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Abstract: Drosophila is widely used in connectome studies due to its small brain size, 
sophisticated genetic tools, and the most complete single-neuron-based anatomical brain map. 
Surprisingly, even the brain thickness is only 200-μm, common Ti:sapphire-based two-photon 
excitation cannot penetrate, possibly due to light aberration/scattering of trachea. Here we 
quantitatively characterized scattering and light distortion of trachea-filled tissues, and found 
that trachea-induced light distortion dominates at long wavelength by comparing one-photon 
(488-nm), two-photon (920-nm), and three-photon (1300-nm) excitations. Whole-Drosophila-
brain imaging is achieved by reducing tracheal light aberration/scattering via brain-degassing 
or long-wavelength excitation at 1300-nm. Our work paves the way toward constructing 
whole-brain connectome in a living Drosophila. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Drosophila is an important model animal to study connectomics since its brain is complex 
with 105 neurons but still small enough to be completely mapped by optical microscopy with 
single-cell resolution. Compared to other model animals, the genetic tool box is more 
complete with Drosophila, and a connectome map based on in vitro structural registration of 
more than 30,000 cells [1,2] and 3D reconstruction of serial EM sections [3] has been 
established, serving as an invaluable reference for connectomics study. To study the 
structural/functional connectome, two-photon fluorescence (2PF) microscopy is now the most 
popular tool because of its advantages on low photobleaching and phototoxicity, subcellular 
spatial resolution, and deep penetration depth [4]. When observing living mouse or zebrafish 
brain with 2PF microscopy, the penetration depth approaches 1 mm, which is typically 
limited to about five scattering lengths [4,5]. However, even using the same fluorophore and 
excitation wavelength, the reported imaging depths in a living Drosophila brain are much 
more limited. For example, when imaging GCaMP with excitation wavelength around 920-
nm, activities from mushroom bodies (MB) had been recorded at only several tens of 
micrometers in depth [6,7]. Using the same combination of laser and probe, the neuronal 
activities from antennal lobes (AL) are obtained with imaging depth less than 100 μm [8–11]. 
Although the thickness of a Drosophila brain is only about 200 μm, which is much smaller 
than the typical imaging depth of 2PF microscopy in other model animals like mouse and 
zebrafish, to the best of our knowledge, no study has demonstrated in vivo whole-brain 
imaging in Drosophila with single-cell resolution, nor has characterized the image attenuation 

                                                                      Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1627 

#348348 https://doi.org/10.1364/BOE.10.001627 
Journal © 2019 Received 25 Oct 2018; revised 23 Jan 2019; accepted 17 Feb 2019; published 5 Mar 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.001627&amp;domain=pdf&amp;date_stamp=2019-03-05


of a living Drosophila brain. The whole-brain observation capability is a major milestone 
toward establishing complete connectome in this model animal. 

The underlying difficulty of living Drosophila whole-brain imaging is that, different from 
mouse and zebrafish, where blood vessels are responsible for oxygen exchange, air vessels, 
i.e., tracheae, are in charge of oxygen exchange in Drosophila brains. The micro-tracheae in 
the brain are a few micrometers in diameter [12], comparable to near infrared wavelengths, 
and thus induce extraordinarily strong light aberration/scattering from the air/tissue interface 
since the refractive index (RI) difference between air and tissue is much larger than that 
between blood and tissue. This tracheae-induced light aberration/scattering impedes deep 
tissue observations inside a living Drosophila brain. However, the optical properties of 
trachea-filled tissues have not been well studied. Therefore, the aim of this work is to unravel 
the optical effect of tracheae, and to design a suitable method to increase imaging depth in 
trachea-filled tissues. 

To increase imaging depth in living animals, there are several known approaches. For 
example, photo-activatable fluorophores (PAFs) have been used to suppress out-of-focus 
fluorescence [13], and high-energy lasers were used to enhance excitation efficiency at deep 
tissue [14]. However, long converting time is required for PAFs, which is unfavorable to 
observe fast neural activities such as calcium dynamics, and high-energy lasers are potentially 
harmful due to multiphoton ionization. Adaptive optics (AO) is able to correct tissue-induced 
light distortion, and has demonstrated significant image contrast and depth enhancement [15–
18]. Nevertheless, the best depth achieved by AO in a living Drosophila brain to date is still 
less than 100 μm [18], since the distortion inside the insect’s brain is much larger than that of 
vertebrate’s brain (RI difference between air and tissue is at least ~1 order of magnitude 
larger than that between blood and tissue). In addition, typically AO does not compensate the 
scattering effect [16], which limits its impact in improving the imaging depth in Drosophila. 

On the other hand, long excitation wavelength is well known to greatly improve 
penetration depth by substantially reducing scattering [5,19–21]. In addition, the phase error 
caused by aberration (i.e., wavefront distortion) is inversely proportional to the excitation 
wavelength. The long wavelength approach is expected to reduce the amount of light 
distortion caused by the RI difference, and thus enhancing imaging depth. Furthermore, high-
order optical nonlinear excitations, such as three-photon absorption, are often combined with 
long wavelength, thus providing better excitation confinement, i.e. better optical sectioning 
capability, than 2PF, to improve image contrast in deep tissue. Combining these factors 
together, long wavelength excitation is promising for whole-brain imaging in Drosophila. 

Here, two approaches are adopted to achieve whole-brain observation in a Drosophila 
brain. The first one is to pump out air inside the tracheae, i.e. degassing. Since the tracheae-
induced light aberration/scattering is largely removed in the degassed brain, 2PF microscopy 
penetrates through the whole brain. However, the Drosophila is not alive after degassing. To 
achieve whole-brain observation with in vivo capability, the second approach is to use three-
photon imaging based on excitation wavelength at 1300-nm in a GFP-labeled living 
Drosophila brain. The three-photon fluorescence (3PF) method provides exceptional 
excitation confinement and simultaneously reduced light aberration/scattering, thus allows 
high-contrast and high-resolution image throughout the whole brain. The accompanying third 
harmonic generation (THG) modality provides detailed map of the densely distributed 
tracheae in the brain, useful for structure-function studies. 

Furthermore, the optical attenuations of the Drosophila brains at various wavelengths are 
characterized, via 1PF (488-nm), 2PF (920-nm) and 3PF (1300-nm) excitation modalities. For 
the first time, the attenuations contributed from tracheae are quantitatively determined. We 
show that at short wavelength, scattering is the dominating attenuation; while at long 
wavelength, the contribution of trachea-induced light distortion can exceed that of scattering, 
and become the main impeding factor of whole-brain observation in Drosophila brains. 
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2. Methods 

2.1 Microscope setups 

For 1PF and 2PF imaging, the imaging was done on a commercial microscope LSM 780 
(Zeiss, Germany). The built-in laser (488-nm) and photomultiplier tube was used to single-
photon excitation and signal detection. A water immersion objective was used (Olympus, 
XLPlan N, 25 × NA 1.05) for its high transmission in both visible and IR wavelength ranges. 
A pinhole with ~60 μm diameter was used to achieve optical sectioning. The image formation 
was done by the controlling software Zen (Zeiss, Germany). 

For 2PF and 3PF in vivo imaging, the setup was similar to that done by Ouzounov et al 
[22]. A home-built laser-scanning microscope that is compatible to long wavelength 
excitation is constructed. A Ti: sapphire laser at 920-nm with an 80 MHz repetition rate, and 
an optical parametric amplifier at 1300-nm with a 400 kHz repetition rate, were used as 
excitation sources of 2PF and 3PF respectively. The same water immersion objective as 
single-photon microscope was used. The power levels for both lasers after the objective were 
limited to less than 20 mW for all imaging depths. The fluorescence and THG signals were 
epi-collected with a dichroic beamsplitter (Semrock, FF705-Di01-25 × 36), and then detected 
by a GaAsP photomultiplier tube (Hamamatsu, H7422-40) and a bialkali photomultiplier tube 
(Hamamatsu, R7600-200) in non-descanned configurations to maximize the collection 
efficiency. A 488-nm dichroic beamsplitter (Semrock, Di02-R488-25 × 36) was used to split 
the fluorescence and THG signals, which were further separated by a 520/60 band-pass filter 
(BPF, transmission at center 520-nm, FWHM 60 nm) for the fluorescence and a 420/40 BPF 
for the THG. A living Drosophila was fixed and placed onto a motorized stage (M-285, 
Sutter Instrument). A computer running the ScanImage 3.8 under Matlab (MathWorks) was 
used to synchronize the stage movement and image acquisition. The signal current from the 
detectors was converted to voltage, amplified and low-pass filtered by a transimpedance 
amplifier (Hamamatsu, C9999) and another 1.9 MHz low-pass filter (BLP-1.9 + , 
Minicircuits). Analog-to-digital conversion was performed by a data acquisition card (PCI-
6115, National Instruments). 

2.2 Sample preparations 

All the sample preparation methods followed the protocol of previous publication on in vivo 
Drosophila brain imaging [23]. The samples were adult, female Drosophila between 5 and 10 
days old. GFP was pan-neuronal expressed by genetic drivers (Gal4-elav.L/CyO × UAS-
EGFP and Gal4-elav/UAS-mGFP). The living Drosophila was immobilized in a pipette tip 
with volume 100 μL after anesthetized by ice bathing. A window was cut into the head by 
using fine tweezers, after placing a drop of Ca2+-free saline on the brain to prevent 
desiccation, and fat bodies above the brain were removed, under a stereomicroscope. The 
dissection saline was then replaced with a drop of Ca2+-containing saline (108 mM NaCl, 5 
mM KCl, 2 mM CaCl2, 8.2 mM MgCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 5 mM trehalose, 
10 mM sucrose, and 5 mM HEPES [pH 7.5, 265 mOsm]). No cover glass was placed between 
the brain and the objective. 

To check the optical effect caused by the tracheae structure, degassing the Drosophila 
brain was performed by pumping out the air inside tracheae. The degassing protocol followed 
the previous publication of in situ Drosophila brain imaging [24]. The degassing protocol 
started from immersing the Drosophila in 4% paraformaldehyde and 2% triton, expelling air 
in tracheae by using a vacuum chamber that was depressurized to – 72-mmHg for 2.5 
minutes, wait for 1.5 minutes, and then releasing to normal pressure for 2 minutes. The 
degassing process was completed by repeating the above procedure 4 times. After degassing, 
the same microsurgery preparation was performed, and observed under the same microscope. 
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2.3 Signal analyses 

To quantify the optical properties of bio-tissues, this section explains how to derive the 
attenuation coefficients (μatt), which is the inverse value of attenuation length (la), i.e., μatt = 
la

−1. The calculation of attenuation length inside a biological tissue has been detailed in an 
earlier work [5]. The well-known light attenuation equation is: 

0 0( ) a att

d
l dI d I e I e μ

−
− ×= = (1)

where I(d) is the excitation intensity at imaging depth of d, and I0 is the intensity at tissue 
surface. With fluorescence excitation processes, the n-th order fluorescence intensity, F(n)(d), 
is related to the excitation intensity as: 

( ) ( ) ( ( ))n nF d I d∝ (2)

For 1PF, 2PF and 3PF, n equals 1, 2 and 3, respectively. Combining Eqs. (1) and 2, F(n)(d) 
is obtain in Eq. (3), 

-( ) ( ) attn dnF d a e μ× ×= × (3)

where a is a proportional constant. F(n)(d) and d are determined experimentally, and μatt can 
be obtained from their dependencies. More explicitly, by taking the natural logarithmic value 
of both sides in Eq. (3), it becomes, 

( )ln( ( )) ln( ) -n
attF d a n dμ= × × (4)

By plotting the dependence of ln(F(n)(d)) on d (will be shown in Fig. 2), the decay slopes 
of the curves are - n × μatt. Therefore, μatt is determined by dividing the inverse value of the 
slopes over n. To obtain the decay slopes, it was done by linear regression fitting of the data 
points, and the fitting range were selected by the same criteria. They were all selected with 
the starting point of signal decay to the depth limit of the corresponding imaging modality. 
One additional note is since there are two imaging systems, 2PF in vivo experiments are 
performed in both systems to calibrate the attenuation value derived from different systems. 

3. Results and discussions
Within a living brain, the 1PF images lose the image contrast at around 40 
μm  ( Visualization  1), as no structures are visible in the brain center where the white arrow 
points in the 50-60 μm panel of Fig. 1(A). The arrowheads indicate structures that located at 
the edge of the brain. To verify the effect of trachea, a brain is degassed, i.e. air in tracheae is 
pumped out. Figure 1(B) shows that 1PF in the degassed brain provides much better contrast 
in the center of brain at the same depth, but cannot exceed 120-140 μm. The 1PF imaging 
depth of the degassed brain is comparable with that in mouse brains, which is mainly limited 
by scattering [4]. Comparing the results in Figs. 1(A) and 1(B), it is obvious that degassing 
removes the additional attenuation contributed by tracheae. 

On the other hand, it is well known that using long excitation wavelengths with 2PF 
modality efficiently improves imaging depth, approaching 1 mm in mouse brains [4]. Using 
the same excitation wavelength (~920-nm) and fluorescent labeling (GFP families), Fig. 1(C) 
shows the 2PF imaging depth in a living Drosophila brain indeed increases compared to Fig. 
1(A), but reaches less than 120-140 μm, which is not adequate to penetrate the whole brain, 
mainly due to the tracheae. By combining 2PF modality with a degassed brain, Fig. 1(D) 
presents the first whole-brain imaging in a Drosophila. Reasonable contrast and resolution 
(see inset in the bottom panel for resolving single neuron) are maintained throughout the 
nearly 200 μm depth, manifesting that the trachea-induced light aberration/scattering is the 
major restraint for deep-brain imaging in this model animal. However, please note that the 
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was observed in the brain tissue experimentally. Since both the average power and pulse 
energy are lower than previous in vivo experiments, our imaging condition should allow 
living brain studies in Drosophila. 

4. Conclusions 
In conclusion, we have, for the first time, characterized the optical properties of the 
Drosophila brain, which is filled with air, with single-photon, two-photon, and three-photon 
modalities. We found that the main limiting factor that impedes in vivo whole-brain single-
photon imaging is scattering, but for multiphoton imaging, light distortion from tracheae 
structures plays a more dominant role. The light distortion affects not only signal attenuation, 
but also image visibility. Although degassing enables whole-Drosophila-brain imaging by 
reducing trachea-induced light distortion, the only way to achieve in vivo whole-brain 
imaging with single cell resolution is 3PF at 1300-nm excitation, which exhibits less 
scattering, light distortion, and better optical sectioning. It is possible to combine with AO to 
further reduce light distortion [21], thus allowing deep-tissue imaging on the scale extending 
from a single neuron, a complete brain network, toward a whole-animal connectome [33]. 
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