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Abstract: Current measures for assessing the viability of donor kidneys are lacking. Optical 
coherence tomography (OCT) can image subsurface tissue morphology to supplement current 
measures and potentially improve prediction of post-transplant function. OCT imaging was 
performed on donor kidneys before and immediately after implantation during 169 human 
kidney transplant surgeries. A system for automated image analysis was developed to 
measure structural parameters of the kidney’s proximal convoluted tubules (PCTs) visualized 
in the OCT images. The association of these structural parameters with post-transplant 
function was investigated. This study included kidneys from live and deceased donors. 88 
deceased donor kidneys in this study were stored by static cold storage (SCS) and an 
additional 15 were preserved by hypothermic machine perfusion (HMP). A subset of both 
SCS and HMP deceased donor kidneys were classified as expanded criteria donor (ECD) 
kidneys, with elevated risk of poor post-transplant function. Post-transplant function was 
characterized as either immediate graft function (IGF) or delayed graft function (DGF). In 
ECD kidneys stored by SCS, increased PCT lumen diameter was found to predict DGF both 
prior to implantation and following reperfusion. In SCD kidneys preserved by HMP, reduced 
distance between adjacent lumen following reperfusion was found to predict DGF. Results 
suggest that OCT measurements may be useful for predicting post-transplant function in ECD 
kidneys and kidneys stored by HMP. OCT analysis of donor kidneys may aid in allocation of 
kidneys to expand the donor pool as well as help predict post-transplant function in 
transplanted kidneys to inform post-operative care. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The number of people on the waiting list for a kidney transplant grows each year and efforts 
to expand the donor pool to meet this demand have fallen short [1]. Kidney offers have 
expanded to include higher risk donors with various comorbidities, suboptimal procurement, 
and longer cold ischemia times. The inclusion of these higher risk, expanded criteria donors 
(ECD) in the donor pool has been successful in increasing the number of transplants 
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performed annually but transplant centers still ultimately discard a large portion of ECD 
kidneys procured and offered for transplant [2–4]. The discard rate for ECD kidneys is nearly 
45% compared to just over 10% for standard criteria donor (SCD) kidneys [5]. 

These discards represent a largely untapped source of potentially viable kidneys which, if 
properly utilized, could further widen the donor pool and narrow the gap between kidney 
supply and kidney demand. Studies have demonstrated that patients who receive moderately 
compromised kidneys live longer and have a higher quality of life than those who remain on 
dialysis and wait for a more viable option [6,7]. Currently there are approximately 17,000 
kidney transplants a year in the United States. It is estimated that this number could be as high 
as 38,000 if more marginally compromised kidneys were considered and the donor pool 
properly utilized [8]. 

Surgeons reference a multitude of factors which contribute to their decision to reject a 
kidney. Principal among these are the results of biopsies, which are performed routinely on 
ECD kidneys, and are credited as the most frequent reason for discard. The true relevance of 
these factors is contested, with the majority appearing to have little correlation with graft 
function following transplant [9]. There is a critical need to enhance prognostic measures and 
to explore new ways of gaining insights into the viability of these more at-risk kidneys. 

Optical Coherence Tomography (OCT) provides a non-invasive method for obtaining 
optical cross-sections of the superficial kidney cortex [10,11]. OCT is an interferometry based 
imaging modality, similar in principle to ultrasound, which uses the light scattering 
characteristics of tissue to construct high-resolution subsurface images. Cross-sectional 2-
dimensional OCT images (B-scans) are composed of a series of sequential 1-dimensional A-
scans, reflectivity vs. depth profiles, which represent subsurface features in the sample [12–
14]. These images reveal the microanatomy of the proximal convoluted tubules (PCTs), 
which comprise the majority of the superficial kidney cortex. Swelling of the epithelium of 
the PCTs is evident in OCT images and may be considered a symptom of ischemic insult 
[15,16]. Conversely, dilation of the tubular lumen is similarly evident in OCT and may be 
considered a symptom of pre-existing pathology or acute tubular injury (ATI) [17–19]. 
Quantification of the degree of swelling or prevalence of dilation may provide a valuable 
addition to current measures of kidney viability. This would contribute to more informed 
decision making and optimal usage of the kidney donor pool. 

OCT also has potential utility following transplant, where a more accurate prediction of 
post-transplant function could influence post-operative care. Delayed Graft Function (DGF) is 
an established risk factor for survival of a transplanted kidney [20]. If DGF can be predicted 
immediately following transplant, early post-operative biopsies to investigate poor function 
can be avoided. Early diagnosis of DGF can similarly inform the development of 
immunosuppressive treatments, where evidence of potential DGF would provide incentive for 
a less nephrotoxic, Calcineurin-sparing regiment [21]. An accurate prediction of DGF would 
also promote the usage of any of a number of anti-DGF medications currently in 
development, should they be approved. 

For OCT to be used effectively in a clinical setting, image analysis must be conducted 
quickly, reliably, and without bias. Automated segmentation achieves these goals and can 
provide rapid and accurate assessments of ischemic damage to the kidney [22,23]. In this 
paper, we present a fully automated system which can identify and segment the 
microanatomy of the human kidney in OCT images with accuracy comparable to manual 
segmentation. We demonstrate the correlation between quantitative measurements derived 
from this segmentation and graft function following transplant. 

2. Methods 

2.1 Patient demographics 

This study was approved by the Georgetown University and the University of Maryland 
Institutional Review Boards (Study number: IRB#2010-396). Written informed consent was 
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obtained prior to enrollment. Patients eligible for this study included any kidney transplant 
recipient 18 years or older at the MedStar Georgetown Transplant Hospital. 

Patient demographics were obtained at the time of consent. The patient pool was 
composed of approximately 60% male and 40% female recipients. Mean age at transplant was 
52 with a standard deviation of ( ± ) 12.5 years. Mean BMI of recipients was 28.4 ± 4.7. 61% 
of patients in this study were African American, 24% were Caucasian, 8% were Hispanic, and 
7% were Asian. 

2.2 Transplant group categorizations 

Of the 169 kidneys imaged and included in this study, 66 were from living-donor kidney 
transplants (LDKTs) and 103 were from deceased-donor kidney transplants (DDKTs). All 
LDKTs were preserved by static cold storage (SCS). Of the 103 DDKTs, 88 were preserved 
by SCS and 15 were preserved by hypothermic machine perfusion (HMP). 4 of the kidneys in 
the SCS group were part of a multi-organ transplant (kidney/pancreas). Of the 88 SCS 
kidneys, 26 had a KDPI (Kidney Donor Profile Index: score from 0 to 100 based on 10 donor 
factors, estimating the risk of graft failure) of 85 or more and were subcategorized as 
expanded criteria donor (ECD) kidneys. The remaining 62 SCS kidneys were subcategorized 
as standard criteria donor (SCD) kidneys [3]. Of the 15 kidneys in the HMP group, 2 kidneys 
qualified as ECD, and the remaining 13 were subcategorized as SCD kidneys (Fig. 1). 
Patients whose data were excluded from the analysis included those involved in parallel 
studies for anti-DGF clinical trials (1 patient) and those where image quality of the OCT 
image sets was compromised (2 patients). 

2.3 Recovery group categorizations 

Graft function following transplant was categorized as either immediate or delayed. Delayed 
graft function was designated when a transplant recipient was required to undergo dialysis 
within the first seven days following transplant [24] or when otherwise specified as DGF in 
clinical notes. All cases where transplant recipients did not require dialysis prior to discharge 
were considered immediate graft function (IGF). Recovery groupings for each transplant 
group were as follows: LDKT (65 IGF, 1 DGF), SCS SCD (51 IGF, 11 DGF), SCS ECD (18 
IGF, 8 DGF), HMP SCD (8 IGF, 5 DGF), and HMP ECD (1 IGF, 1 DGF) (Fig. 1). 

                                                                      Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1796 



 

Fig. 1. Hierarchy classification of transplant groups with all transplants (blue tier 1) divided 
into live and deceased donor kidney transplants (blue tier 2). DDKTs are further divided into 
subgroups based on storage method (blue tier 3). DDKTs stored by SCS and HMP are further 
divided into subgroups based on risk of graft failure (blue tier 4). Each end-tier transplant 
group is divided into recovery groups based on requirement of dialysis (green and red). 

2.4 Imaging protocol 

Imaging in this study was performed with a 1325 nm center wavelength spectral-domain OCT 
imaging system (Telesto-II, Thorlabs Inc.), with an incident power of 2.5 mW. The Telesto 
OCT system was equipped with a 36 mm focal length (LSM03, Thorlabs Inc.) objective, 
providing a lateral resolution of 13 µm and an axial resolution of 5.5 µm in air. Scans were 
captured at a rate of 28 kHz, with a sensitivity of 103 dB. A-scans were averaged by 2 and no 
B-scan averaging was applied. B-scan settings were optimized to minimize file storage size 
while providing a sufficient field of view (FOV) and resolution for analysis. Parameters 
included a FOV of 4.9 mm in x-axis and 1.9 mm in z-axis (after adjusting for a refractive 
index of 1.3) at a scale of approximately 2.73 µm/pixel in each dimension (Fig. 2). 

A technician in sterile surgical attire operated a handheld scanner, draped in a sterile 
sleeve with a layer of sterile Tegaderm transparent film dressing affixed to the focal spacer. 
Image sets were obtained ex-vivo immediately prior to implantation and again in-vivo 
immediately (13 ± 4 minutes) following reperfusion of the transplanted kidney. 
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segmented images were reassigned to different raters to produce measures of inter-rater 
variation (Fig. 4). 

Manual segmentation was performed on 5 randomly selected images from each image set. 
Raters segmented the interface between the renal capsule and the cortex (upper red and blue 
lines in Fig. 4). Raters also segmented the full volume of quantifiable cortex (the area of 
cortex beneath the capsule where the signal appeared sufficient to discriminate anatomical 
features) (area between upper and lower red and blue lines in Fig. 4). Raters then segmented 
all regions which appeared to be cross-sections of PCT lumen, using the ImageJ “Versatile 
Wand” plugin [25] (red and blue selections in Fig. 4 with cyan indicating overlap). If a 
randomly selected image contained no quantifiable cortex, the image was skipped and the 
reason for exclusion was tallied as either “empty” with no contact between the probe and 
kidney (section 2.6.1), “high reflection” (section 2.6.2), or “high adipose” (section 2.6.3). 

 

Fig. 4. Representative B-scan independently segmented by 2 manual raters. Selections by the 
first rater are indicated in red while selections by the second rater are indicated in blue. Cyan 
indicates an overlap in selection by both raters. 

2.6 Automatic segmentation 

Automatic segmentation was executed in MATLAB R2017b (Mathworks, Inc., Natick, MA, 
USA). To remove user bias and to improve feasibility of clinical application, automatic 
segmentation and analysis was performed on the original full 2D video image sets and not 
manually selected subsets of images. To expedite analysis and prevent error, it was necessary 
to remove images from processing which contained no quantifiable cortex. Features were 
extracted and compiled from images skipped and marked during manual analysis. These 
features were utilized to identify empty, high reflection, or high adipose images prior to 
performing more computationally expensive sections of the algorithm. 

2.6.1 Empty B-scan detection 

While a threshold of total intensity values would be an intuitive and high-speed approach to 
detection of empty B-scans, variations between empty images in background intensity, 
imaging artifacts and hyper-reflectivity of Tegaderm disallowed this strategy. Empty images 
were therefore identified by their average standard deviation in intensity values across the z-
axis. 

For each B-scan, the standard deviation of intensity values across each A-scan was taken 
and all A-scan standard deviations for that B-scan averaged. This process was repeated for all 
images marked during manual analysis as “empty” (Fig. 5(a)), and for all images which had 
cortex present and were manually segmented (Fig. 5(b)). Comparison between these two 
groups demonstrated that a mean A-scan standard deviation of 47 or less correlated highly 
with images categorized as “empty” while a mean A-scan standard deviation above 47 
correlated well with images which contained kidney (Fig. 5(c)). A standard deviation cutoff 
of 47 identified empty images with a sensitivity of 83.28% and a specificity of 98.91%. 
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The B-scan cross-section features were fed as inputs into MATLAB’s “Regression 
Learner App” with the percent reduction in area from the B-scan cross-section to the true 
cross-section as the response. A linear regression model was trained with 10-fold cross-
validation to predict the percent reduction in area required to transform an elongated or 
irregularly shaped cross-section into the area of the corresponding orthogonal cross-section. 
The model yielded a root-mean-square error (RMSE) of 0.15 and an R-Squared value of 0.69. 
The linear regression model was employed to correct the area of elongated and irregularly 
shaped cross-sections to the area of the corresponding true cross-sections. A notable 
limitation of this correction method, however, is that only one kidney was used for training of 
the model. In addition, this kidney was preserved in a formaldehyde solution and so may not 
accurately represent PCT morphology of a kidney used for transplant. Similarly, feature 
evaluation of the orthogonal cross-sections revealed that these sections were, on average, 
moderately elliptical (eccentricity of 0.67 ± 0.15); orthogonal cross-sections contained, on 
average, a minor axis to major axis length ratio of 3:4. Consequently, the linear regression 
model, depending on input features, may produce area estimations of non-circular orthogonal 
cross-sections. While orthogonal sectioning of tubules in kidneys preserved for transplant 
likely do not consistently produce perfectly circular lumen cross-sections due to anatomical 
heterogeneity and storage effects, it should be considered that the formaldehyde preservation 
of the kidney used in the linear regression model may have altered circularity of tubular 
lumen. 

2.7.2 Diameter measurements 

The diameter of lumen in PCT cross-sections was measured for all cross-sections in each B-
scan. As the epithelium of the PCTs swells, the visible lumen should reduce. Conversely, as 
the epithelium is flattened or simplified, the visible lumen should increase. Diameter of the 
PCT lumen should therefore maintain an inverse relationship to the degree of swelling, and a 
direct relationship to the degree of epithelial flattening/simplification. 

Diameter measurements are similarly impacted by the limitations of the 2D imaging 
protocol, with elongated non-orthogonal sections (red in Fig. 13(c)) potentially 
misrepresenting true lumen diameter. To circumvent this issue, diameter was defined as the 
“minor axis length” (shortest diameter which passes through the center of the ROI). This 
definition ensures that the elongated axis of tangential sections does not bias the diameter 
measurement. However, this may result in under-representation of the true diameter if the 
imaging plane does not cut through the tubular center axis. Consequently, an additional 
diameter measurement, derived from the corrected area, was used. This measure calculated 
diameter from the linear regression corrected area using the equation for calculating the area 

of a circle ( 2A rπ= ). 
To assess accuracy, a 50 µm capillary phantom was embedded in an agar solution which 

mimicked the scattering properties of kidney tissue. OCT scans were performed on the 
phantoms at three locations, and ROI maps were generated by the described method. 
Diameter of the interior of the capillary phantoms was calculated by the two methods 
described in this section and produced diameters of 45.7 ± 2.9 µm and 50.3 ± 3.1µm as 
measured by minor axis length and from corrected area respectively. 

2.7.3 Inter-Lumen measurements 

The minimum distance between edges of adjacent lumen was measured between all adjacent 
PCT lumen cross-sections in each B-scan (green in Fig. 14). Adjacency of ROIs was defined 
as when centroids were within 110 µm of each other (determined empirically as the 
maximum distance before tubule lumen outside of immediate adjacency were included) (red 
circle in Fig. 14). This inter-lumen distance was considered a measurement of the combined 
thickness of the epithelium of two adjacent PCTs and any interstitial space. As the epithelium 
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swells, the inter-lumen distance should increase. Conversely, as the epithelium is flattened or 
simplified, the inter-lumen distance should reduce. 

 

Fig. 14. Depiction of methodology for inter-lumen and inter-centroid measurements. The red 
circle represents a 110 µm radius around the center ROI of “adjacent” ROIs. Distances 
between lumen edges and centroids are represented in green and blue respectively. 

2.7.4 Inter-centroid measurements 

The distance between centroids of adjacent PCT lumen was similarly measured between all 
adjacent PCT lumen cross-sections in each B-scan (blue in Fig. 14). This was considered a 
measurement of the combined lumen, epithelium, and interstitial space. The inter-centroid 
distance may be mostly unaffected by PCT swelling and epithelial flattening as changes to 
epithelial thickness and lumen diameter are inversely related and may balance. The inter-
centroid distance may therefor reflect changes to the interstitial space. 

2.7.5 B-scan selection and measurement compilation 

Measurements were compiled for each B-scan in each image set. As the 2D imaging protocol 
produced numerous duplicate or redundant images, only one B-scan was selected from each 
image set for analysis. As imaging protocol was to survey regions with the greatest area of 
visible tubule lumen (i.e. highest PCT lumen density), B-scan results were sorted by density 
and the maximum density B-scan was selected for inclusion in results. Measurements from 
these selected B-scans were averaged to yield values for pre-implantation and post-
reperfusion scans for each kidney. Results were averaged for each recovery group (IGF, 
DGF) in each transplant group (LDKT, SCS (SCD), SCS (ECD), HMP (SCD)) and 
represented in box and whisker plots. 

In addition to analysis of correlation between measurements from selected B-scans and 
binary recovery group categories (IGF/DGF), the relationship between measurements and 
decline in patient’s serum creatinine levels (which should decline rapidly and to a level <3.0 
mg/dL if a transplanted kidney is well functioning) following transplant was investigated 
[27]. Linear mixed effects models were fitted to regress the longitudinal measures of serum 
creatinine from day 0 to day 5 on each patient to account for the within-subject variation by 
assuming an AR(1) (first order auto-regressive structure with homogenous variances) 
covariance structure and allowing for random intercepts for between-subject variation. The 
baseline creatinine measure, time, and interactions between time and each measurement were 
also included in the models. Models were fitted following our initial hypotheses that flattened 
PCT epithelium and dilated lumen would represent pathology, and consequently higher inter-
lumen distance measurements, lower diameter measurements, and lower density 
measurements (which we initially predicted would echo diameter measurement trends) would 
correlate with a faster recovery (steeper decline in creatinine). Higher inter-centroid distances 
were hypothesized to represent pathology (as indicative of interstitial inflammation), and 
consequently lower inter-centroid distances would correlate with a faster recovery (steeper 
decline in serum creatinine). 
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3. Results 
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segmented cortex volumes compared to manually segmented cortex produced a Dice score of 
0.84 ± 0.05. Comparison between manual raters’ segmentations produced a Dice score of 
0.81 ± 0.06. 

For selection of PCT lumen from the ROI map, a simple decision tree, with sensitivity and 
specificity comparable to more complex models, was selected to ensure robustness of the 
classifier. The classification tree was able to accurately select PCT lumen from the ROI map 
with a sensitivity of 85.58% and a specificity of 89.04%. 

 

Fig. 16. Table representing reproducibility measurements for manual raters (left) reassigned 25 
B-scans each from their original sets. MAE, Dice coefficients, and Cohen’s kappa coefficients 
are calculated for reproducibility in capsule-cortex interface, quantifiable cortex, and PCT 
lumen selections respectively. Kappa scores are also shown for only B-scans where density 
measurements were >5% (i.e. there was not a low population of tubule lumen). Comparison 
between manual raters’ initial segmentations of the 25 reassigned images and automatic 
segmentation performed on those same images is also shown (right). 

To assess reproducibility among manual raters, raters were reassigned 25 B-scans, 
randomly selected from B-scans which they had previously segmented. MAE was calculated, 
for segmentation of the capsule-cortex interface, between each rater’s two segmentations for 
each B-scan, and ranged from 9 to 15 µm between raters (Fig. 16). Dice scores were similarly 
calculated between each rater’s two segmentations of quantifiable kidney cortex and ranged 
from 0.77 to 0.9, with most raters achieving >0.8. Cohen’s kappa coefficients were calculated 
between PCT lumen selections in both sets of segmented images and demonstrated fair to 
moderate agreement, with a range in scores between 0.38 and 0.6. Kappa coefficients 
improved dramatically to a range of scores between 0.55 to 0.72 when assessing only images 
with at least moderate (>5%) density. 

3.2 Density by area results 

3.2.1 Density by area results stratified by transplant group (IGF/DGF combined) 

Distinctions between measurements from the ECD subgroup of DDKT kidneys stored by 
HMP and other transplant groups were not investigated due to limited sampling of ECD 
kidneys in the DDKT-HMP group (n = 2). 

Prior to implantation (left in Fig. 17), kidneys from the LDKT transplant group 
demonstrated higher (p<0.001) PCT lumen density than DDKT kidneys stored by SCS. This 
difference may be considered a consequence of the markedly different transplant conditions, 
namely a considerably reduced ischemic time (mean of 1.47 ± 0.61 hours for LDKT versus 
13.49 ± 7.06 hours for DDKT-SCS SCD and ECD subgroups). The SCD subgroup of DDKT 
kidneys stored by HMP had a higher (p<0.001) pre-implantation density than all other 
transplant groups. The high HMP density may be a result of artificial dilation of the PCT 
lumen by the machine-perfusion process. The LDKT group, and the DDKT-SCS SCD and 
ECD subgroups all experienced an increase in density between pre-implantation and post-
reperfusion scans. This is consistent with prior studies demonstrating a dramatic reduction in 
swelling of ischemic PCTs (which would present as an increase to total lumen area) following 
reperfusion [13,15]. In contrast to all other groups, the HMP group experienced a reduction in 
density following reperfusion, suggesting either some dissipation of the artificial dilation or 
induction of swelling. Post-reperfusion density (right in Fig. 17) was similar between LDKT 
and the DDKT-SCS SCD and ECD subgroups. Post-reperfusion density in the HMP group 
remained higher (p<0.05) than in both DDKT-SCS subgroups, and moderately higher than in 

MAE Dice Kappa Kappa at >5% MAE Dice Kappa Kappa at >5%
Rater 1 10.6 0.90 0.38 0.58 13.2 0.89 0.17 0.50
Rater 2 9.2 0.85 0.47 0.72 12.6 0.83 0.23 0.65
Rater 3 12.0 0.82 0.60 0.62 13.2 0.87 0.21 0.52
Rater 4 15.2 0.77 0.38 0.55 16.4 0.79 0.13 0.35

Intra-Rater Reproducibility Performance against Automatic Segmentation
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the LDKT transplant group (p = 0.09)). The high post-reperfusion density suggests some 
persistence of the effects of the artificial dilation. 

 

Fig. 17. Box and whisker plots of density measurements calculated with original lumen area 
(a) and with lumen area corrected by linear regression (b) for pre-implantation (left) and post-
reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored 
by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group 
is further divided into recovery groups which experienced either IGF (green) or DGF (red) 
following transplant. Mean density values for each recovery group are included in the attached 
table with p-values (from Student’s t-test), and values adjusted for false discovery rate (FDR) 
between transplant groups, representing significance of difference between recovery groups for 
each transplant group. The mean percent change (increase or decrease) to density following 
reperfusion is included at the bottom of each table for both recovery groups in each transplant 
group. 

3.2.2 Density by area results stratified by recovery group (IGF vs. DGF) 

Distinctions between IGF and DGF recovery group measurements in the LDKT transplant 
group were not investigated due to limited sampling of DGF kidneys (n = 1). Similarly, 
distinctions between IGF and DGF recovery group measurements in the ECD subgroup of 
DDKT kidneys stored by HMP were not investigated due to limited sampling (n = 1 for IGF, 
n = 1 for DGF). 

In all transplant groups, density values were similar between IGF and DGF recovery 
groups (green and red respectively in Fig. 17) prior to implantation. Following transplant and 
reperfusion, density measurements for the DDKT kidneys stored by SCS increased in both 
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SCD and ECD subgroups for both IGF and DGF recovery groups. In the HMP group, the IGF 
recovery group experienced a <1% change in density while the DGF recovery group 
experienced a 23% reduction in density following reperfusion. In the SCD subgroup of 
DDKT kidneys stored by SCS, post-reperfusion density was similar between IGF and DGF 
recovery groups. In the ECD subgroup, however, post-reperfusion density in the IGF 
recovery group was lower (p<0.05) than that of the DGF group. Conversely, in the HMP 
group, post-reperfusion density in the IGF recovery group was higher (p = 0.28 for original 
density, p<0.05 for corrected) than in the DGF recovery group. 

3.2.3 Density results by association with post-transplant creatinine decline 

Following our initial hypothesis that lower PCT lumen density would correlate with a faster 
recovery following transplant (i.e. density is positively correlated with creatinine values and 
lower density is correlated with a steeper decline in creatinine (i.e., has a negative interaction 
effect with time)), linear mixed effect models were fitted for each DDKT transplant group. 
The pre-implantation fitted model for the SCS-SCD group did not support the hypothesis (p = 
0.89), however the post-reperfusion SCS-SCD model trended towards support of the 
hypothesis moderately (p = 0.09). Both pre-implantation and post-reperfusion fitted models 
for the SCS-ECD group similarly did not support the hypothesis (p = 0.74, and p = 0.15 
respectively). Finally, the pre-implantation model for the HMP-SCD group did support the 
hypothesis (p<0.01), as did the post-reperfusion model (p<0.001). 

3.3 Diameter results 

3.3.1 Diameter results stratified by transplant group (IGF/DGF combined) 

Diameter measurements were relatively consistent between minor axis length and corrected 
area methods of measurement. Diameter calculated from corrected area was, however, 
moderately but consistently higher than diameter calculated as the minor axis length. This 
effect is likely due to the linear regression model’s predictions of instances of moderately 
elliptical orthogonal cross-sections, which the minor axis length would underestimate. 

Prior to implantation (left in Fig. 18), kidneys from the LDKT transplant group 
demonstrated moderately higher PCT lumen diameter than DDKT kidneys stored by SCS. 
DDKT kidneys stored by HMP had higher (p<0.001) pre-implantation diameter than all other 
transplant groups. All groups experienced an increase in diameter between pre-implantation 
and post-reperfusion scans. The LDKT and DDKT-HMP groups both experienced a modest 
5% increase, while DDKT-SCS SCD and ECD subgroups both experienced a larger increase 
in diameter (18%, and 13% respectively). Post-reperfusion diameter (right in Fig. 18) was 
similar between the LDKT transplant group and the ECD subgroup of DDKT kidneys stored 
by SCS. Post-reperfusion diameter in the SCD subgroup of DDKT kidneys stored by SCS 
was moderately higher (p = 0.08) than in the ECD subgroup and the LDKT transplant group 
(p<0.05). Post-reperfusion diameter in the HMP group was higher than in all other groups 
(p<0.005, p = 0.08, p<0.005 for DDKT-SCS, LDKT, and DDKT-ECD respectively). 
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Fig. 18. Box and whisker plots of diameter measurements calculated by minor axis length (a) 
and from lumen area corrected by linear regression (b) for pre-implantation (left) and post-
reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys stored 
by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant group 
is further divided into recovery groups which experienced either IGF (green) or DGF (red) 
following transplant. Mean diameter values for each recovery group are included in the 
attached table with p-values (from Student’s t-test) and values adjusted for FDR between 
transplant groups, representing significance of difference between recovery groups for each 
transplant group. The mean percent change (increase or decrease) to diameter following 
reperfusion is included at the bottom of each table for both recovery groups in each transplant 
group. 

3.3.2 Diameter results stratified by recovery group (IGF vs. DGF) 

In the SCD subgroup of DDKT kidneys stored by SCS, diameter measurements were similar 
between IGF and DGF recovery groups (green and red respectively in Fig. 18) prior to 
implantation. In the ECD subgroup of DDKT kidneys stored by SCS, pre-implantation 
diameter measurements were lower (p<0.05) in the IGF than in the DGF recovery group. In 
the SCD subgroup of DDKT kidneys stored by HMP, pre-implantation diameter 
measurements were similar between IGF and DGF recovery groups. Following reperfusion, 
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diameter measurements for all recovery groups in all transplant groups increased. Within the 
SCD subgroup of DDKT kidneys stored by SCS and the HMP group, increases were similar 
between IGF and DGF recovery groups. In the ECD subgroup, diameter of the IGF recovery 
group increased 10% while diameter in the DGF group increased 17%. Post-reperfusion 
diameter in the SCD subgroup of kidneys stored by SCS was similar between IGF and DGF 
recovery groups. Within the ECD subgroup, diameter in the IGF recovery group remained 
lower (p<0.005) than in the DGF group. In the HMP transplant group, IGF diameter was 
moderately lower than in the DGF group (p = 0.34). 

3.3.3 Diameter results by association with post-transplant creatinine decline 

Following our initial hypothesis that lower PCT lumen diameter would correlate with a faster 
recovery following transplant (i.e. diameter is positively correlated with creatinine values and 
lower diameter is correlated with a steeper decline in creatinine (i.e., has a negative 
interaction effect with time)), linear mixed effect models were fitted for each DDKT 
transplant group. The pre-implantation fitted model for the SCS-SCD group did not support 
the hypothesis (p = 0.54), however the post-reperfusion SCS-SCD model did support the 
hypothesis (p<0.05). The pre-implantation fitted model for the SCS-ECD group similarly did 
not support the hypothesis (p = 0.96), and the post-reperfusion SCS-ECD model did support 
the hypothesis (p<0.05). Finally, the pre-implantation model for the HMP-SCD group did 
support the hypothesis (p<0.05), while the post-reperfusion model did not (p = 0.56). 

3.4 Inter-centroid results 

3.4.1 Inter-centroid results stratified by transplant group (IGF/DGF combined) 

Prior to implantation (left in Fig. 19), kidneys from the LDKT transplant group and DDKT 
kidneys stored by SCS (both SCD and ECD) all exhibited a similar inter-centroid distance. 
DDKT kidneys stored by HMP had a higher (p<0.05) pre-implantation inter-centroid distance 
than all other transplant groups. All groups experienced a modest 1-4% increase in inter-
centroid distance between pre-implantation and post-reperfusion scans. Post-reperfusion 
(right in Fig. 19) inter-centroid distance in the LDKT transplant group, and DDKT-SCS 
subgroups was similar. Post-reperfusion inter-centroid distance in the HMP group remained 
higher (p<0.005) than the LDKT group and moderately higher than the DDKT-SCS SCD and 
ECD subgroups (p = 0.14, and p = 0.06 respectively). 
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Fig. 19. Box and whisker plots of inter-centroid measurements for pre-implantation (left) and 
post-reperfusion (right) scans for the LDKT group, and the DDKT subgroups: SCD kidneys 
stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each transplant 
group is further divided into recovery groups which experienced either IGF (green) or DGF 
(red) following transplant. Mean inter-centroid distance values for each recovery group are 
included in the attached table with p-values (from Student’s t-test) and values adjusted for 
FDR between transplant groups, representing significance of difference between recovery 
groups for each transplant group. The mean percent change (increase or decrease) to inter-
centroid distance following reperfusion is included at the bottom of each table for both 
recovery groups in each transplant group. 

3.4.2 Inter-centroid results stratified by recovery group (IGF vs. DGF) 

Prior to implantation, inter-centroid distance was similar between the IGF and DGF recovery 
groups in all transplant groups. Following reperfusion, inter-centroid distances increased in 
all transplant groups for both IGF and DGF recovery groups. In the SCD subgroup of DDKT 
kidneys stored by SCS, IGF and DGF recovery groups (green and red respectively in Fig. 19) 
experienced a similar increase following reperfusion. In the ECD subgroup of DDKT kidneys 
stored by SCS, and in the SCS subgroup of DDKT kidneys stored by HMP, the IGF recovery 
groups experienced a smaller increase in inter-centroid distance following reperfusion than 
the DGF groups. In the SCD subgroup of DDKT kidneys stored by SCS, post-reperfusion 
inter-centroid distance measurements were similar between IGF and DGF groups. In the ECD 
subgroup, inter-centroid distance was moderately lower (p = 0.09) in the IGF recovery group 
than in the DGF group. Post-reperfusion inter-centroid distance for the HMP group was lower 
(p<0.05) in the IGF recovery group than in the DGF group. 

3.4.3 Inter-centroid results by association with post-transplant creatinine decline 

Following our hypothesis that lower inter-centroid distance would correlate with a faster 
recovery following transplant (i.e. inter-centroid distance is positively correlated with 
creatinine values and lower inter-centroid distance is correlated with a steeper decline in 
creatinine (i.e., has a negative interaction effect with time)), linear mixed effect models were 
fitted for each DDKT transplant group. Both the pre-implantation and post-reperfusion fitted 
models for the SCS-SCD group did not support the hypothesis (p = 0.14, and p = 0.17 
respectively). Both the pre-implantation and post-reperfusion fitted models for the SCS-ECD 
group did not support the hypothesis (p = 0.28, and p = 0.72 respectively). Finally, the pre-
implantation model for the HMP-SCD group did not support the hypothesis (p = 0.37), 
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however the post-implantation model trended towards moderate support of the hypothesis (p 
= 0.07). 

3.5 Inter-Lumen results 

3.5.1 Inter-Lumen results stratified by transplant group (IGF/DGF combined) 

Prior to implantation (left in Fig. 20), the LDKT group exhibited larger (p<0.05) inter-lumen 
distance than the SCD and ECD subgroups of DDKT kidneys stored by SCS. The SCD 
subgroup of DDKT kidneys stored by HMP exhibited an inter-lumen distance similar to the 
LDKT group. Following reperfusion, inter-lumen distance decreased slightly in the LDKT 
transplant group, the SCD subgroup of DDKT kidneys stored by SCS, and the SCD subgroup 
of DDKT kidneys stored by HMP. In the ECD subgroup of DDKT kidneys stored by SCS, 
inter-lumen distance increased slightly following reperfusion. Post-reperfusion (right in Fig. 
20) inter-lumen distance was higher (p<0.05) in the LDKT transplant group than in the SCD 
subgroup of DDKT kidneys stored by SCS, and the SCD subgroup of DDKT kidneys stored 
by HMP. 

 

Fig. 20. Box and whisker plots of inter-lumen measurements for pre-implantation (left) and 
post-reperfusion (right) scans for the LDKT group (green), and the DDKT subgroups: SCD 
kidneys stored by SCS, ECD kidneys stored by SCS, and SCD kidneys stored by HMP. Each 
transplant group is further divided into recovery groups which experienced either IGF (green) 
or DGF (red) following transplant. Mean inter-lumen distance values for each recovery group 
are included in the attached table with p-values (from Student’s t-test) and values adjusted for 
FDR between transplant groups, representing significance of difference between recovery 
groups for each transplant group. The percent change (increase or decrease) to inter-lumen 
distance following reperfusion is included at the bottom of each table for both recovery groups 
in each transplant group. 

3.5.2 Inter-Lumen results stratified by recovery group (IGF vs. DGF) 

Prior to implantation, inter-lumen distance was similar between the IGF and DGF recovery 
groups in all transplant groups. Following reperfusion, inter-lumen distances in all transplant 
groups decreased by less in the IGF recovery groups than in DGF groups (green and red 
respectively in Fig. 20). Post-reperfusion inter-lumen distance in the SCD subgroup of DDKT 
kidneys stored by SCS was similar between IGF and DGF recovery groups. In the ECD 
subgroup, post-reperfusion inter-lumen distance was moderately higher (p = 0.06) in the IGF 
recovery group than in the DGF group. In the HMP group, post-reperfusion inter-lumen 
distance was higher (p<0.05) in the IGF recovery group than in the DGF group. 
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3.5.3 Inter-Lumen results by association with post-transplant creatinine decline 

Following our initial hypothesis that smaller inter-lumen distance would correlate with a 
faster recovery following transplant (i.e. inter-lumen distance is negatively correlated with 
creatinine values and higher inter-lumen distance is correlated with a steeper decline in 
creatinine (i.e., has a negative interaction effect with time)), linear mixed effect models were 
fitted for each DDKT transplant group. The pre-implantation fitted model for the SCS-SCD 
group did not support the hypothesis (p = 0.24), however the post-reperfusion SCS-SCD 
model showed strong support of the hypothesis (p<0.001). The pre-implantation model for the 
SCS-ECD group did not support the hypothesis (p = 0.78), however the post-reperfusion 
model did support the hypothesis (p<0.05). Finally, both the pre-implantation and post-
reperfusion models for the HMP-SCD group showed strong support for the hypothesis 
(p<0.0005, and p<0.005 respectively). 

3.6 Parsimony of image measurements 

To assess relevance and redundancy of measurements, the compiled measurements from each 
transplant group were included in the pool of candidate predictor variables in lasso penalized 
regression models, with the post-transplant function (IGF coded as 1 vs. DGF coded as 0) as 
the binary outcome variable. Two sets of penalized logistic regression models were run for 
each transplant group: one included pre-implantation measurements only in the candidate 
pool to identify the most relevant of pre-implantation measurements to post-transplant 
function (i.e., measurements which could affect allocation or discard), and the other included 
all the pre-implantation and post-reperfusion measurements in the pool to determine the most 
relevant measurements to post-transplant function (i.e., measurements which could affect 
post-operative care). The number of selected measurements was determined by minimizing 
the averaged 3-fold cross-validation error. Selected measurements and their impact are listed 
in Fig. 21. 

 

Fig. 21. Table displaying measurements selected by lasso penalized regression modeling as the 
most relevant to post-transplant function. Selected measurements from only pre-implantation 
measurements (top), and from the combined pre-implantation and post-reperfusion 
measurements (bottom) were selected. 

In the ECD subgroup of DDKT kidneys stored by SCS, the penalized model indicated 
pre-implantation diameter was most relevant, among pre-implantation measurements, to post-
transplant function. Pre-implantation diameter had a negative impact on post-transplant 
function in this instance, suggesting that larger lumen diameter is the most predictive of 
assessed measurements for development of DGF in this transplant subgroup. When including 
both pre-implantation and post-reperfusion measurements, the regression model indicated 
post-reperfusion diameter and post-reperfusion density as the two variables, among all 
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measurements, that were most relevant to post-transplant function. Both have negative impact 
on the outcome, suggesting that larger post-reperfusion lumen diameter and higher post-
reperfusion lumen density are the most predictive of assessed measurements for development 
of DGF in this transplant subgroup. 

In the SCD subgroup of DDKT kidneys stored by SCS, the penalized model indicated pre-
implantation inter-centroid distance was most relevant, among pre-implantation 
measurements, to post-transplant function. Pre-implantation inter-centroid distance had a 
negative impact on post-transplant function in this instance, suggesting that larger inter-
centroid distance is the most predictive of assessed measurements for development of DGF in 
this transplant subgroup. When including both pre-implantation and post-reperfusion 
measurements, the regression model indicated pre-implantation inter-centroid distance and 
post-reperfusion density as the two variables, among all measurements, that were most 
relevant to post-transplant function. Inter-centroid distance and density had negative and 
positive impacts on outcome, respectively, suggesting that larger pre-implantation inter-
centroid distance and lower post-reperfusion lumen density are the most predictive of 
assessed measurements for development of DGF in this transplant subgroup. 

In the SCD subgroup of DDKT kidneys stored by HMP, the penalized model indicated 
pre-implantation diameter was most relevant, among pre-implantation measurements, to post-
transplant function. Pre-implantation diameter had a negative impact on post-transplant 
function in this instance, suggesting that larger diameter is the most predictive of assessed 
measurements for development of DGF in this transplant subgroup. When including both pre-
implantation and post-reperfusion measurements, the regression model indicated post-
reperfusion inter-lumen distance and post-reperfusion density as the two variables, among all 
measurements, that were most relevant to post-transplant function. Both have negative impact 
on the outcome, suggesting that smaller post-reperfusion inter-lumen distance and lower post-
reperfusion lumen density are the most predictive of assessed measurements for development 
of DGF in this transplant subgroup. 

Discussion 

Fibrosis in donor kidneys may compromise graft viability, and is routinely evaluated in pre-
implantation kidney biopsies [28–30]. Partial epithelial-to-mesenchymal transition (EMT) 
may play a role in the progression of fibrosis. This process has the effect of flattening PCT 
epithelial cells, and may produce an increased lumen diameter in affected tubules [31,32]. 
Similarly, fibrosis contributes to tubular atrophy, and in turn, compensatory hypertrophy of 
surviving PCTs [33,34]. The lumen of hypertrophied tubules is also frequently dilated to 
accommodate their increased role [35]. The effects of fibrosis therefore may be visible in 
OCT imaging, evidenced by the dilation of tubular lumen. 

Acute tubular injury (ATI) in donor kidneys may similarly compromise graft viability. 
ATI can induce simplification of the tubular epithelium [18]. Shedding of the PCTs’ 
microvillus brush border and sloughing of tubular epithelial cells into the lumen may also 
present as a dilation of the tubular lumen in OCT scans. In addition, as blood flow is restored 
following reperfusion, sloughed epithelial cells may obstruct flow and increase proximal 
tubule pressure dramatically; heightened pressure may produce substantial dilation of the 
tubular lumen presented in post-reperfusion OCT scans and potentially pre-implantation OCT 
scans of kidneys preserved by HMP [36]. The short-term effects of ATI therefor may be 
visible in OCT imaging, evidenced by the dilation of visible tubular lumen. 

Swelling of the PCT epithelium, induced by ischemic damage, may similarly represent the 
effects or symptoms of ATI [18]. Epithelial swelling occludes the luminal space, resulting in 
a reduced diameter and an increased inter-lumen distance. If PCT swelling reduces the tubular 
lumen beyond the resolution of the OCT system, diameter and inter-lumen measurements 
would not reflect the contribution of more swollen PCTs. Density measurements, however, 
would illustrate this effect. In the SCD subgroup of DDKT kidneys stored by SCS, there were 
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no strong differences in measurements between IGF and DGF recovery groups. In the ECD 
subgroup—those most at risk for poor post-transplant function, and most subject to discard—
measures of PCT lumen density and diameter, acquired both prior to implantation and 
following reperfusion, were lower in the IGF than in the DGF recovery group. The IGF 
recovery group similarly demonstrated a larger inter-lumen distance measurement following 
reperfusion than the DGF group. Taken together, these measurements suggest a flattening of 
the PCT epithelium and consequent dilation of tubular lumen in ECD kidneys which go on to 
experience DGF. This may be a symptom of pre-existing pathology (fibrosis) or ATI. It is 
unclear why this pattern does not present in the SCD subgroup. 

Following reperfusion, density and diameter measurements in both the SCD and ECD 
subgroups of DDKT kidneys stored by SCS experienced increases in both IGF and DGF 
recovery groups. This may reflect dissipation of epithelial swelling as the kidney moves away 
from an ischemic state. This may also result from the effect of flow rate of filtrate on luminal 
diameter [37]. Increased distinction between IGF and DGF recovery group measurements 
following reperfusion may be due to pre-existing pathology being revealed by the dissipation 
of swelling (e.g. dilated lumen of hypertrophied tubules may become more evident when 
epithelial swelling subsides). More likely, this is the result of the reperfusion process inducing 
further shedding of the microvillus brush border and/or further epithelial sloughing. Similarly, 
sloughed tubular epithelial cells which may have fully occluded the lumen during static-
storage may be cleared following reperfusion, revealing further luminal dilation. 

In the ECD subgroup, but not the SCD subgroup, of DDKT kidneys stored by SCS, the 
DGF recovery group experienced an increase in inter-centroid distance following reperfusion, 
while the IGF group did not. This may reflect infiltration of inflammatory cells into the 
interstitial space, and subsequent interstitial edema [38]. This would be consistent with the 
ATI theory and would suggest symptoms of ischemia/reperfusion injury (IRI) in the DGF 
group. 

In the SCD subgroup of DDKT kidneys stored by HMP, diameter, and inter-lumen 
measurements for DGF kidneys echo the trends apparent in the ECD subgroup of DDKT 
kidneys stored by SCS (i.e. increased lumen diameter and reduced inter-lumen distance). This 
suggests that, in HMP preserved kidneys, ATI or pre-existing pathology may also present as 
dilated tubular lumen with simplified or flattened tubular epithelium. Inter-centroid 
measurements similarly echo trends apparent in the ECD transplant group. Following 
reperfusion, the DGF recovery group experienced an increase in inter-centroid distance and 
subsequently exhibited a higher inter-centroid measurement than the IGF recovery group. 
This again may suggest interstitial edema following reperfusion. 

Surprisingly, HMP kidneys in the DGF recovery group experienced a dramatic reduction 
in density following reperfusion, while the IGF group experienced little change. The resulting 
IGF density was higher than the density in the DGF group. Higher diameter and lower inter-
lumen distances in the post-reperfusion DGF group would normally correlate with higher 
density measurements. One explanation for this contradictory result is that some PCT lumens 
in the HMP-DGF group had become fully occluded following reperfusion, excluding these 
PCTs from diameter and inter-lumen measurement, but still detracting from luminal area in 
the density measurement. 

One limitation of this study is the imaging protocol, which heavily weighted the 
composition of image sets towards regions of the kidney where tubule lumens were most 
visible and dilated. While this protocol may highlight focal points of pathology, it does not 
provide a global distribution of PCT features. Global imaging sampling multiple areas of the 
kidney may reveal a more heterogeneous pattern of swelling and dilation, with some areas 
exhibiting tubular lumen dilated by fibrosis or ATI, and other areas exhibiting significant 
swelling. 

In future studies, a more systematic and global imaging strategy may yield further 
insights. While the selection of a single B-scan for each image set removes issues of 
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redundancy, it also severely limits the total area being investigated. In future studies, a 3D 
imaging protocol would eliminate redundancy, allowing all imaging data to be evaluated and 
a larger volume of kidney to be assessed. Similarly, 3D imaging would enable orientation of 
tubular features in a 3D space and would provide more accurate measurements. While the 
linear regression model utilized in this study attempts to correct for this issue, training data 
for the model is extracted only from a single preserved kidney and may not be applicable to 
all kidneys. 

Conclusion 

There is a dire need in the transplant community for new measures of kidney viability. To 
support the growing need for kidneys, higher risk kidneys must be considered for transplant. 
To efficiently utilize this deeper end of the donor pool, surgeons must be able to confidently 
predict kidneys’ potential function and longevity following transplant. 

OCT provides a non-invasive view of the microanatomy of the superficial kidney cortex. 
Assessment of this anatomy has the potential to offer insights into the viability of a kidney 
offered for transplant. This study shows that dilation of tubular lumen and simplification of 
tubular epithelium of the PCTs can be assessed by OCT, and these measurements correlate 
with post-transplant function. These factors may represent symptoms of pre-existing 
pathology or acute tubular injury. 

OCT analysis may provide a valuable supplement to current methods for assessing kidney 
viability. Accurate prediction of post-transplant function prior to implantation may aid in 
allocation of kidneys, while accurate prediction of post-transplant function following 
transplant may influence post-operative care. 

The variability between manual raters in this study demonstrates the necessity of 
consistency and reproducibility in analysis. The fully automated analysis used in this study 
removes the elements of user bias and subjective segmentation. Similarly, manual 
segmentation is considerably too slow a process when advising a surgeon on the time-
sensitive decision to accept or reject a kidney for transplant. Fully automated segmentation 
and analysis provides a high-speed solution to obtaining accurate predictive measures. 

This study assessed the potential utility of OCT imaging in predicting post-transplant 
function. While results are promising, inclusion of additional variables (KDPI, ischemic 
times, biopsy scoring, etc.) into one prediction model may provide a more comprehensive 
view of kidney viability. Similarly, global OCT imaging and capture of 3D volumes would 
provide a more detailed view of the distribution of PCT morphology, and may aid in 
prediction of post-transplant function. 3D volumes would similarly enable adoption of 
previously developed OCT segmentation strategies, for example the Hessian filter approach 
by Yousefi et al. and single-scattering model with segment-joining algorithm by Gong et al. 
[39,40]. 
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