vein classification in OCTA. (A) En face OCT vessel map with artery-vein 
classified source nodes (B) En face OCT artery-vein map. (C) Original OCTA image, (D) 
OCTA binary vessel map, (E) En face OCT artery-vein map overlaid onto the OCTA binary 
vessel map, (F) Final OCTA artery-vein map. 

3. Results 

The performances of artery-vein classification in OCT and OCTA are summarized in Table 1 
and Table 2, respectively. These artery-vein classification results with the automated feature 
analysis are validated with the ground truth vessel maps manually labeled by the two 
experienced observers (JIL and DT). The ground truths only refer to vessel map areas with 
identical artery and vein assignments by these two independent graders. The two observers 
had 97.01% and 94.56% agreements respectively on the marked artery-vein vessel maps for 
en face OCT and OCTA images. Manual labelling is performed on the binary vessel maps in 
both cases. The observers manually traced the binary vessel maps with red (artery) and blue 
(vein) markings and identified each branchpoint with yellow markings. All of the manually 
labelled source nodes, branchpoints and artery-vein branches are matched pixel by pixel with 
the classified artery-vein map to generate the performance metrics. Specific areas in the 
vessel map for which the two observers do not agree on are identified as unclassified. 

Table 1. Performance of Artery-Vein Classification: En Face OCT Image 

Performance Measure Source nodes Whole vessel map 

 Arteries Veins All vessels Arteries Veins 
All 

vessels 
Sensitivity (%) 97.16 96.64 96.86 97.07 96.52 96.79 

Specificity (%) 95.73 96.15 95.94 95.29 96.14 95.72 

Classification Accuracy (%) 96.89 96.59 96.74 96.81 96.33 96.57 

AUC (%) 98.29 98.03 98.21 98.16 97.93 98.05 
Classification Error rate 
(%) 

3.11 3.41 3.26 3.19 3.67 3.43 
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Table 2. Performance of Artery-Vein Classification: OCTA Image 

Performance Measure Arteries Veins All vessels 

Sensitivity (%) 97.02 96.3 96.66 

Specificity (%) 94.98 95.01 95.00 

Classification Accuracy (%) 96.77 96.25 96.51 

AUC (%) 95.47 96.18 95.83 

Classification Error rate (%) 3.23 3.75 3.49 

Figure 7 illustrates the ROC curves for artery-vein classification in en face OCT and 
OCTA images respectively. 

 

Fig. 7. Mean ROC curves for artery-vein classification. (A) En face OCT, (B) OCTA. 

Our algorithm demonstrates 96.89% and 96.59% accuracies in identifying artery and vein 
source nodes, respectively, in the en face OCT images (ICC 0.98 and 0.97 for 2-repeat 
measurement, 95% CI 0.93-1). There are 97.16% sensitivity and 95.73% specificity for artery 
identification; 96.64% sensitivity and 96.15% specificity for vein identification. For the 
whole en face OCT vessel map, we observe 96.81% and 96.33% accuracies in identifying 
artery and vein source nodes respectively, in the en face OCT images (ICC 0.96 and 0.97 for 
2-repeat measurement, 95% confidence interval (CI) 0.91-.97). There are 97.07% sensitivity 
and 95.29% specificity for artery identification; 96.52% sensitivity and 96.14% specificity for 
vein identification. In the case of classifying OCTA images, average accuracy is 96.51% for 
all vessels. 97.08% sensitivity and 94.98% specificity for artery identification; 96.30% 
sensitivity and 95.01% specificity for vein identification are observed. The accuracies are 
96.77% and 96.25%, respectively, for identifying a blood vessel as artery and vein in the 
OCTA images (ICC 0.94 and 0.91 for 2-repeat measurement, 95% CI 0.87-0.96). The 
performance metrics were averaged for all OCTA images. The artery-vein classification 
accuracy for OCTA images from DR, SCR and control cohorts were 96.82%, 94.37% and 
98.34% respectively. 

4. Discussions 

In summary, we have demonstrated the feasibility of using OCT intensity profile feature 
analysis to guide artery-vein differentiation in OCTA. In comparison with ground truths 
prepared by experienced ophthalmologists, this automated method has been able to 
differentiate individual arteries and veins in clinical OCTA with 96.51% accuracy. 

It is known that subtle distortions of retinal arteries and veins can occur at the onset of 
various retinovascular diseases. Accurate identification of these subtle microvascular changes 
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may provide early disease detection and may serve as biomarkers for treatment assessment. 
OCTA has been commercially available to provide better visualization of microvascular 
distortions, compared to traditional fundus photography. However, current clinical OCTA 
instruments do not have the function of differential artery-vein analysis. Recently, we 
demonstrated color fundus image guided artery-vein classification in OCTA to improve the 
sensitivity of DR detection and classification [32]. Because this method requires two separate 
devices, clinical deployment of the color fundus image guided artery-vein classification is 
challenging. In this study, we demonstrated the OCT feature analysis guide artery-vein 
differentiation in OCTA, with all required information obtained from the same OCT/OCTA 
instrument. 

It is established that the central reflex, brightness profile and optical density in arteries are 
larger compared to that in veins; whereas the vessel caliber is larger in veins. These intensity 
reflectance properties have been used to classify arteries and veins in traditional fundus 
photography [33]. An en face OCT image is in principle a fundus image, with improved axial 
resolution compared to traditional fundus photography. Therefore, the near infrared light 
intensity profile features were chosen to be quantified to classify arteries and veins in en face 
OCT. 

For reliable artery-vein classification in OCT, we have identified vessel source nodes at 
the boundaries, i.e., perifoveal retina where the vessels are relatively large, first in each en 
face OCT image. In order to ensure reliable artery-vein source node classification, a bias field 
correction technique has been implemented before quantitative feature extraction and 
analysis. This procedure is helpful to minimize the effect of intensity inhomogeneity in en 
face OCT to enhance the coherent reflectance intensity properties of vessel profiles, 
improving the overall classification performance of the K-means clustering algorithm. As a 
robust classifier, K-means algorithm also provided reliable performance with high 
computational efficiency, without the requirement of extensive parameter tuning. 
Additionally, the K-means clustering algorithm used to classify vessel profile features was 
performed using three approaches. First strategy was to apply the K-means algorithm for all 
source nodes in the image. This resulted in relatively lower classification accuracy (79.38% 
and 82.61% for artery and vein respectively), as different regions of the en face OCT images 
often suffered from uneven illumination and background contrast. The second approach was 
to divide the image into four quadrants (Fig. 4). The K-means clustering of each quadrant was 
conducted separately. This significantly improved the classification performance (92.23% and 
91.05% for artery and vein respectively). To further improve the clustering performance, we 
rotated the four quadrants by 45 degrees and applied K-means algorithm on overlapped 
quadrants within the en face OCT image. The overlapped quadrant strategy compensated for 
the effect of uneven intra-image intensity distribution among the quadrants and further 
improved the artery-vein classification performance. From Table 1, we can observe that the 
final accuracies of artery and vein source node classification by the K-means algorithm are 
96.89% and 96.59%, respectively. This robust classification performance on source nodes 
facilitated artery-vein identification of the whole vessel map to produce a robust OCT/OCTA 
artery-vein map. 

Because the en face OCT and OCTA are naturally reconstructed from the same 
spectrogram data sets, the OCT artery-vein vessel map can be readily used to guide artery-
vein differentiation in corresponding OCTA. Once the OCTA artery-vein map is generated, 
further tracking is used to classify remaining smaller capillary arteriole and venule branches. 
Each of identified artery-vein maps are validated by ground truths prepared by two 
experienced ophthalmologists. Only the blood vessels on which the two graders have an 
agreement on artery-vein assignment are selected to verify the performance of the automated 
artery-vein classification. For testing the robustness of the algorithm, OCT/OCTA images 
from control, DR and SCR patients were verified. With only a single device required for OCT 
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and OCTA image acquisition, this approach can be easily integrated with existing commercial 
OCTA devices to foster clinical deployment of differential artery-vein analysis. 

5. Conclusion 

In conclusion, robust artery-vein classification in OCTA is demonstrated by incorporating 
OCT feature analysis and blood vessel tracking. This provides a feasible solution to facilitate 
differential artery-vein analysis in OCTA for clinical management of eye diseases. 
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