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Abstract: Current measures for assessing the viability of donor kidneys are lacking. Optical
coherence tomography (OCT) can image subsurface tissue morphology to supplement current
measures and potentially improve prediction of post-transplant function. OCT imaging was
performed on donor kidneys before and immediately after implantation during 169 human
kidney transplant surgeries. A system for automated image analysis was developed to
measure structural parameters of the kidney’s proximal convoluted tubules (PCTs) visualized
in the OCT images. The association of these structural parameters with post-transplant
function was investigated. This study included kidneys from live and deceased donors. 88
deceased donor kidneys in this study were stored by static cold storage (SCS) and an
additional 15 were preserved by hypothermic machine perfusion (HMP). A subset of both
SCS and HMP deceased donor kidneys were classified as expanded criteria donor (ECD)
kidneys, with elevated risk of poor post-transplant function. Post-transplant function was
characterized as either immediate graft function (IGF) or delayed graft function (DGF). In
ECD kidneys stored by SCS, increased PCT lumen diameter was found to predict DGF both
prior to implantation and following reperfusion. In SCD kidneys preserved by HMP, reduced
distance between adjacent lumen following reperfusion was found to predict DGF. Results
suggest that OCT measurements may be useful for predicting post-transplant function in ECD
kidneys and kidneys stored by HMP. OCT analysis of donor kidneys may aid in allocation of
kidneys to expand the donor pool as well as help predict post-transplant function in
transplanted kidneys to inform post-operative care.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The number of people on the waiting list for a kidney transplant grows each year and efforts
to expand the donor pool to meet this demand have fallen short [1]. Kidney offers have
expanded to include higher risk donors with various comorbidities, suboptimal procurement,
and longer cold ischemia times. The inclusion of these higher risk, expanded criteria donors
(ECD) in the donor pool has been successful in increasing the number of transplants
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performed annually but transplant centers still ultimately discard a large portion of ECD
kidneys procured and offered for transplant [2—4]. The discard rate for ECD kidneys is nearly
45% compared to just over 10% for standard criteria donor (SCD) kidneys [5].

These discards represent a largely untapped source of potentially viable kidneys which, if
properly utilized, could further widen the donor pool and narrow the gap between kidney
supply and kidney demand. Studies have demonstrated that patients who receive moderately
compromised kidneys live longer and have a higher quality of life than those who remain on
dialysis and wait for a more viable option [6,7]. Currently there are approximately 17,000
kidney transplants a year in the United States. It is estimated that this number could be as high
as 38,000 if more marginally compromised kidneys were considered and the donor pool
properly utilized [8].

Surgeons reference a multitude of factors which contribute to their decision to reject a
kidney. Principal among these are the results of biopsies, which are performed routinely on
ECD kidneys, and are credited as the most frequent reason for discard. The true relevance of
these factors is contested, with the majority appearing to have little correlation with graft
function following transplant [9]. There is a critical need to enhance prognostic measures and
to explore new ways of gaining insights into the viability of these more at-risk kidneys.

Optical Coherence Tomography (OCT) provides a non-invasive method for obtaining
optical cross-sections of the superficial kidney cortex [10,11]. OCT is an interferometry based
imaging modality, similar in principle to ultrasound, which uses the light scattering
characteristics of tissue to construct high-resolution subsurface images. Cross-sectional 2-
dimensional OCT images (B-scans) are composed of a series of sequential 1-dimensional A-
scans, reflectivity vs. depth profiles, which represent subsurface features in the sample [12—
14]. These images reveal the microanatomy of the proximal convoluted tubules (PCTs),
which comprise the majority of the superficial kidney cortex. Swelling of the epithelium of
the PCTs is evident in OCT images and may be considered a symptom of ischemic insult
[15,16]. Conversely, dilation of the tubular lumen is similarly evident in OCT and may be
considered a symptom of pre-existing pathology or acute tubular injury (ATI) [17-19].
Quantification of the degree of swelling or prevalence of dilation may provide a valuable
addition to current measures of kidney viability. This would contribute to more informed
decision making and optimal usage of the kidney donor pool.

OCT also has potential utility following transplant, where a more accurate prediction of
post-transplant function could influence post-operative care. Delayed Graft Function (DGF) is
an established risk factor for survival of a transplanted kidney [20]. If DGF can be predicted
immediately following transplant, early post-operative biopsies to investigate poor function
can be avoided. Early diagnosis of DGF can similarly inform the development of
immunosuppressive treatments, where evidence of potential DGF would provide incentive for
a less nephrotoxic, Calcineurin-sparing regiment [21]. An accurate prediction of DGF would
also promote the usage of any of a number of anti-DGF medications currently in
development, should they be approved.

For OCT to be used effectively in a clinical setting, image analysis must be conducted
quickly, reliably, and without bias. Automated segmentation achieves these goals and can
provide rapid and accurate assessments of ischemic damage to the kidney [22,23]. In this
paper, we present a fully automated system which can identify and segment the
microanatomy of the human kidney in OCT images with accuracy comparable to manual
segmentation. We demonstrate the correlation between quantitative measurements derived
from this segmentation and graft function following transplant.

2. Methods
2.1 Patient demographics

This study was approved by the Georgetown University and the University of Maryland
Institutional Review Boards (Study number: IRB#2010-396). Written informed consent was
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obtained prior to enrollment. Patients eligible for this study included any kidney transplant
recipient 18 years or older at the MedStar Georgetown Transplant Hospital.

Patient demographics were obtained at the time of consent. The patient pool was
composed of approximately 60% male and 40% female recipients. Mean age at transplant was
52 with a standard deviation of ( +) 12.5 years. Mean BMI of recipients was 28.4 + 4.7. 61%
of patients in this study were African American, 24% were Caucasian, 8% were Hispanic, and
7% were Asian.

2.2 Transplant group categorizations

Of the 169 kidneys imaged and included in this study, 66 were from living-donor kidney
transplants (LDKTs) and 103 were from deceased-donor kidney transplants (DDKTs). All
LDKTs were preserved by static cold storage (SCS). Of the 103 DDKTs, 88 were preserved
by SCS and 15 were preserved by hypothermic machine perfusion (HMP). 4 of the kidneys in
the SCS group were part of a multi-organ transplant (kidney/pancreas). Of the 88 SCS
kidneys, 26 had a KDPI (Kidney Donor Profile Index: score from 0 to 100 based on 10 donor
factors, estimating the risk of graft failure) of 85 or more and were subcategorized as
expanded criteria donor (ECD) kidneys. The remaining 62 SCS kidneys were subcategorized
as standard criteria donor (SCD) kidneys [3]. Of the 15 kidneys in the HMP group, 2 kidneys
qualified as ECD, and the remaining 13 were subcategorized as SCD kidneys (Fig. 1).
Patients whose data were excluded from the analysis included those involved in parallel
studies for anti-DGF clinical trials (1 patient) and those where image quality of the OCT
image sets was compromised (2 patients).

2.3 Recovery group categorizations

Graft function following transplant was categorized as either immediate or delayed. Delayed
graft function was designated when a transplant recipient was required to undergo dialysis
within the first seven days following transplant [24] or when otherwise specified as DGF in
clinical notes. All cases where transplant recipients did not require dialysis prior to discharge
were considered immediate graft function (IGF). Recovery groupings for each transplant
group were as follows: LDKT (65 IGF, 1 DGF), SCS SCD (51 IGF, 11 DGF), SCS ECD (18
IGF, 8 DGF), HMP SCD (8 IGF, 5 DGF), and HMP ECD (1 IGF, 1 DGF) (Fig. 1).
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Fig. 1. Hierarchy classification of transplant groups with all transplants (blue tier 1) divided
into live and deceased donor kidney transplants (blue tier 2). DDKTs are further divided into
subgroups based on storage method (blue tier 3). DDKTs stored by SCS and HMP are further
divided into subgroups based on risk of graft failure (blue tier 4). Each end-tier transplant
group is divided into recovery groups based on requirement of dialysis (green and red).

2.4 Imaging protocol

Imaging in this study was performed with a 1325 nm center wavelength spectral-domain OCT
imaging system (Telesto-II, Thorlabs Inc.), with an incident power of 2.5 mW. The Telesto
OCT system was equipped with a 36 mm focal length (LSMO03, Thorlabs Inc.) objective,
providing a lateral resolution of 13 pm and an axial resolution of 5.5 um in air. Scans were
captured at a rate of 28 kHz, with a sensitivity of 103 dB. A-scans were averaged by 2 and no
B-scan averaging was applied. B-scan settings were optimized to minimize file storage size
while providing a sufficient field of view (FOV) and resolution for analysis. Parameters
included a FOV of 4.9 mm in x-axis and 1.9 mm in z-axis (after adjusting for a refractive
index of 1.3) at a scale of approximately 2.73 pm/pixel in each dimension (Fig. 2).

A technician in sterile surgical attire operated a handheld scanner, draped in a sterile
sleeve with a layer of sterile Tegaderm transparent film dressing affixed to the focal spacer.
Image sets were obtained ex-vivo immediately prior to implantation and again in-vivo
immediately (13 £+ 4 minutes) following reperfusion of the transplanted kidney.
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Fig. 2. Representative B-scan captured in the operating room of a donor kidney (pre-
implantation) (a) The original greyscale B-scan. (b) The Tegaderm film highlighted in red, the
renal capsule highlighted in blue and the kidney cortex highlighted in green.

Three-dimensional volumetric scans proved to be impractical in the operating room (OR)
setting due to difficulty in stabilizing the kidney and a limited capture rate. Similarly,
variation in thickness of the renal capsule (Fig. 3(a), 3(b)) and variation in the amount of
adipose tissue present on the kidney surface (Fig. 3(c), 3(d)) made a global imaging protocol
surveying different positions on the kidney surface infeasible; thicker portions of the capsule
and areas of high adipose impeded OCT penetration into the cortex.

Fig. 3. Cropped portions of B-scans of donor kidneys with a thin renal capsule (a), thick renal
capsule (b), small degree of adipose present above the renal capsule (c) and higher degree of
adipose present (d). Yellow arrows indicate the thickness of the renal capsule (a, b) and
adipose tissue (c, d).

Manual raters were asked to measure capsule and adipose thickness at a randomized
location on the X-axis in a randomized set of 1,000 B-scans. The renal capsule ranged in
thickness from 44 um to just over | mm with an average thickness of 189.5 + 108.7 pm.
Kidneys often had little or no adipose present on their surface but in some instances had
adipose that exceeded the penetration depth of the OCT system. Average adipose thickness
across all 1,000 B-scans was 67.2 = 90.6 um.

Technicians in the operating room were therefore directed to survey the kidney under a
live two-dimensional video feed, and image regions of the kidney where adipose was minimal
and the renal capsule appeared thin. Within these regions, technicians were instructed to
search for an area where the highest volume of visible PCT lumen was apparent.

2.5 Manual segmentation

Images were manually segmented to provide a standard to evaluate performance of the
automatic segmentation and also to produce thresholds for inclusion/exclusion of
automatically segmented PCT lumen. Manual categorization and segmentation of images was
performed in Image] (NIH) by 4 trained raters. Pre-implantation and post-reperfusion image
sets from the first 150 patients were anonymized, randomly divided into 4 groups, and split
between the 4 trained raters. Following manual analysis, 20 percent of the manually
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segmented images were reassigned to different raters to produce measures of inter-rater
variation (Fig. 4).

Manual segmentation was performed on 5 randomly selected images from each image set.
Raters segmented the interface between the renal capsule and the cortex (upper red and blue
lines in Fig. 4). Raters also segmented the full volume of quantifiable cortex (the area of
cortex beneath the capsule where the signal appeared sufficient to discriminate anatomical
features) (area between upper and lower red and blue lines in Fig. 4). Raters then segmented
all regions which appeared to be cross-sections of PCT lumen, using the ImageJ “Versatile
Wand” plugin [25] (red and blue selections in Fig. 4 with cyan indicating overlap). If a
randomly selected image contained no quantifiable cortex, the image was skipped and the
reason for exclusion was tallied as either “empty” with no contact between the probe and
kidney (section 2.6.1), “high reflection” (section 2.6.2), or “high adipose” (section 2.6.3).

Fig. 4. Representative B-scan independently segmented by 2 manual raters. Selections by the
first rater are indicated in red while selections by the second rater are indicated in blue. Cyan
indicates an overlap in selection by both raters.

2.6 Automatic segmentation

Automatic segmentation was executed in MATLAB R2017b (Mathworks, Inc., Natick, MA,
USA). To remove user bias and to improve feasibility of clinical application, automatic
segmentation and analysis was performed on the original full 2D video image sets and not
manually selected subsets of images. To expedite analysis and prevent error, it was necessary
to remove images from processing which contained no quantifiable cortex. Features were
extracted and compiled from images skipped and marked during manual analysis. These
features were utilized to identify empty, high reflection, or high adipose images prior to
performing more computationally expensive sections of the algorithm.

2.6.1 Empty B-scan detection

While a threshold of total intensity values would be an intuitive and high-speed approach to
detection of empty B-scans, variations between empty images in background intensity,
imaging artifacts and hyper-reflectivity of Tegaderm disallowed this strategy. Empty images
were therefore identified by their average standard deviation in intensity values across the z-
axis.

For each B-scan, the standard deviation of intensity values across each A-scan was taken
and all A-scan standard deviations for that B-scan averaged. This process was repeated for all
images marked during manual analysis as “empty” (Fig. 5(a)), and for all images which had
cortex present and were manually segmented (Fig. 5(b)). Comparison between these two
groups demonstrated that a mean A-scan standard deviation of 47 or less correlated highly
with images categorized as “empty” while a mean A-scan standard deviation above 47
correlated well with images which contained kidney (Fig. 5(c)). A standard deviation cutoff
of 47 identified empty images with a sensitivity of 83.28% and a specificity of 98.91%.
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Fig. 5. (a) Section of a B-scan with no kidney. The white horizontal lines in the bottom third of
the image result from the Tegaderm. The vertical arrow represents the location of a single A-
scan with a corresponding standard deviation in intensity values of 34.3. The average of all A-
scans across the image is 37.8. (b) Section of a B-scan with kidney. The vertical arrow
represents the location of a single A-scan with a corresponding standard deviation in intensity
values of 56.1. The average of all A-scans across the image is 58.4. (¢) Histogram representing
the average standard deviation of all images manually marked as empty (blue) and all images
which contained quantifiable cortex and were manually segmented (red).

2.6.2 Reflection detection

Bright vertical stripes due to strong reflection were a frequent imaging artifact which
interfered with several segmentation steps and in some instances rendered images impossible
to analyze (Fig. 6(a)). To isolate and quantify these stripes of reflection, a horizontal filter
was applied to each image to provide an estimate of the image without the reflection (Fig.
6(b)). Reflection stripes were then defined as A-scans from the original image whose average
intensity exceeded a global threshold above the corresponding A-scans from the filtered
image (Fig. 6(c)). Images where reflection stripes exceeded 30% of the total number of A-
scans were excluded from analysis. A similar strategy was employed to isolate stripes of
shadowing to aid in capsule segmentation and PCT lumen selection (section 2.6.4, section
2.6.8).

Fig. 6. (a) Original section of B-scan with high reflection. (b) Section of the same high
reflection B-scan following application of a horizontal blurring filter. (c) Binary mask with all
white portions representing all A-scans in 6a whose mean intensity value exceeded 15 above
the mean intensity value of the corresponding A-scan in 6b. (49% of A-scans in this example
qualify as reflection stripes)

2.6.3 High adipose detection

The amount of adipose tissue on the surface of the kidney was widely variable between
kidneys and between regions within the same kidney. Images which contained enough
adipose tissue to interfere with segmentation were infrequent in most scan sets but when
present often contained features which were falsely identified as PCT lumen (Fig. 7). Since
the intent was to analyze regions of the highest area of PCT lumen, in image sets where the
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overall area of PCT lumen was low, falsely segmented adipose was prioritized and
significantly affected results.

Fig. 7. (a-b) Sections of B-scans with kidney cortex and PCT lumen. (c-d). Sections of B-scans
with high degrees of adipose and circular features which may be mistaken for PCT lumen.

In the majority of images where adipose interfered with segmentation, the segmentation of
the renal capsule was interrupted, triggering an error and exclusion. In a small but significant
number of images, the segmentation process finished uninterrupted but falsely identified
adipose as cortex. To detect these instances, a complex decision tree was generated with
MATLAB’s “Classification Learner App”. Two image sets were compiled containing falsely
segmented high-adipose images and correctly segmented images respectively. Features were
extracted from the images in each set. Features included variations in intensity values in what
was interpreted as cortex as well as the dimensions, orientation, eccentricity and size of what
was interpreted as PCT lumen. Training was performed with 10-fold cross validation and
yielded a sensitivity of 97.5% and a specificity of 98.6%.

2.6.4 Segmentation of the renal capsule-kidney cortex interface

Segmentation of the interface between the renal capsule and cortex is a necessary step
preceding segmentation of the kidney cortex and PCT lumen. Defining this interface prevents
anything above it (capsule, adipose, background) from being falsely identified as cortex or
PCT lumen. In OCT scans, the renal capsule had consistently higher intensity than the cortex
beneath it. The shift in intensity provided a border which edge detection was able to identify.

-
— E— |

Fig. 8. (a) Section of B-scan following reflection and shadow stripe filling, and Gaussian
blurring. (b) Blurred B-scan section with overlay of output from weak Canny edge detection
(blue) and higher sensitivity Canny edge detection (red and yellow lines). The yellow line
indicates the selected capsule-cortex interface from the higher sensitivity edge detection
output.

The kidney was most often flush to the OCT probe during imaging and so in most B-scans
spanned the full x-axis. The capsule-cortex interface was therefore identified by targeting
strong edges which spanned the majority of the x-axis. Breaks in edge continuity by stripes of
reflection and shadowing were filled in with values from adjacent A-scans. Images similarly
underwent a horizontally weighted Gaussian blur (kernel = 2.73x45.78 pum) to unify the
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length of the interface (Fig. 8(a)). A relatively weak Canny edge detection (threshold =
0.22:0.66, o = 1.83) was used to detect and remove the Tegaderm edge and all edges above it
from selection (blue line in Fig. 8(b)). More sensitive Canny edge detection (threshold =
0.13:0.28, o = 10.99) was used to identify edges which would correspond with the capsule-
cortex interface (red and yellow lines in Fig. 8(b)). From the identified edges, the lowermost
detected edge which spanned at least half of the x-axis and contained higher intensity values
above the edge than below (i.e. high intensity capsule above lower intensity cortex) was
selected as the capsule-cortex interface (yellow line in Fig. 8(b)).

2.6.5 Segmentation of quantifiable kidney cortex

Segmentation of the area of quantifiable kidney cortex was a necessary step for assessing the
degree of swelling of the PCTs (section 2.7). Variations in capsule thickness, adipose, and
OCT performance led to widely variable penetration into the kidney cortex both between
kidneys and between different regions in the same kidney. To accurately segment the
quantifiable cortex, it was necessary to identify features which could help discriminate
between noise and strong-signal regions of cortex.

The z-axis depth of 1.9 mm should at no point penetrate past the renal cortex, which has
an average thickness of just less than ~14 mm [26]. The cortex is densely populated with
PCTs. If swelling is minimal, the lumen of the PCTs should be visible throughout a cross-
section of the cortex with their visibility restricted only by the limitations of the OCT
system’s penetration. In images where PCT lumen were readily visible, the volume of
quantifiable cortex could be inferred as the area immediately surrounding lumen with distinct
edges, with anything beneath that point defined as background/noise beyond the penetration
of the OCT system (Fig. 9(a)). However, in images where PCT were fully swollen and their
lumen fully occluded by their swollen epithelium, there were often no visible anatomical
landmarks to help distinguish strong-signal cortex from noise (Fig. 9(b)). Quantifiable cortex
in these images was challenging even for trained raters to identify.

Intensity alone was likewise not a consistent marker of quantifiable cortex as the average
intensity of the cortex varied widely between scans (Fig. 9(c), 9(d)). Similarly, the intensity
gradient marking the transition between signal and noise was widely variable between scans.
Some scans had a rapidly diminishing intensity as the penetration increased beyond where
signal was present (Fig. 9(c)), while in other scans intensity was roughly homogenous
between the signal and noise (Fig. 9(d)). Automating segmentation to accurately identify
quantifiable cortex in images with and without visible PCT lumen required a weighted
combination of PCT lumen edge strength, texture estimates, and intensity values.

Fig. 9. (a) Section of a B-scan with visible PCT lumen. (b) Section of a B-scan with no visible
PCT lumen and no anatomical landmarks. (c) Section of a B-scan with rapidly diminishing
intensity values as the FOV moves past the OCT system’s penetration into the cortex. (d)
Section of a B-scan with little reduction in intensity values as the FOV moves past the OCT
system’s penetration into the cortex.

Maps of lumen edge strength were generated by a local standard deviation filter passed
over the original B-scan with a contrast adjusted output (kernel = 15x25 pum) (Fig. 10(b)).
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Texture was estimated with a second vertically weighted standard deviation filter (kernel =
45x2.73 pm), which more clearly highlighted transition from signal to noise in regions where
no or little lumens were present (Fig. 10(c)). Intensity values were drawn from the original B-
scan and were weighted by variables reflecting the contrast between the capsule and
superficial cortex, the contrast between cortex and lumen, and the intensity gradient beneath
the capsule-cortex interface. In each instance, higher contrast or degree of gradient increased
the weighting of the B-scan intensity values. Weighted intensity values were combined with
the map of lumen edge strength and texture to yield a greyscale image (Fig. 10(d)) from
which quantifiable cortex could be inferred by thresholding (area between yellow lines in Fig.
10(d)).

Fig. 10. (a) Original section of a B-scan. (b) Map of lumen edge strength with brighter regions
corresponding to stronger lumen edges. (¢) Texture estimate generated by a vertically weighted
standard deviation filter and contrast adjustment. (d) Greyscale output of the weighted
combination of Fig. 10(a)-(c). The area between the green line and bottom yellow line
represents the output of the thresholding of the image. The area between the top yellow line
(derived from the capsule-cortex interface segmentation step (section 2.6.4) and the bottom
yellow line represents the final segmented area of quantifiable cortex.

2.6.7 Segmentation of PCT lumen (region of interest map for automatic selection)

Prior to PCT lumen selection, a map of all potential PCT lumen was generated with a
combination of local adaptive thresholding and global thresholding around an empirically
determined level. The local adaptive thresholding binarized the original B-Scan tile by tile
within an approximately 70x70 pum window, with a threshold defined by the values within
each tile (Fig. 11(b)). The global thresholding was performed on a contrast-enhanced version
of the original image where contrast was enhanced with MATLAB’s histeq function in a
similar tiled fashion based on the range of values in each tile (Fig. 11(c)).

OB price =3 IO R G Py |

Fig. 11. (a) Section from B-scan (same section as used in Fig. 10(a)) following adaptive
histogram equalization. (b) Binary output of adaptive thresholding performed on original B-
scan (Fig. 10(a)). (c) Binary output of global thresholding performed on the contrast-enhanced
image (Fig. 11(a)). (d) ROI map generated after combining Fig. 11(b) and 11(c).

The adaptive thresholding was especially proficient in locating potential regions of
interest (ROIs) throughout the image but was indiscriminate in identifying ROIs and routinely
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located them throughout regions of noise. The set-limit thresholding was less comprehensive
in its identification of ROIs but was better able to discriminate between signal and noise (i.e.
identified high-noise regions as a single large ROI). The logical sum of the two thresholded
images produced a comprehensive binary mapping of ROIs with a signal to noise weighting
component (Fig. 11(d)). ROIs outside of the segmented quantifiable cortex were removed
from the ROI map.

2.6.8 Selection of PCT Ilumen (ROI threshold generation from manual PCT
selections)

Selection of PCT lumen was the most subjective of the manual segmentation processes and
varied considerably between raters. Manual raters were instructed to segment regions within
the quantifiable cortex which they could, with confidence, identify as cross-sections of PCT
lumen. Criteria for selection included size consistent with PCT lumen, and well-defined
lumen edges such that the selection could be reliably distinguished from imaging artifacts or
noise. Raters were instructed not to segment ROIs which could be confidently distinguished
from PCTs as glomeruli (characterized by their ~200 um diameter and capillary tuft), blood
vessels (characterized by large diameter lumen and length relative to PCT lumens), or cysts
(characterized by their >200 pm diameter, and irregular shape). Features from manual
selections were summed and employed to define thresholds for inclusion/exclusion of
automatic selections.

A set of features including edge-strength, diameter, and depth beneath the capsule-cortex
interface were extracted from automatic ROI selections which coincided with PCT lumen
selections made during manual analysis. These features were similarly extracted from
automatic ROI selections which manual raters did not select as PCT lumen. These groups of
features were assigned a “hit” or “miss” label respectively and were used to train a fit binary
classification tree using the MATLAB fitctree function. The classification tree was employed
following generation of the ROI map, wherein ROIs whose features yielded a “hit” were
included in analysis and ROIs whose features yielded a “miss” were excluded.

Fig. 12. (a) Section of a B-scan with adjacent stripes of reflection (surrounding left arrow) and
shadowing (right arrow) which produce false ROIs. (b) B-scan section from 12a with yellow
representing the corresponding ROI map generated for this image. The vertical red stripes
represent detected stripes of reflection while the vertical blue stripe represents detected stripes
of shadowing. (c) Section of a B-scan with separation between capsule and cortex. The arrow
indicates pockets at the point of separation which produce false ROIs. (d) B-scan section from
12¢ with yellow representing the corresponding ROI map. The arrow indicates a region (red)
where separation of the capsule and cortex produces false ROIs.

Additional criteria were set for exclusion of false ROIs and imaging artifacts. Vertical
stripes of shadowing and areas between adjacent stripes of reflection were routinely falsely
identified as PCT lumen (Fig. 12(a)). The shadow and reflection masks generated during
capsule segmentation were utilized here to remove these ROIs from selection at points where
these masks overlapped with selected ROIs (Fig. 12(b)). Similarly, separation between the
renal capsule and cortex, while infrequent, created ROIs which were frequently identified as
PCT lumen (Fig. 12(c)). These ROIs were identified by their proximity to the capsule-cortex
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interface and their horizontally elongated appearance, and were excluded from analysis (Fig.
12(d)).

2.7 Quantification of PCT morphology
2.7.1 Density measurements

PCT swelling was rarely homogenous within a kidney. Swelling (as evidenced by a reduction
in visible PCT lumen size) often varied within a kidney with some PCT lumen being fully
occluded by swelling, while others had little reduction in lumen diameter. Since fully
occluded PCT lumens were not visible in the OCT image sets, measurements of PCT
morphology in these instances would be biased by only including less swollen PCT lumen.
To supplement tubular measurements with a measure which accounts for the influence of
fully occluded PCT lumen, a “density” measure was devised which calculates the total area of
PCT lumen divided by the total area of quantifiable cortex. This method does not neglect the
swelling of PCTs whose lumen is fully occluded, but instead provides an estimate of the ratio
of the total area of PCT lumen to quantifiable cortex for each B-scan. A high diameter
measurement may, for example, be taken together with a low density measurement suggesting
a small population of dilated PCTs within a B-scan showing mostly occluded lumen. The
density measurement also provides a number value for the criteria technicians were instructed
to pursue (technicians were instructed to preferentially image regions with a higher total area
of PCT lumen).

One limitation of the 2D imaging protocol is that B-scans intersect the PCTs randomly
(horizontal red line in Fig. 13(b)) and do not necessarily create cross-sections orthogonal to
the direction of the tubule (blue plane in Fig. 13(b)). This creates elongated and irregularly
shaped cross-sections (red shape in Fig. 13(c)) which may misrepresent the cross-sectional
area of PCT lumen (blue shape in Fig. 13(c)). This impacts the density measurement, with
non-orthogonal cross-sections contributing a greater amount to the total lumen area than the
corresponding true orthogonal cross-section (red and blue shapes respectively in Fig. 13c). To
adjust for this bias, a set of features including circularity, extent, and eccentricity were
compiled for every B-scan cross-section in the 3D scan performed on a preserved kidney (red
line and red shape in Fig. 13(b) and 13(c) respectively). The true area of each cross-section
was acquired by capturing a plane (blue plane in Fig. 13(b)) at the same location (yellow
arrow in Fig. 13(b)) orthogonal to the orientation of that section (40 pm section length) of the
tubule.

Fig. 13. (a) En face view of automatically segmented PCT lumen in a reconstructed 3D scan.
Each tubule was extracted for comparison of B-scan cross-section features to features of cross-
sections taken orthogonal to the orientation of the PCT at the same locations. The tubule
segment highlighted in green is represented in 13b. (b) The red line represents the location of
the B-scan while the blue plane represents the plane orthogonal to the orientation of that
section of the PCT lumen segment (orientation from position 20 um earlier in the segment to
20 pm further). The arrow indicates the point on the tubule where the cross-sections in 13c are
captured. This process was repeated at every point along the length of the tubule. (c) Resulting
B-scan and orthogonal cross-sections from 13b are represented in red and blue respectively.
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The B-scan cross-section features were fed as inputs into MATLAB’s “Regression
Learner App” with the percent reduction in area from the B-scan cross-section to the true
cross-section as the response. A linear regression model was trained with 10-fold cross-
validation to predict the percent reduction in area required to transform an elongated or
irregularly shaped cross-section into the area of the corresponding orthogonal cross-section.
The model yielded a root-mean-square error (RMSE) of 0.15 and an R-Squared value of 0.69.
The linear regression model was employed to correct the area of elongated and irregularly
shaped cross-sections to the area of the corresponding true cross-sections. A notable
limitation of this correction method, however, is that only one kidney was used for training of
the model. In addition, this kidney was preserved in a formaldehyde solution and so may not
accurately represent PCT morphology of a kidney used for transplant. Similarly, feature
evaluation of the orthogonal cross-sections revealed that these sections were, on average,
moderately elliptical (eccentricity of 0.67 + 0.15); orthogonal cross-sections contained, on
average, a minor axis to major axis length ratio of 3:4. Consequently, the linear regression
model, depending on input features, may produce area estimations of non-circular orthogonal
cross-sections. While orthogonal sectioning of tubules in kidneys preserved for transplant
likely do not consistently produce perfectly circular lumen cross-sections due to anatomical
heterogeneity and storage effects, it should be considered that the formaldehyde preservation
of the kidney used in the linear regression model may have altered circularity of tubular
lumen.

2.7.2 Diameter measurements

The diameter of lumen in PCT cross-sections was measured for all cross-sections in each B-
scan. As the epithelium of the PCTs swells, the visible lumen should reduce. Conversely, as
the epithelium is flattened or simplified, the visible lumen should increase. Diameter of the
PCT lumen should therefore maintain an inverse relationship to the degree of swelling, and a
direct relationship to the degree of epithelial flattening/simplification.

Diameter measurements are similarly impacted by the limitations of the 2D imaging
protocol, with elongated non-orthogonal sections (red in Fig. 13(c)) potentially
misrepresenting true lumen diameter. To circumvent this issue, diameter was defined as the
“minor axis length” (shortest diameter which passes through the center of the ROI). This
definition ensures that the elongated axis of tangential sections does not bias the diameter
measurement. However, this may result in under-representation of the true diameter if the
imaging plane does not cut through the tubular center axis. Consequently, an additional
diameter measurement, derived from the corrected area, was used. This measure calculated
diameter from the linear regression corrected area using the equation for calculating the area
of a circle (A4 = 7r?).

To assess accuracy, a 50 pm capillary phantom was embedded in an agar solution which
mimicked the scattering properties of kidney tissue. OCT scans were performed on the
phantoms at three locations, and ROI maps were generated by the described method.
Diameter of the interior of the capillary phantoms was calculated by the two methods
described in this section and produced diameters of 45.7 £ 2.9 pm and 50.3 + 3.1um as
measured by minor axis length and from corrected area respectively.

2.7.3 Inter-Lumen measurements

The minimum distance between edges of adjacent lumen was measured between all adjacent
PCT lumen cross-sections in each B-scan (green in Fig. 14). Adjacency of ROIs was defined
as when centroids were within 110 pm of each other (determined empirically as the
maximum distance before tubule lumen outside of immediate adjacency were included) (red
circle in Fig. 14). This inter-lumen distance was considered a measurement of the combined
thickness of the epithelium of two adjacent PCTs and any interstitial space. As the epithelium
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swells, the inter-lumen distance should increase. Conversely, as the epithelium is flattened or
simplified, the inter-lumen distance should reduce.

Fig. 14. Depiction of methodology for inter-lumen and inter-centroid measurements. The red
circle represents a 110 um radius around the center ROI of “adjacent” ROIs. Distances
between lumen edges and centroids are represented in green and blue respectively.

2.7.4 Inter-centroid measurements

The distance between centroids of adjacent PCT lumen was similarly measured between all
adjacent PCT lumen cross-sections in each B-scan (blue in Fig. 14). This was considered a
measurement of the combined lumen, epithelium, and interstitial space. The inter-centroid
distance may be mostly unaffected by PCT swelling and epithelial flattening as changes to
epithelial thickness and lumen diameter are inversely related and may balance. The inter-
centroid distance may therefor reflect changes to the interstitial space.

2.7.5 B-scan selection and measurement compilation

Measurements were compiled for each B-scan in each image set. As the 2D imaging protocol
produced numerous duplicate or redundant images, only one B-scan was selected from each
image set for analysis. As imaging protocol was to survey regions with the greatest area of
visible tubule lumen (i.e. highest PCT lumen density), B-scan results were sorted by density
and the maximum density B-scan was selected for inclusion in results. Measurements from
these selected B-scans were averaged to yield values for pre-implantation and post-
reperfusion scans for each kidney. Results were averaged for each recovery group (IGF,
DGF) in each transplant group (LDKT, SCS (SCD), SCS (ECD), HMP (SCD)) and
represented in box and whisker plots.

In addition to analysis of correlation between measurements from selected B-scans and
binary recovery group categories (IGF/DGF), the relationship between measurements and
decline in patient’s serum creatinine levels (which should decline rapidly and to a level <3.0
mg/dL if a transplanted kidney is well functioning) following transplant was investigated
[27]. Linear mixed effects models were fitted to regress the longitudinal measures of serum
creatinine from day 0 to day 5 on each patient to account for the within-subject variation by
assuming an AR(1) (first order auto-regressive structure with homogenous variances)
covariance structure and allowing for random intercepts for between-subject variation. The
baseline creatinine measure, time, and interactions between time and each measurement were
also included in the models. Models were fitted following our initial hypotheses that flattened
PCT epithelium and dilated lumen would represent pathology, and consequently higher inter-
lumen distance measurements, lower diameter measurements, and lower density
measurements (which we initially predicted would echo diameter measurement trends) would
correlate with a faster recovery (steeper decline in creatinine). Higher inter-centroid distances
were hypothesized to represent pathology (as indicative of interstitial inflammation), and
consequently lower inter-centroid distances would correlate with a faster recovery (steeper
decline in serum creatinine).
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3. Results

3.1 Comparison of automatic and manual segmentation

Automatic segmentation performed on images which were also manually segmented (~1,500
images) had a capsule-cortex interface with a mean absolute error (MAE) of 15.0 + 10.7 um
(5.2 £ 3.7 pixels) as compared to the manual segmentations (top yellow, blue and red lines in
Fig. 15(b) for automatic and the 2 manual raters respectively). Multiple raters performing
manual segmentation on the same images deviated by an average of 11.5 £ 5.9 um (4.0 +£ 2.0
pixels).

Automatic segmentation performed on images which were also manually segmented
produced a quantifiable cortex boundary (line across x-axis highlighting the point at which
signal transitions into noise, represented by the bottom yellow, blue and red lines in Fig. 15(b)
for automatic and the 2 manual raters respectively) with a MAE of 45.0 + 11.23 pm (4.0 £2.0
pixels) as compared with manual segmentations.

Fig. 15. (a) Original B-scan (same as used in Fig. 4) and (b) B-scan following segmentation
automatically and by 2 manual raters. Segmentation of the capsule-cortex interface is
represented by the top yellow, red and blue lines as segmented by the algorithm and 2 manual
raters respectively. Segmentation of the quantifiable cortex boundary is represented by the
bottom yellow, red and blue lines as segmented by the algorithm and 2 manual raters
respectively. Automatic PCT lumen selections are represented in green if they overlap with
either of the manual rater’s selections and yellow if they do not overlap with manual
segmentation. Manual PCT lumen selections are represented in cyan if they overlap with 2nd
rater’s selections and red or blue for each rater if there is no overlap.

Multiple raters performing manual segmentation on the same images deviated by an
average of 59.0 + 29.3 um (20.8 £ 10.7 pixels). Serensen-Dice similarity coefficient scores
were calculated to demonstrate the degree of agreement (agreement between methods as to
what area was segmented as quantifiable cortex and what area was excluded; a Dice score of
0 would indicate no agreement whereas a Dice score of 1 would indicate perfect agreement)
between manual and automatic selections of cortex volume (area between the segmented
capsule-cortex interface and the segmented quantifiable cortex boundary). Automatically



Research Article Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1809 I

Biomedical Optics EXPRESS .

segmented cortex volumes compared to manually segmented cortex produced a Dice score of
0.84 + 0.05. Comparison between manual raters’ segmentations produced a Dice score of
0.81 £ 0.06.

For selection of PCT lumen from the ROI map, a simple decision tree, with sensitivity and
specificity comparable to more complex models, was selected to ensure robustness of the
classifier. The classification tree was able to accurately select PCT lumen from the ROI map
with a sensitivity of 85.58% and a specificity of 89.04%.

Intra-Rater Reproducibility Performance against Automatic Segmentation
MAE Dice Kappa Kappa at >5% MAE Dice Kappa |Kappa at >5%
Rater 1 10.6 0.90 0.38 0.58 13.2 0.89 0.17 0.50
Rater 2 9.2 0.85 0.47 0.72 12.6 0.83 0.23 0.65
Rater 3 12.0 0.82 0.60 0.62 13.2 0.87 0.21 0.52
Rater 4 15.2 0.77 0.38 0.55 16.4 0.79 0.13 0.35

Fig. 16. Table representing reproducibility measurements for manual raters (left) reassigned 25
B-scans each from their original sets. MAE, Dice coefficients, and Cohen’s kappa coefficients
are calculated for reproducibility in capsule-cortex interface, quantifiable cortex, and PCT
lumen selections respectively. Kappa scores are also shown for only B-scans where density
measurements were >5% (i.e. there was not a low population of tubule lumen). Comparison
between manual raters’ initial segmentations of the 25 reassigned images and automatic
segmentation performed on those same images is also shown (right).

To assess reproducibility among manual raters, raters were reassigned 25 B-scans,
randomly selected from B-scans which they had previously segmented. MAE was calculated,
for segmentation of the capsule-cortex interface, between each rater’s two segmentations for
each B-scan, and ranged from 9 to 15 pm between raters (Fig. 16). Dice scores were similarly
calculated between each rater’s two segmentations of quantifiable kidney cortex and ranged
from 0.77 to 0.9, with most raters achieving >0.8. Cohen’s kappa coefficients were calculated
between PCT lumen selections in both sets of segmented images and demonstrated fair to
moderate agreement, with a range in scores between 0.38 and 0.6. Kappa coefficients
improved dramatically to a range of scores between 0.55 to 0.72 when assessing only images
with at least moderate (>5%) density.

3.2 Density by area results
3.2.1 Density by area results stratified by transplant group (IGF/DGF combined)

Distinctions between measurements from the ECD subgroup of DDKT kidneys stored by
HMP and other transplant groups were not investigated due to limited sampling of ECD
kidneys in the DDKT-HMP group (n =2).

Prior to implantation (left in Fig. 17), kidneys from the LDKT transplant group
demonstrated higher (p<0.001) PCT lumen density than DDKT kidneys stored by SCS. This
difference may be considered a consequence of the markedly different transplant conditions,
namely a considerably reduced ischemic time (mean of 1.47 + 0.61 hours for LDKT versus
13.49 £ 7.06 hours for DDKT-SCS SCD and ECD subgroups). The SCD subgroup of DDKT
kidneys stored by HMP had a higher (p<0.001) pre-implantation density than all other
transplant groups. The high HMP density may be a result of artificial dilation of the PCT
lumen by the machine-perfusion process. The LDKT group, and the DDKT-SCS SCD and
ECD subgroups all experienced an increase in density between pre-implantation and post-
reperfusion scans. This is consistent with prior studies demonstrating a dramatic reduction in
swelling of ischemic PCTs (which would present as an increase to total lumen area) following
reperfusion [13,15]. In contrast to all other groups, the HMP group experienced a reduction in
density following reperfusion, suggesting either some dissipation of the artificial dilation or
induction of swelling. Post-reperfusion density (right in Fig. 17) was similar between LDKT
and the DDKT-SCS SCD and ECD subgroups. Post-reperfusion density in the HMP group
remained higher (p<0.05) than in both DDKT-SCS subgroups, and moderately higher than in
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the LDKT transplant group (p = 0.09)). The high post-reperfusion density suggests some
persistence of the effects of the artificial dilation.
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Fig. 17. Box and whisker plots of density measurements calculated with original lumen area
(a) and with lumen area corrected by linear regression (b) for pre-implantation (left) and post-
reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored
by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group
is further divided into recovery groups which experienced either IGF (green) or DGF (red)
following transplant. Mean density values for each recovery group are included in the attached
table with p-values (from Student’s t-test), and values adjusted for false discovery rate (FDR)
between transplant groups, representing significance of difference between recovery groups for
each transplant group. The mean percent change (increase or decrease) to density following
reperfusion is included at the bottom of each table for both recovery groups in each transplant
group.

3.2.2 Density by area results stratified by recovery group (IGF vs. DGF)

Distinctions between IGF and DGF recovery group measurements in the LDKT transplant
group were not investigated due to limited sampling of DGF kidneys (n = 1). Similarly,
distinctions between IGF and DGF recovery group measurements in the ECD subgroup of
DDKT kidneys stored by HMP were not investigated due to limited sampling (n = 1 for IGF,
n =1 for DGF).

In all transplant groups, density values were similar between IGF and DGF recovery
groups (green and red respectively in Fig. 17) prior to implantation. Following transplant and
reperfusion, density measurements for the DDKT kidneys stored by SCS increased in both
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SCD and ECD subgroups for both IGF and DGF recovery groups. In the HMP group, the IGF
recovery group experienced a <1% change in density while the DGF recovery group
experienced a 23% reduction in density following reperfusion. In the SCD subgroup of
DDKT kidneys stored by SCS, post-reperfusion density was similar between IGF and DGF
recovery groups. In the ECD subgroup, however, post-reperfusion density in the IGF
recovery group was lower (p<0.05) than that of the DGF group. Conversely, in the HMP
group, post-reperfusion density in the IGF recovery group was higher (p = 0.28 for original
density, p<0.05 for corrected) than in the DGF recovery group.

3.2.3 Density results by association with post-transplant creatinine decline

Following our initial hypothesis that lower PCT lumen density would correlate with a faster
recovery following transplant (i.e. density is positively correlated with creatinine values and
lower density is correlated with a steeper decline in creatinine (i.c., has a negative interaction
effect with time)), linear mixed effect models were fitted for each DDKT transplant group.
The pre-implantation fitted model for the SCS-SCD group did not support the hypothesis (p =
0.89), however the post-reperfusion SCS-SCD model trended towards support of the
hypothesis moderately (p = 0.09). Both pre-implantation and post-reperfusion fitted models
for the SCS-ECD group similarly did not support the hypothesis (p = 0.74, and p = 0.15
respectively). Finally, the pre-implantation model for the HMP-SCD group did support the
hypothesis (p<0.01), as did the post-reperfusion model (p<0.001).

3.3 Diameter results
3.3.1 Diameter results stratified by transplant group (IGF/DGF combined)

Diameter measurements were relatively consistent between minor axis length and corrected
area methods of measurement. Diameter calculated from corrected area was, however,
moderately but consistently higher than diameter calculated as the minor axis length. This
effect is likely due to the linear regression model’s predictions of instances of moderately
elliptical orthogonal cross-sections, which the minor axis length would underestimate.

Prior to implantation (left in Fig. 18), kidneys from the LDKT transplant group
demonstrated moderately higher PCT lumen diameter than DDKT kidneys stored by SCS.
DDKT kidneys stored by HMP had higher (p<0.001) pre-implantation diameter than all other
transplant groups. All groups experienced an increase in diameter between pre-implantation
and post-reperfusion scans. The LDKT and DDKT-HMP groups both experienced a modest
5% increase, while DDKT-SCS SCD and ECD subgroups both experienced a larger increase
in diameter (18%, and 13% respectively). Post-reperfusion diameter (right in Fig. 18) was
similar between the LDKT transplant group and the ECD subgroup of DDKT kidneys stored
by SCS. Post-reperfusion diameter in the SCD subgroup of DDKT kidneys stored by SCS
was moderately higher (p = 0.08) than in the ECD subgroup and the LDKT transplant group
(p<0.05). Post-reperfusion diameter in the HMP group was higher than in all other groups
(p<0.005, p =0.08, p<0.005 for DDKT-SCS, LDKT, and DDKT-ECD respectively).
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Fig. 18. Box and whisker plots of diameter measurements calculated by minor axis length (a)
and from lumen area corrected by linear regression (b) for pre-implantation (left) and post-
reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored
by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group
is further divided into recovery groups which experienced either IGF (green) or DGF (red)
following transplant. Mean diameter values for each recovery group are included in the
attached table with p-values (from Student’s t-test) and values adjusted for FDR between
transplant groups, representing significance of difference between recovery groups for each
transplant group. The mean percent change (increase or decrease) to diameter following
reperfusion is included at the bottom of each table for both recovery groups in each transplant

group.
3.3.2 Diameter results stratified by recovery group (IGF vs. DGF)

In the SCD subgroup of DDKT kidneys stored by SCS, diameter measurements were similar
between IGF and DGF recovery groups (green and red respectively in Fig. 18) prior to
implantation. In the ECD subgroup of DDKT kidneys stored by SCS, pre-implantation
diameter measurements were lower (p<0.05) in the IGF than in the DGF recovery group. In
the SCD subgroup of DDKT kidneys stored by HMP, pre-implantation diameter
measurements were similar between IGF and DGF recovery groups. Following reperfusion,
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diameter measurements for all recovery groups in all transplant groups increased. Within the
SCD subgroup of DDKT kidneys stored by SCS and the HMP group, increases were similar
between IGF and DGF recovery groups. In the ECD subgroup, diameter of the IGF recovery
group increased 10% while diameter in the DGF group increased 17%. Post-reperfusion
diameter in the SCD subgroup of kidneys stored by SCS was similar between IGF and DGF
recovery groups. Within the ECD subgroup, diameter in the IGF recovery group remained
lower (p<0.005) than in the DGF group. In the HMP transplant group, IGF diameter was
moderately lower than in the DGF group (p = 0.34).

3.3.3 Diameter results by association with post-transplant creatinine decline

Following our initial hypothesis that lower PCT lumen diameter would correlate with a faster
recovery following transplant (i.e. diameter is positively correlated with creatinine values and
lower diameter is correlated with a steeper decline in creatinine (i.e., has a negative
interaction effect with time)), lincar mixed effect models were fitted for each DDKT
transplant group. The pre-implantation fitted model for the SCS-SCD group did not support
the hypothesis (p = 0.54), however the post-reperfusion SCS-SCD model did support the
hypothesis (p<0.05). The pre-implantation fitted model for the SCS-ECD group similarly did
not support the hypothesis (p = 0.96), and the post-reperfusion SCS-ECD model did support
the hypothesis (p<0.05). Finally, the pre-implantation model for the HMP-SCD group did
support the hypothesis (p<0.05), while the post-reperfusion model did not (p = 0.56).

3.4 Inter-centroid results
3.4.1 Inter-centroid results stratified by transplant group (IGF/DGF combined)

Prior to implantation (left in Fig. 19), kidneys from the LDKT transplant group and DDKT
kidneys stored by SCS (both SCD and ECD) all exhibited a similar inter-centroid distance.
DDKT kidneys stored by HMP had a higher (p<0.05) pre-implantation inter-centroid distance
than all other transplant groups. All groups experienced a modest 1-4% increase in inter-
centroid distance between pre-implantation and post-reperfusion scans. Post-reperfusion
(right in Fig. 19) inter-centroid distance in the LDKT transplant group, and DDKT-SCS
subgroups was similar. Post-reperfusion inter-centroid distance in the HMP group remained
higher (p<0.005) than the LDKT group and moderately higher than the DDKT-SCS SCD and
ECD subgroups (p = 0.14, and p = 0.06 respectively).
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Fig. 19. Box and whisker plots of inter-centroid measurements for pre-implantation (left) and
post-reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys
stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant
group is further divided into recovery groups which experienced either IGF (green) or DGF
(red) following transplant. Mean inter-centroid distance values for each recovery group are
included in the attached table with p-values (from Student’s t-test) and values adjusted for
FDR between transplant groups, representing significance of difference between recovery
groups for each transplant group. The mean percent change (increase or decrease) to inter-
centroid distance following reperfusion is included at the bottom of each table for both
recovery groups in each transplant group.

3.4.2 Inter-centroid results stratified by recovery group (IGF vs. DGF)

Prior to implantation, inter-centroid distance was similar between the IGF and DGF recovery
groups in all transplant groups. Following reperfusion, inter-centroid distances increased in
all transplant groups for both IGF and DGF recovery groups. In the SCD subgroup of DDKT
kidneys stored by SCS, IGF and DGF recovery groups (green and red respectively in Fig. 19)
experienced a similar increase following reperfusion. In the ECD subgroup of DDKT kidneys
stored by SCS, and in the SCS subgroup of DDKT kidneys stored by HMP, the IGF recovery
groups experienced a smaller increase in inter-centroid distance following reperfusion than
the DGF groups. In the SCD subgroup of DDKT kidneys stored by SCS, post-reperfusion
inter-centroid distance measurements were similar between IGF and DGF groups. In the ECD
subgroup, inter-centroid distance was moderately lower (p = 0.09) in the IGF recovery group
than in the DGF group. Post-reperfusion inter-centroid distance for the HMP group was lower
(p<0.05) in the IGF recovery group than in the DGF group.

3.4.3 Inter-centroid results by association with post-transplant creatinine decline

Following our hypothesis that lower inter-centroid distance would correlate with a faster
recovery following transplant (i.e. inter-centroid distance is positively correlated with
creatinine values and lower inter-centroid distance is correlated with a steeper decline in
creatinine (i.e., has a negative interaction effect with time)), linear mixed effect models were
fitted for each DDKT transplant group. Both the pre-implantation and post-reperfusion fitted
models for the SCS-SCD group did not support the hypothesis (p = 0.14, and p = 0.17
respectively). Both the pre-implantation and post-reperfusion fitted models for the SCS-ECD
group did not support the hypothesis (p = 0.28, and p = 0.72 respectively). Finally, the pre-
implantation model for the HMP-SCD group did not support the hypothesis (p = 0.37),
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however the post-implantation model trended towards moderate support of the hypothesis (p
=0.07).

3.5 Inter-Lumen results

3.5.1 Inter-Lumen results stratified by transplant group (IGF/DGF combined)

Prior to implantation (left in Fig. 20), the LDKT group exhibited larger (p<0.05) inter-lumen
distance than the SCD and ECD subgroups of DDKT kidneys stored by SCS. The SCD
subgroup of DDKT kidneys stored by HMP exhibited an inter-lumen distance similar to the
LDKT group. Following reperfusion, inter-lumen distance decreased slightly in the LDKT
transplant group, the SCD subgroup of DDKT kidneys stored by SCS, and the SCD subgroup
of DDKT kidneys stored by HMP. In the ECD subgroup of DDKT kidneys stored by SCS,
inter-lumen distance increased slightly following reperfusion. Post-reperfusion (right in Fig.
20) inter-lumen distance was higher (p<0.05) in the LDKT transplant group than in the SCD
subgroup of DDKT kidneys stored by SCS, and the SCD subgroup of DDKT kidneys stored
by HMP.

. .
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Fig. 20. Box and whisker plots of inter-lumen measurements for pre-implantation (left) and
post-reperfusion (right) scans for the LDKT group (green), and the DDKT subgroups: SCD
kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each
transplant group is further divided into recovery groups which experienced either IGF (green)
or DGF (red) following transplant. Mean inter-lumen distance values for each recovery group
are included in the attached table with p-values (from Student’s t-test) and values adjusted for
FDR between transplant groups, representing significance of difference between recovery
groups for each transplant group. The percent change (increase or decrease) to inter-lumen
distance following reperfusion is included at the bottom of each table for both recovery groups
in each transplant group.

3.5.2 Inter-Lumen results stratified by recovery group (IGF vs. DGF)

Prior to implantation, inter-lumen distance was similar between the IGF and DGF recovery
groups in all transplant groups. Following reperfusion, inter-lumen distances in all transplant
groups decreased by less in the IGF recovery groups than in DGF groups (green and red
respectively in Fig. 20). Post-reperfusion inter-lumen distance in the SCD subgroup of DDKT
kidneys stored by SCS was similar between IGF and DGF recovery groups. In the ECD
subgroup, post-reperfusion inter-lumen distance was moderately higher (p = 0.06) in the IGF
recovery group than in the DGF group. In the HMP group, post-reperfusion inter-lumen
distance was higher (p<0.05) in the IGF recovery group than in the DGF group.



Research Article Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1816 I

Biomedical Optics EXPRESS -

3.5.3 Inter-Lumen results by association with post-transplant creatinine decline

Following our initial hypothesis that smaller inter-lumen distance would correlate with a
faster recovery following transplant (i.e. inter-lumen distance is negatively correlated with
creatinine values and higher inter-lumen distance is correlated with a steeper decline in
creatinine (i.e., has a negative interaction effect with time)), linear mixed effect models were
fitted for each DDKT transplant group. The pre-implantation fitted model for the SCS-SCD
group did not support the hypothesis (p = 0.24), however the post-reperfusion SCS-SCD
model showed strong support of the hypothesis (p<0.001). The pre-implantation model for the
SCS-ECD group did not support the hypothesis (p = 0.78), however the post-reperfusion
model did support the hypothesis (p<0.05). Finally, both the pre-implantation and post-
reperfusion models for the HMP-SCD group showed strong support for the hypothesis
(p<0.0005, and p<0.005 respectively).

3.6 Parsimony of image measurements

To assess relevance and redundancy of measurements, the compiled measurements from each
transplant group were included in the pool of candidate predictor variables in lasso penalized
regression models, with the post-transplant function (IGF coded as 1 vs. DGF coded as 0) as
the binary outcome variable. Two sets of penalized logistic regression models were run for
each transplant group: one included pre-implantation measurements only in the candidate
pool to identify the most relevant of pre-implantation measurements to post-transplant
function (i.e., measurements which could affect allocation or discard), and the other included
all the pre-implantation and post-reperfusion measurements in the pool to determine the most
relevant measurements to post-transplant function (i.e., measurements which could affect
post-operative care). The number of selected measurements was determined by minimizing
the averaged 3-fold cross-validation error. Selected measurements and their impact are listed
in Fig. 21.

Storage |Risk Group Pre-Implantation On
SCS ECD - - -
SCS SCD - - Negative -
HMP SCD - Negative - -

Storage |Risk Group Pre-Implantation and Post-Reperfusion
SCS ECD - - - - Negative | Negative - -
SCS SCD - - Negative - Positive - - -
HMP SCD - - - - Positive - - Positive

Fig. 21. Table displaying measurements selected by lasso penalized regression modeling as the
most relevant to post-transplant function. Selected measurements from only pre-implantation
measurements (top), and from the combined pre-implantation and post-reperfusion
measurements (bottom) were selected.

In the ECD subgroup of DDKT kidneys stored by SCS, the penalized model indicated
pre-implantation diameter was most relevant, among pre-implantation measurements, to post-
transplant function. Pre-implantation diameter had a negative impact on post-transplant
function in this instance, suggesting that larger lumen diameter is the most predictive of
assessed measurements for development of DGF in this transplant subgroup. When including
both pre-implantation and post-reperfusion measurements, the regression model indicated
post-reperfusion diameter and post-reperfusion density as the two variables, among all
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measurements, that were most relevant to post-transplant function. Both have negative impact
on the outcome, suggesting that larger post-reperfusion lumen diameter and higher post-
reperfusion lumen density are the most predictive of assessed measurements for development
of DGF in this transplant subgroup.

In the SCD subgroup of DDKT kidneys stored by SCS, the penalized model indicated pre-
implantation inter-centroid distance was most relevant, among pre-implantation
measurements, to post-transplant function. Pre-implantation inter-centroid distance had a
negative impact on post-transplant function in this instance, suggesting that larger inter-
centroid distance is the most predictive of assessed measurements for development of DGF in
this transplant subgroup. When including both pre-implantation and post-reperfusion
measurements, the regression model indicated pre-implantation inter-centroid distance and
post-reperfusion density as the two variables, among all measurements, that were most
relevant to post-transplant function. Inter-centroid distance and density had negative and
positive impacts on outcome, respectively, suggesting that larger pre-implantation inter-
centroid distance and lower post-reperfusion lumen density are the most predictive of
assessed measurements for development of DGF in this transplant subgroup.

In the SCD subgroup of DDKT kidneys stored by HMP, the penalized model indicated
pre-implantation diameter was most relevant, among pre-implantation measurements, to post-
transplant function. Pre-implantation diameter had a negative impact on post-transplant
function in this instance, suggesting that larger diameter is the most predictive of assessed
measurements for development of DGF in this transplant subgroup. When including both pre-
implantation and post-reperfusion measurements, the regression model indicated post-
reperfusion inter-lumen distance and post-reperfusion density as the two variables, among all
measurements, that were most relevant to post-transplant function. Both have negative impact
on the outcome, suggesting that smaller post-reperfusion inter-lumen distance and lower post-
reperfusion lumen density are the most predictive of assessed measurements for development
of DGF in this transplant subgroup.

Discussion

Fibrosis in donor kidneys may compromise graft viability, and is routinely evaluated in pre-
implantation kidney biopsies [28-30]. Partial epithelial-to-mesenchymal transition (EMT)
may play a role in the progression of fibrosis. This process has the effect of flattening PCT
epithelial cells, and may produce an increased lumen diameter in affected tubules [31,32].
Similarly, fibrosis contributes to tubular atrophy, and in turn, compensatory hypertrophy of
surviving PCTs [33,34]. The lumen of hypertrophied tubules is also frequently dilated to
accommodate their increased role [35]. The effects of fibrosis therefore may be visible in
OCT imaging, evidenced by the dilation of tubular lumen.

Acute tubular injury (ATI) in donor kidneys may similarly compromise graft viability.
ATI can induce simplification of the tubular epithelium [18]. Shedding of the PCTs’
microvillus brush border and sloughing of tubular epithelial cells into the lumen may also
present as a dilation of the tubular lumen in OCT scans. In addition, as blood flow is restored
following reperfusion, sloughed epithelial cells may obstruct flow and increase proximal
tubule pressure dramatically; heightened pressure may produce substantial dilation of the
tubular lumen presented in post-reperfusion OCT scans and potentially pre-implantation OCT
scans of kidneys preserved by HMP [36]. The short-term effects of ATI therefor may be
visible in OCT imaging, evidenced by the dilation of visible tubular lumen.

Swelling of the PCT epithelium, induced by ischemic damage, may similarly represent the
effects or symptoms of ATI [18]. Epithelial swelling occludes the luminal space, resulting in
a reduced diameter and an increased inter-lumen distance. If PCT swelling reduces the tubular
lumen beyond the resolution of the OCT system, diameter and inter-lumen measurements
would not reflect the contribution of more swollen PCTs. Density measurements, however,
would illustrate this effect. In the SCD subgroup of DDKT kidneys stored by SCS, there were
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no strong differences in measurements between IGF and DGF recovery groups. In the ECD
subgroup—those most at risk for poor post-transplant function, and most subject to discard—
measures of PCT lumen density and diameter, acquired both prior to implantation and
following reperfusion, were lower in the IGF than in the DGF recovery group. The IGF
recovery group similarly demonstrated a larger inter-lumen distance measurement following
reperfusion than the DGF group. Taken together, these measurements suggest a flattening of
the PCT epithelium and consequent dilation of tubular lumen in ECD kidneys which go on to
experience DGF. This may be a symptom of pre-existing pathology (fibrosis) or ATIL. It is
unclear why this pattern does not present in the SCD subgroup.

Following reperfusion, density and diameter measurements in both the SCD and ECD
subgroups of DDKT kidneys stored by SCS experienced increases in both IGF and DGF
recovery groups. This may reflect dissipation of epithelial swelling as the kidney moves away
from an ischemic state. This may also result from the effect of flow rate of filtrate on luminal
diameter [37]. Increased distinction between IGF and DGF recovery group measurements
following reperfusion may be due to pre-existing pathology being revealed by the dissipation
of swelling (e.g. dilated lumen of hypertrophied tubules may become more evident when
epithelial swelling subsides). More likely, this is the result of the reperfusion process inducing
further shedding of the microvillus brush border and/or further epithelial sloughing. Similarly,
sloughed tubular epithelial cells which may have fully occluded the lumen during static-
storage may be cleared following reperfusion, revealing further luminal dilation.

In the ECD subgroup, but not the SCD subgroup, of DDKT kidneys stored by SCS, the
DGF recovery group experienced an increase in inter-centroid distance following reperfusion,
while the IGF group did not. This may reflect infiltration of inflammatory cells into the
interstitial space, and subsequent interstitial edema [38]. This would be consistent with the
ATI theory and would suggest symptoms of ischemia/reperfusion injury (IRI) in the DGF
group.

In the SCD subgroup of DDKT kidneys stored by HMP, diameter, and inter-lumen
measurements for DGF kidneys echo the trends apparent in the ECD subgroup of DDKT
kidneys stored by SCS (i.e. increased lumen diameter and reduced inter-lumen distance). This
suggests that, in HMP preserved kidneys, ATI or pre-existing pathology may also present as
dilated tubular lumen with simplified or flattened tubular epithelium. Inter-centroid
measurements similarly echo trends apparent in the ECD transplant group. Following
reperfusion, the DGF recovery group experienced an increase in inter-centroid distance and
subsequently exhibited a higher inter-centroid measurement than the IGF recovery group.
This again may suggest interstitial edema following reperfusion.

Surprisingly, HMP kidneys in the DGF recovery group experienced a dramatic reduction
in density following reperfusion, while the IGF group experienced little change. The resulting
IGF density was higher than the density in the DGF group. Higher diameter and lower inter-
lumen distances in the post-reperfusion DGF group would normally correlate with higher
density measurements. One explanation for this contradictory result is that some PCT lumens
in the HMP-DGF group had become fully occluded following reperfusion, excluding these
PCTs from diameter and inter-lumen measurement, but still detracting from luminal area in
the density measurement.

One limitation of this study is the imaging protocol, which heavily weighted the
composition of image sets towards regions of the kidney where tubule lumens were most
visible and dilated. While this protocol may highlight focal points of pathology, it does not
provide a global distribution of PCT features. Global imaging sampling multiple areas of the
kidney may reveal a more heterogeneous pattern of swelling and dilation, with some areas
exhibiting tubular lumen dilated by fibrosis or ATI, and other areas exhibiting significant
swelling.

In future studies, a more systematic and global imaging strategy may yield further
insights. While the selection of a single B-scan for each image set removes issues of
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redundancy, it also severely limits the total area being investigated. In future studies, a 3D
imaging protocol would eliminate redundancy, allowing all imaging data to be evaluated and
a larger volume of kidney to be assessed. Similarly, 3D imaging would enable orientation of
tubular features in a 3D space and would provide more accurate measurements. While the
linear regression model utilized in this study attempts to correct for this issue, training data
for the model is extracted only from a single preserved kidney and may not be applicable to
all kidneys.

Conclusion

There is a dire need in the transplant community for new measures of kidney viability. To
support the growing need for kidneys, higher risk kidneys must be considered for transplant.
To efficiently utilize this deeper end of the donor pool, surgeons must be able to confidently
predict kidneys’ potential function and longevity following transplant.

OCT provides a non-invasive view of the microanatomy of the superficial kidney cortex.
Assessment of this anatomy has the potential to offer insights into the viability of a kidney
offered for transplant. This study shows that dilation of tubular lumen and simplification of
tubular epithelium of the PCTs can be assessed by OCT, and these measurements correlate
with post-transplant function. These factors may represent symptoms of pre-existing
pathology or acute tubular injury.

OCT analysis may provide a valuable supplement to current methods for assessing kidney
viability. Accurate prediction of post-transplant function prior to implantation may aid in
allocation of kidneys, while accurate prediction of post-transplant function following
transplant may influence post-operative care.

The variability between manual raters in this study demonstrates the necessity of
consistency and reproducibility in analysis. The fully automated analysis used in this study
removes the elements of user bias and subjective segmentation. Similarly, manual
segmentation is considerably too slow a process when advising a surgeon on the time-
sensitive decision to accept or reject a kidney for transplant. Fully automated segmentation
and analysis provides a high-speed solution to obtaining accurate predictive measures.

This study assessed the potential utility of OCT imaging in predicting post-transplant
function. While results are promising, inclusion of additional variables (KDPI, ischemic
times, biopsy scoring, etc.) into one prediction model may provide a more comprehensive
view of kidney viability. Similarly, global OCT imaging and capture of 3D volumes would
provide a more detailed view of the distribution of PCT morphology, and may aid in
prediction of post-transplant function. 3D volumes would similarly enable adoption of
previously developed OCT segmentation strategies, for example the Hessian filter approach
by Yousefi et al. and single-scattering model with segment-joining algorithm by Gong et al.
[39,40].
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