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Abstract

Objective: Interpreting genome-scale genetic association data, particularly for complex diseases 

and phenotypes, requires extensive use of prior knowledge across a broad range of potential 

biological and environmental influences, spanning many scientific subdisciplines. We suggest that 

known or hypothesized disease risk factors, and causal mechanisms, can be represented using an 

ontology, a computational specification of a set of concepts and the relations between them.

Methods: We have integrated the expertise of multiple investigators in nicotine pharmacokinetics 

and pharmacodynamics, nicotine dependence, and clinical smoking cessation outcomes, and 

represented this knowledge in an ontology-based network model. Our model spans multiple scales, 

from molecules, genes and cellular pathways, to complex behavioral phenotypes and even 

environmental factors. To leverage previous and ongoing work in the field of ontology 

development, we adopt, expand upon and relate elements from existing ontologies whenever 

possible.

Results: We discuss several applications of our ontology: to support interdisciplinary research by 

graphically representing a complex scientific theory, to facilitate meta-analysis across different 

studies, to highlight potential interactions, and to support statistical analysis and causal modeling. 
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We demonstrate that our ontology can focus hypothesis testing on areas supported by current 

theory.

Conclusion: We describe how an ontology-based computational representation can be applied to 

disease risk factors and mechanisms, enabling the use of prior knowledge in large-scale genetic 

association studies in general. In specific, we have developed an initial Smoking Behavior Risk 

Ontology to support studies related to the pharmacogenetics of nicotine addiction and treatment.
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Introduction

Most of the diseases that are highly prevalent in the human population (‘common disease’) 

are complex in their etiology [1]. Complex disease by definition has no single factor that 

accounts for the majority of the variation in disease risk among different individuals. 

Instead, there are contributions from a number of factors, both genetic and environmental, 

each of which may have a small effect on disease risk. In addition, these factors can interact 

with each other in complex ways, such that the total disease risk may not simply be the sum 

of the effects of individual risk factors.

For many complex diseases, considerable research has been carried out to identify the risk 

factors, and the causal mechanisms by which risk factors affect the probability of developing 

the disease. This research has often been multidisciplinary, with studies spanning a wide 

range of time and length scales, from molecular studies to studies of the effects of 

environment. As a result, the disease risk model may have so many components and 

interactions, that it becomes difficult to communicate to non-experts, and, importantly, 

becomes difficult to use in large-scale association studies. Genome-wide genetic association 

studies are becoming a commonly used tool for discovering genetic variants that affect 

disease risk [2]. Yet the statistical analyses of most genome-wide genetic association studies 

performed to date focus on a single phenotype outcome, and make relatively little use of the 

extensive prior knowledge that has been accumulated about the phenotype. Recent 

methodological advances such Bayesian model averaging [3] can use prior knowledge to 

guide the model search toward models that are consistent with known risk factors and 

mechanisms [4]. However, to be used in large-scale computational analysis, this knowledge 

must be encoded first in a computer-accessible form.

In this study, we describe the use of formal ontology to represent a risk model for 

phenotypes related to tobacco smoking behavior. By risk model, we mean how a change in a 

factor (or exposure) can change the probability of developing a particular phenotype. We call 

our ontology the Smoking Behavior Risk Ontology (SBRO). This first version of SBRO was 

designed to support the Pharmacogenetics of Nicotine Addiction and Treatment (PNAT) 

Consortium, a National Institute on Drug Abuse-funded, multidisciplinary research project 

that is part of the Pharmacogenetics Research Network [5]. The aim of PNAT is to discover 

genetic variants that modify either the risk of developing nicotine addiction, or the response 

to clinical smoking cessation treatments; examples of our discoveries were recently reported 
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[6,7]. We expect that this first version of SBRO will provide the nucleus for a larger formal 

representation of current theory concerning smoking risk factors, to facilitate 

communication within this extensive field as well as facilitate analysis of association studies.

Nicotine addiction, and associated tobacco use, is the single greatest cause of preventable, 

premature death and disability in the United States and much of the world [8,9]. It is also a 

complex trait, having been shown to be influenced by genetic [10–13] as well as 

environmental factors [14]. For example, significant associations between nicotine 

dependence and single nucleotide polymorphism (SNP) genetic markers were recently found 

in a genome-wide study [11]. There are also a plethora of environmental conditions (such as 

parental and peer smoking, availability of cigarettes, and tobacco product advertising) that 

are recognized to play a role in the acquisition of nicotine addiction [15]. Previous genetic 

investigations of smoking have begun only recently to incorporate environmental measures 

into their study designs and evidence for gene–environment interaction is beginning to 

emerge. For example, it has been shown that genetic risk for smoking is lower at higher 

levels of parental monitoring [16], suggesting that parental monitoring may help curb 

genetic susceptibility to smoking behavior. McCaffery and others [17] examined the 

relationship between education level and nicotine dependence in twins. In addition, 

researchers have identified interactions between genetic variation in the dopamine pathway 

and physical activity [18].

There has been previous work in areas related to SBRO, most notably in the field of 

multiscale modeling, and in the rapidly evolving field of biomedical ontology construction. 

As we are addressing the relationships between genes, environmental factors, and 

phenotypes (qualities of individuals), our knowledge representation must span a range of 

time and length scales, from molecules (such as DNA, transcripts, proteins, small biological 

molecules) to individual organisms and their behavior (such as smoking behaviors), and 

even societal factors such as smoking-related laws and policies. Furthermore, an event at one 

scale can influence the probabilities (‘risk’) of events occurring at other scales. Our 

representation must therefore be multiscale. Multi-scale modeling is a well-established 

technique in physics that has only recently begun to make inroads in biology [19]. The basic 

ideas are that (i) microscopic phenomena underlie emergent behavior at more macroscopic 

levels, (ii) each of these levels can be modeled modularly, and (iii) each level can potentially 

provide information as an input into models at other levels. The best-established example of 

multiscale modeling in biology is the human heart [20,21]. Multiscale cardiac models join 

together modules spanning scales from the molecule (individual proteins and ions) in cardiac 

muscle cells (myocytes) to heart rate and blood pressure. A multiscale model has recently 

been proposed for immune system function, spanning molecular events (such as antigen 

binding and presentation) to observable systemic phenotypes such as pathogen load [22]. 

Most multiscale modeling approaches have focused on quantitative modeling of observed 

phenotypes (e.g. heart rate) and lower-level related phenotypes, often referred to as 

endophenotypes (e.g. intracellular calcium ion concentration). The aim of SBRO, however, 

is not to simulate the development of disease, but rather to represent prior knowledge and 

hypotheses about risk factors involved in the development of a phenotype. In fact, 

analogously to the use of simulation in exploring potential genetic risks in heart failure [23], 
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computational simulations are a potential source of information about potential smoking risk 

factors, which could then be summarized in SBRO.

Biomedical ontologies have become an essential tool for biology in the era of large ‘omics’ 

(e.g. genomics, transcriptomics, proteomics, metabolomics) data sets, as a way to represent 

biological knowledge that is amenable to computation [24,25]. The best-known biomedical 

ontologies are the Foundational Model of Anatomy [26] for describing anatomical parts of 

organisms and relationships between these parts, and the gene ontology (GO) [27], which 

began as a controlled vocabulary for describing the molecular functions, biological roles, 

and cellular locations of gene products across many different organisms. These ontologies 

represent concepts and the relationships between them, relative to specific domains of 

knowledge [24]. More recently, the Open Biomedical Ontologies (OBO) Foundry project 

has been initiated, with the goal of producing a set of ‘standard’, interoperable ontologies of 

complementary, nonoverlapping domains of knowledge [28]. New, application-specific 

ontologies can then be developed that use existing terms from the standard ontologies. The 

SBRO uses relevant terms from existing ontologies such as the GO and Suggested Ontology 

for Pharmacogenetics (SO-Pharm) [29] to the extent possible, in a model of risk factors (and 

relationships between these factors) for smoking behaviors. SO-Pharm, in particular, 

provides a rich representation for capturing phenotypes, genotypes, drug treatment, and 

clinical trial information, and terms from SO-Pharm enable the basic data representation for 

clinical trials of smoking cessation. However, nearly all of the concepts and relationships in 

SBRO represent the known or hypothesized causal relationships between specific genotypes, 

drug treatments, environmental exposures, which may contribute to risk for smoking-related 

phenotypes, or modify the response to smoking cessation treatment. Representation of a 

disease risk model is, to our knowledge, a novel application of ontologies.

Materials and methods

Building the Smoking Behavior Risk Ontology

Building an ontology is a collaborative process between computer scientists and experts in 

the given domain of knowledge [30,31]. For the SBRO, we have integrated expertise from 

six different individual scientists, each with over 20 years of experience in smoking-related 

research, in diverse domains of knowledge that are hypothesized to be causally related to 

nicotine addiction and treatment phenotypes: neurobiology, nicotine pharmacokinetics, 

nicotine pharmacodynamics, nicotine dependence, and smoking cessation clinical trials. Of 

course, even the expertise of these scientists is incomplete with respect to the genetics and 

neurobiology of nicotine dependence and smoking cessation, and one of the natural 

directions for the SBRO is to enlist the help of additional experts.

Initially, we tried a number of different approaches to ontology construction, including 

having each domain expert work directly on the ontology with the Protege [32] software tool 

and conference calls or in-person meetings to discuss the ontology. We found that, in our 

case, the best approach to ontology construction was to have only one Protege user, who 

then iteratively met with each expert one-on-one to revise the ontology in stages. Most 

experts tended to spend their time revising their own areas of expertise, as well as 

relationships that connected these areas to other parts of the ontology; whereas only a couple 
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of experts reviewed in detail the entire ontology structure, which at the present time 

comprises over 100 concepts in web ontology language (OWL) and well over 100 genes and 

proteins in systems biology markup language (SBML).

Use of existing ontologies—Most of the concepts in the SBRO are taken from existing 

ontologies, or are specified using the concept definitions given by existing ontologies (Table 

1). For example, SBRO:bupropion_treatment and SBRO:varenicline_treatment are children 

of the concept SOPHARM:drug_treatment (SOPHARM_23000). Biological processes 

involved in nicotine response are children of the GO biological process concept 

response_to_nicotine (GO:0035094). For all concepts other than those pertaining to 

molecular pathways, we have encoded SBRO using the OWL specification, using Protege-

OWL[32].The choice of OWL was motivated primarily to facilitate the use of existing 

ontology terms, as both the GO and SO-Pharm (as well as the 19 other ontologies that are 

referenced in SO-Pharm) are available in OWL format.

For molecular interactions in pathways, we used the SBML specification [33]. In SBML, the 

primary concepts are chemical reactions and molecules, such as proteins and small 

molecules (e.g. nicotine), linked together by relations. We have encoded several nicotine 

dependence-related pathways into SBML using the PANTHER pathway system, following a 

previously described process [34]. This system is available for public use at http://

curation.pantherdb.org All 20 pathways can be searched, browsed, and downloaded at http://

www.pantherdb.org. The molecular pathway representation (in SBML) is linked to the rest 

of SBRO (in OWL) by cross-referencing each OWL pathway concept with the 

corresponding PANTHER pathway identifier for SBML representation of the pathway.

Novel concepts and relationships in Smoking Behavior Risk Ontology—Many 

concepts in SBRO, such as nicotine_dependence, nicotine_withdrawal and 

smoking_abstinence, are specific to the knowledge domain of smoking research, and are not 

represented in any existing ontologies. These concepts are thus novel to SBRO. In addition, 

SBRO contains a relationship type that is not found in any currently existing ontologies, but 

which is necessary to represent effects on risk. Fortunately, however, this relationship can be 

viewed as a generalization of the newly adopted regulates relationship in the GO. The 

‘regulates’ relationship is defined as follows: ‘When a biological process E regulates a 

function or a process F, it modulates the occurrence of F. If F is a biological quality, then E 

modulates the value of F’ (http://www.geneontology.org/GO.doc.shtml#term-term-

relationships). This definition captures the main attributes of the relationship needed to 

represent the effect that one concept (a ‘risk factor’) may have on another concept in SBRO. 

Using this definition, the statement nicotine_withdrawal regulates smoking_relapse would 

mean that the severity of nicotine withdrawal modulates the probability of smoking relapse, 

which has been demonstrated for smokers who are trying to quit [35]. Furthermore, the fact 

that regulates is transitive also applies to risk models. However, because the word regulates 

has very different connotations outside the realm of molecular biology, SBRO uses the term 

influences instead, though even this term has common usages that may cause some 

confusion. In biology, the statement process_A positively_regulates process_B means that if 

A (or its activity) increases, B (or its activity) also increases; and process_A negatively_ 
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regulates process_B means that if A (or its activity) increases, B (or its activity) decreases. 

Similarly, for risk models, we adopt the relations positively_influences and 

negatively_influences. For example, stating that nicotine_withdrawal positively_influences 

smoking_relapse means that an increase in withdrawal severity would tend to increase the 

probability of smoking relapse, all other things being equal.

Ontology representation of phenotypes

To represent phenotypes, SBRO adopts the concept phenotype_item (SOPHARM_15000) 

from the SO-Pharm Ontology. This concept is defined as ‘measured on a patient during a 

particular clinical event according to a measuring method’ and having a particular measured 

value. Each phenotype_item must be specified using the bipartite ‘entity: quality’ syntax 

(http://www.bioontology.org/wiki/index.php/PATO:Main_page) recommended by the 

Phenotype and Trait Ontology (PATO). This syntax has two distinct advantages. First, it 

enables the SBRO ontology to remain as simple as possible; new ontology concepts do not 

have to be invented for every different phenotype that is measured. Second, and most 

important for our purposes, each phenotype_item measured in a study refers to a concept 

that is represented in the risk model. Table 2 gives the ontology representation for a number 

of phenotypes used in the first PNAT study, from a clinical trial of the smoking cessation 

drug bupropion [36]. As an example, consider two of the key behavioral phenotypes used to 

assess the level of nicotine dependence: number of cigarettes smoked per day, and time to 

first cigarette after waking up in the morning. The number of cigarettes smoked per day is 

encoded as: daily_cigarette_smoking:count, which combines the behavioral concept 

daily_cigarette_smoking with the quality concept count (from the PATO ontology, available 

at http://bioportal.bioontology.org/ontologies/39480). Again, for important smoking 

behavior-related phenotypes, SBRO contains additional quality concepts. For example, time 

to first cigarette is encoded as: 

regular_tobacco_use:time_delay_before_first_daily_behavior. As daily_cigarette_smoking 

is a subclass of regular_tobacco_use, the ontology specifies the relationship between number 

of cigarettes per day and time to first cigarette.

The SO-Pharm concept phenotype_item has two associated properties, the time at which the 

measurement was taken (clinical_trial_event, SOPHARM_61000) and the method used for 

measurement (measurement_method, SOPHARM_62100). The SBRO includes subclasses 

that refer to specific events in clinical trials of smoking cessation treatments, such as 

end_of_treatment, and six_months_post_quit_date; and specific measurement methods, 

including self_report_from_diagnostic_tool (many smoking-related phenotypes are captured 

by standardized questionnaires) and biochemical_measurement (e.g. to verify smoking 

status).

Availability

The SBRO ontology is available as an OWL file from the National Center for Biomedical 

Ontology BioPortal (http://bioportal.bioontology.org/ontologies/39939) and SBML files 

from the PANTHER pathway resource (ftp://ftp.pantherdb.org/pathway/SBRO).
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Results

A risk model for smoking behavior and related phenotypes

It is critical to incorporate prior knowledge into both study design and data analysis in 

genetic studies. However, the biological and environmental knowledge relevant to most 

disease phenotypes can span many research fields, which together define a complex, 

multidisciplinary scientific theory. We suggest that computational representations of a 

complex theory, such as formal ontology, provide a useful platform for application to large-

scale genetic studies.

Our aim is to generate hypotheses about how variation in human genes might ultimately 

impact individual organism-level phenotypes such as smoking cessation and subsequent 

relapse behavior. A great body of research relevant to this aim already exists in the fields of 

nicotine dependence, nicotine pharmacokinetics and pharmacodynamics, smoking behavior, 

neurobiology, and cell and molecular biology. Within and between each of these fields, 

research results have been used by experts to define theories, and these theories are used to 

guide further research in expanding or revising the prevailing theories. However, because of 

the sheer breadth of these research fields, no one individual scientist will typically develop 

models of the entire field, but rather will focus on a specific part of the field. One solution is 

to construct a formal, computational representation of this prevailing theory in terms of a 

network model that integrates the expertise from multiple individual researchers, so that a 

more complete model (or set of models) can be used in genetic association studies.

The ultimate goal of the PNAT is to improve the efficacy of smoking cessation treatment by 

using genetic information to identify novel targets for pharmacotherapy and potentially to 

assign patients to specific therapies. Therefore, we focus here on smoking relapse behavior, 

the return to smoking behavior after an attempt to quit of sufficient duration, and subsequent 

sustained nonsmoking (smoking abstinence). Of course, relapse behavior is an emergent 

property of a complex system and is not a simple causal manifestation of one or a handful of 

genetic variants. Nevertheless, a great deal of research has already been done in the areas of 

nicotine dependence, neurobiology, and smoking cessation, and there is a prevailing model 

(or set of models) for the biological and environmental underpinnings of these complex 

phenotypes. Individual researchers in the field may differ in their opinions about the relative 

importance of different parts of the model, but qualitatively there is substantial agreement in 

the field. Cigarette smoking is agreed to be a behavior that is influenced by many factors, 

both genetic and environmental. In addition, a number of different concepts (often called 

‘constructs’ in behavioral fields) have been shown to be useful in predicting relapse behavior 

[35]. Many of these concepts are measurable, or related to other concepts that are 

measurable. One of the most useful of these concepts is nicotine dependence. Nicotine 

dependence is a psycho-physiological state induced in many, but not all, individuals in 

response to long-term, chronic nicotine exposure. Like other drug dependence, nicotine 

dependence is a physical change in the brain and corresponding cellular pathways that 

manifests as a craving for nicotine and its effects, and associated drug-seeking behavior. 

Other key related concepts are nicotine’s positive reinforcing (acute exposure) effects, such 

as cognitive enhancement and mood (affect) enhancement; and negative reinforcing effects, 
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such as avoidance of withdrawal. Each of these concepts can be treated as a basis for a 

measurable phenotype, and there is evidence that each is to some degree the result of a 

unique combination of neural pathways in the brain, and corresponding cellular pathways. 

For example, dopaminergic neurons (and intracellular and intercellular dopamine pathways) 

have been shown to be involved in both acute nicotine response and chronic nicotine 

dependence. The corticotropin releasing hormone pathway, in contrast, has been shown to be 

involved in withdrawal-induced behavior, which is an element of chronic nicotine response 

but not acute response. All of these concepts are part of the SBRO.

Another critical element in SBRO is to describe what happens when nicotine is administered 

to an individual through cigarette smoking, that is, nicotine pharmacokinetics and 

pharmacodynamics. Both nicotine pharmacokinetics (the time course of the amount of 

nicotine present at its site of action in the brain) and nicotine pharmacodynamics (the effect 

of nicotine on the brain and behavior) are known to play a role in nicotine addiction and 

smoking cessation. Nicotine pharmacokinetics is dominated by the metabolism of nicotine 

in hepatic cells to other, essentially non-bioactive, chemicals (http://www.pharmgkb.org/

search/pathway/nicotine/nicotine.jsp). One hypothesis is that individuals with faster 

metabolism will need to smoke more to maintain the desired level of nicotine and the desired 

pharmacodynamic effects such as improved cognition, enhancement of mood, and avoidance 

of withdrawal. The slow metabolizers, in contrast, need to smoke less to achieve and 

maintain the same effects as well as to avoid toxic effects of too much nicotine (e.g. nausea) 

[37,38]. In this way, nicotine metabolism rates are thought to affect behavioral phenotypes 

such as cigarettes per day and time to first cigarette, which are used to assess the degree of 

nicotine dependence [39], and predict quitting success with alternate medications [40,41]. 

Figure 1 shows the major nicotine-metabolizing reactions, and the gene products acting as 

catalysts, in typical human liver cells.

Nicotine pharmacodynamics are believed to arise primarily from the direct binding of 

nicotine to neuronal/ neuroendocrine nicotinic acetylcholine receptors (nAchRs), leading to 

cell depolarization and increased vesicle release. The two most highly studied nicotine 

effects are on the release of adrenaline by chromaffin cells in the medulla [42–44] (http://

www.pharmgkb.org/search/pathway/nicotine/nicotine-pd-chromaffin.jsp), and on the release 

of dopamine by dopaminergic neurons in the nucleus accumbens, the so-called ‘reward 

pathway’ [45] (see: http://www.pharmgkb.org/search/pathway/nicotine/nicotine-pd-

dopaminergic.jsp, and http://www.pantherdb.org/pathway/pathwayDiagram.jsp?

catAccession=P05912). Nicotine effects on the peripheral nervous system, such as increases 

in heart rate, blood pressure, and blood glucose, result from adrenaline release into the 

bloodstream. In dopaminergic neurons of the central nervous system, nAChRs are found in 

neurons in presynaptic, postsynaptic, and nonsynaptic sites [46]. With regard to nicotine 

addiction, research has been primarily focused on the effects of presynaptic nAChRs on 

dopamine release in the nucleus accumbens. nAChRs are multiple-subunit receptors encoded 

by a total of 18 genes in humans. Nine of these genes are known to be expressed in the 

brain, in several different combinations, and we consider these nine genes as candidates for 

involvement in nicotine addiction and treatment. For example, through a combination of 

genome-wide and individual candidate gene association studies, acetylcholine nicotinic 

receptor candidate genes have been associated with a wide variety of smoking behaviors, 
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including nicotine dependence, smoking quantity, age of initiation, and subjective responses 

to smoking [11,12,47–56]. Genetic variation in the dopamine-mediated reward pathway has 

been implicated in cigarette smoking and cessation [57] and this pathway is thought to play 

a key role in development of addiction to numerous drugs including alcohol, opiates, and 

nicotine [58,59].

To build an initial model of the network of relationships between genes, environment and 

smoking behavior, and related phenotypes, we have constructed a formal ontology [60]. 

Ontologies are entering widespread use in biology to create structured, computationally 

accessible representations of complex biological systems and related domains of knowledge 

[27,61]. Ontology, in its computer science sense, is a specification of a formal model of a 

knowledge domain in terms of concepts (things that exist, or processes that occur) and the 

relationships between them; this category-based model of reality was adopted, along with 

the name, from the branch of philosophy called ontology, which has its basis in Aristotelian 

metaphysics [60]. In computer science, an ontology is one way of formally representing a 

large and complex scientific theory [62]. We describe our process for building the SBRO 

ontology, as well as the software tools to facilitate this process, in Materials and methods.

The model must encode the known or hypothesized relationships between genes and genetic 

variation on the one hand, and smoking-related phenotypes on the other. Our model is 

multiscale, from the molecular (genes, genetic variation, proteins) to biochemical pathways 

(chemical reactions and processes requiring multiple molecular steps), cell–cell interactions, 

and effects on the brain and behavior. Figure 2 shows an example of how genes and genetic 

variation in one gene (CYP2A6, which encodes a protein that metabolizes nicotine) are 

connected by a path of concepts and relationships at increasingly larger biological scales, 

and ultimately to smoking-related behaviors. These causal relationships (such as catalyzes 

and influences) and hierarchical class–subclass relationships (such as between 

nicotine_catabolic_process and specific chemical reactions) specify the mechanism by 

which genetic variation in nicotine-metabolizing genes is believed to affect phenotypes that 

concern regular_tobacco_use.

In this case, the genetic variant is a difference in the molecular sequence of the DNA of the 

CYP2A6 gene (either a regulatory or coding element). If the sequence difference results in a 

difference in the amount or activity of CYP2A6 in catalyzing the conversion of nicotine, this 

difference may result in a difference in the rate of metabolism of nicotine. Thus, physical 

interactions can be considered a causal mechanism for differences to propagate to 

subsequent steps in the pathway. In the larger scales of the system, the ontology asserts that 

changes in a nicotine_catabolic_process (occurring in the liver) can be propagated to 

changes in nicotine_exposure, which is defined as the amount of nicotine at the site of 

pharmacological effect (the brain); then to an effect on nicotine_dependence and then 

regular_tobacco_use. For clarity, Fig. 2 traces only one of the paths leading from CYP2A6 

genotype to possible phenotypic effects, but in the entire risk model, paths of potential 

causal influence fork and intersect to form a network structure. A depiction of part of the 

larger network structure is shown in Fig. 3.
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Practical uses of the ontology

Shared representation of a complex scientific theory—As described above, the 

aim of the SBRO is a formal representation of the current hypotheses of how genes and 

genetic variation causally relate to observed phenotypes at the individual level. Building an 

ontology is not trivial, but we believe that the benefits outweigh these costs, especially in the 

long run. The main point is that complex diseases and traits are exactly that: complex. 

Complex traits will be influenced by more than one risk factor, and these factors may 

interact with each other. As more and more knowledge becomes available about the 

biological factors as well as environmental factors, it becomes increasingly difficult for one 

individual scientist to have deep expertise in all the areas with relevance to a given complex 

trait. As a result, genetic analysis of complex traits can benefit from computational models 

of the system, and these models must integrate knowledge from multiple experts.

For both domain experts and non-experts alike, one practical use of an ontology is to provide 

a condensed representation of a broad field of knowledge; in the case of the SBRO, known 

and hypothesized relationships connecting genetic and environmental factors to smoking 

behavior. Ontology visualization tools such as Jambalaya [63] or OBO-Edit [64], and 

molecular pathway visualization tools such as CellDesigner [65], are a tremendous aid in 

this use. In this way, an ontology can play an important role in systems biology research, 

which because of its breadth must be a collaborative exercise. It is a way to share expertise 

across a collaborative, interdisciplinary group.

Controlled vocabulary for comparing data across studies—An ontology has other 

useful applications beyond integration and visualization of a complex network of causal 

relationships. On the more mundane side, an ontology provides a controlled vocabulary for 

annotating the genotype and phenotype data collected and analyzed in genetic association 

studies. In the semantic web paradigm, these annotations provide metadata tags that describe 

the data and provide a basis for improved data searches and integration [66]. Specifically for 

genetic association studies, the use of controlled annotations can greatly facilitate meta-

analysis (analysis spanning multiple studies) [67], by allowing a computer to recognize 

when different studies address the same, or similar, phenotypes.

Phenotypes are represented using the phenotype_item from SO-Pharm, as described in 

Materials and methods. Each phenotype_item is a combination of two terms, an ‘entity’ and 

a ‘quality,’ which together describe what is being measured. The entity is the object or 

process of interest, and the quality is the attribute of the entity that is being measured. For 

example, daily_cigarette_smoking is an entity (the behavior of regular smoking), and 

presence is a quality that can be measured (in this case, by a ‘yes’ or ‘no’). The entity is 

taken from SBRO, so that it can be related to the risk model. The quality should be taken 

from the PATO ontology (http://bioontology.org/wiki/index.php/PATO:Main_Page), or 

additional quality terms in SBRO. In addition, phenotype_item is associated with a 

measurement_method (how it was measured) and a clinical_trial_event (when it was 

measured).

In Table 3, we give examples of four smoking-related variables available from three different 

studies from dbGAP (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap). There are only two 
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smoking phenotypes that span all three studies: current smoker versus current nonsmoker. 

However, there is an additional phenotype across both the National Eye Institute and 

Framingham studies; current nonsmokers can be subdivided into former smokers (the 

behavior smoking_abstinence is defined as following a period of regular smoking) and 

‘never smokers’ (smoking_naive). This information is encoded quite differently in variables 

from the three studies, and mapping to the ontology allows us to recognize not only identical 

phenotypes, but also relationships between different phenotypes (e.g. all phenotypes in Table 

3 are subclasses of regular_ tobacco_use).

Mapping phenotypes to an ontology does present challenges. Similar to other ‘ontology 

annotation’ projects, such as the GO annotation [68,69], it is not trivial to choose concepts 

from the ontology consistently between different individual annotators. Even with consistent 

usage of concepts, there is inevitably loss of information when using a restricted set of 

discrete concepts. In the limited number of ontology annotations we have attempted for 

smoking-related phenotypes, a serious challenge was how to relate clinical time points over 

different studies, except for the baseline (pretrial) measurements.

Hypothesis generation in large-scale genetic analysis—On the more cutting-edge 

side, an ontology enables a computer to automatically generate and prioritize hypotheses to 

be tested in association studies [70]. This is important for overcoming the multiple-testing 

issues that affect analysis of multiple genetic markers, for example, genome-wide 

association studies or large candidate gene studies. A number of similarly motivated 

approaches have been proposed, in which some combination of association P value and 

‘biological plausibility’ is used to prioritize candidate markers for validation studies. For 

example, Saccone et al. [12] used a weighted P value approach to prioritize genes that are 

good biological candidates for involvement in nicotine dependence, relative to genes with no 

a priori evidence of such involvement. The problem of prioritizing which hypotheses to test 

becomes even more pronounced when interactions between different factors are considered 

[for N genes there are N(N–1)/2 potential gene–gene interactions]. One application of the 

SBRO is to guide such prioritization.

There are many ways one might use knowledge of the system network to prioritize 

hypotheses. We briefly discuss two relatively intuitive possibilities. The first is in 

prioritization of main effects of genes on an outcome. This is quite straightforward. Each 

gene can be defined as on path or off path, where on path genes can be connected by causal 

relationships and other concepts to the outcome of interest. These types of prioritization can 

also make use of additional information that can be encoded into the ontology about the 

relative importance of different paths. Genes could then be weighted according to the 

weights of the relationships connecting the intervention and outcome. For example, the 

likelihood of relapse in a smoker can be influenced both by a desire to avoid withdrawal – an 

effect of chronic nicotine exposure – as well as by a desire for acute nicotine effects such as 

mild cognitive enhancement. However, most experts would hypothesize that the likelihood 

of relapse tends to be influenced more by nicotine’s chronic effects on the smoker than by 

the generally mild acute effects of nicotine.
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The prioritization of interaction effects is more complicated. However, some simple rules for 

prioritizing potential nonadditive effects have recently been suggested from analysis of 

synthetic lethal gene knockouts in yeast, together with known protein–protein interaction 

networks [71]. One rule is that direct physical interaction of two gene products in a multi-

subunit protein complex increases the probability of a genetic interaction (epistasis). Perhaps 

less obviously, this study also found that more genetic interactions were explained by 

‘between pathway’ mechanisms than ‘within pathway’ mechanisms. This result makes sense 

if there is partial redundancy in the system; for example, where one pathway can partially 

compensate for another in single knockouts, but knockouts in both pathways cause system 

failure. This leads to the general prioritization guideline that two genetic variants in parallel 

or alternate paths through the network may be more likely to result in nonadditive effects 

than two variants along a single, serial path.

Validating the ontology

To assess the utility of the causal hypotheses (‘statements’) made by the SBRO, we 

performed an evaluation of these statements. We first generated two sets of statements: one 

comprising all of the actual statements made by the SBRO, and one comprising all of the 

statements made by a random ontology containing the same terms and relational 

connectivity as the SBRO. Each statement has the structure concept_A relation concept_B. 

We created a random ontology using the method of Kelley et al. [72], randomly relabeling 

both concepts (nodes) and relationships (edges) separately. We then randomly selected 50 

statements from each ontology, mixed them together randomly, and gave the resulting list of 

100 statements to two experts in both smoking behavior and genetics (only one of whom 

was involved in the development of SBRO), who were blinded to whether the statements 

came from the actual SBRO, or the randomized ontology. Each expert rated each statement 

as either true or false.

The two experts were in agreement for 90% of the statements. Of the 10 disagreements, nine 

were from the randomized ontology, and only one from the actual SBRO. The disagreements 

for the randomized ontology statements were split between the two experts, with neither of 

them showing a bias toward making more true or false judgments than the other. The larger 

number of disagreements for the randomized statements may reflect the fact that some of 

these statements could be construed as being possibly or indirectly true. For instance, one of 

the experts marked age influences pharmacological_treatment_compliance as true. This was 

not encoded in the SBRO, but this is certainly a plausible statement. The only SBRO-

encoded statement that was marked false by either expert was chronic_nicotine_exposure 

negatively_influences response_to_lack_of_nicotine. This is a confusing statement to a 

human, but follows from the two SBRO statements: (i) nicotine_exposure negatively_ 

influences response_to_lack_of_nicotine and (ii) chronic_ nicotine_exposure subclass_of 

nicotine_exposure.

Using the expert ratings to provide a gold standard for true and false statements, we can 

calculate both the true positive rate (TPR) and false discovery rate (FDR). The TPR is how 

often the actual SBRO statements were judged to be true, whereas the FDR can be 

approximated by how often the random statements were judged to be true. The difference 
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between these measures quantifies how much information the actual relationships provide 

compared with randomized relationships between the same concepts. A high TPR is 

expected of an expert-curated ontology; however, the FDR can also be high if the ontology is 

small, or if it is highly connected. The new discovery rate, or difference between TPR and 

FDR, is therefore much more meaningful than either alone.

If we consider only those statements for which there was complete agreement between 

experts, the FDR (estimated from random statements) was 44%, and the TPR (for the actual 

SBRO) was 100%. If we consider any statement to be false that was earlier judged false by 

at least one expert, the FDR was 36% and the TPR was 98%. Together, these yield a new 

discovery rate estimate of approximately 54–62%. For statistical model searching, use of the 

SBRO would enrich the true statements tested in a main effect model by approximately two 

to three-fold, relative to a random selection process.

Discussion

Our work represents a first attempt to build a computational infrastructure for studying a 

disease in a systems biology paradigm, specifically the pharmacogenetics of nicotine 

addiction and treatment. We have made steps toward a computational model of potentially 

causal relationships between genetic variation and both nicotine addiction-related 

phenotypes and clinical smoking cessation outcomes. This model includes biological 

pathways and hypotheses about how these pathways, in addition to environmental factors, 

may influence these phenotypes. We have encoded a disease risk model, capturing the 

underlying biological system and interactions with the environment, in an ontology; this is, 

to our knowledge, a novel application of an ontology. One of the main motivations for 

creating the SBRO ontology was to apply expert human knowledge to large-scale, 

computational genotype–phenotype association analysis.

Our work suggests that ontologies can play a role in qualitative modeling of complex 

systems, with a number of practical applications to genetic association studies: integrating 

expertise in a multidisciplinary collaborative study; communication and visualization of a 

succinct model of the complex network of potential relationships between genetic variation 

and phenotypic variation; facilitating meta-analysis over different studies; and computational 

hypothesis generation and prioritization for statistical tests of associations.

In addition, ontologies can be used in a more quantitative manner when combined with data 

obtained from observational studies. An ontology of the type we have described here, 

explicitly states the beliefs by domain experts regarding causal relationships between 

different factors in a complex system. Translation of these causal beliefs to observational 

studies can be as simple as annotating which factors are measured and unmeasured within 

the dataset. Moreover, because an ontology is a structure of the relationships that defines a 

directed acyclic graph, it can feed naturally into more specific causal diagrams and 

associated causal theory [73,74]. Causal graphs derived from the ontology can be used to 

identify confounders (both measured and unmeasured) and to construct algebraic 

formulations of assumptions and results. This, in turn, can be informative as to the most 

appropriate analysis technique to be used, such as generalized linear models [75], marginal 
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structural models [76], or structural nested models [77]. Finally, ontologies integrate well 

with statistical methods that leverage prior external information in the analysis [70]. 

Bayesian hierarchical modeling [78] and Bayesian model averaging [3] offer many 

advantages over more conventional approaches by providing improved estimation and 

reflection of model uncertainty while analyzing highly correlated variables or many more 

variables than observations. One of the keys to these Bayesian techniques is the availability 

of high-quality and reliable external information [4]. Well-constructed ontologies created by 

the experts in the field can be a valuable source in this regard.

In the systems biology view, disease results from one or more perturbations to the ‘normal’ 

system [79]. These perturbations are propagated through the network comprising the parts of 

the system and the interactions between parts; in other words, the change in one part results 

in changes in one or more functions at the system level. Some genetic variations, and some 

environmental changes, will perturb the system so as to influence the development or 

progression of disease. A formal model of the network can be of help in developing 

hypotheses regarding the types of perturbations that may be relevant to a particular disease, 

particularly when the system is very complex, and how perturbations in different parts of the 

system may interact.

Our model of the roles of genetic variants in nicotine addiction and treatment is incomplete 

and will likely prove to be wrong, at least in part, as additional research improves our 

understanding; nevertheless, it may serve as a useful starting point for iterative refinement. 

We have constructed an ontology description of the genotype–phenotype network (pathways 

as well as higher-level terms and relations) of many risk factors for relapse during a smoking 

cessation clinical trial. It is hoped that our ontology can serve as both a starting point for 

further development by a wider community of researchers in the pharmacogenetics of 

nicotine addiction and treatment, as well as a model for representing causal risk factors in 

other diseases.
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Fig. 1. Human hepatic nicotine metabolism reactions.
Small molecules are represented as green ovals; proteins are represented as light red boxes. 

The diagram was drawn with Cell Designer [65]. The full pathway can be found at http://

www.pantherdb.org/pathway/pathwayDiagram.jsp?catAccession=P05914, and at http://

biocyc.org/HUMAN/NEW-IMAGE?type=PATHWAY&object=PWY66–201. NADPH, 

nicotinamide adenine dinucleotide phosphate (reduced); UDP, uridine diphosphate.
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Fig. 2. Example ontology representation of candidate genotype–phenotype relationships.
A chain of concepts (black) and relationships (blue) connects CYP2A6 genotype to the 

phenotypes involving the concept regular_tobacco_use, such as time to first cigarette and 

number of cigarettes per day (see Ontology representation of phenotypes). Molecular 

reactions and interactions are represented using systems biology markup language (SBML); 

higher-level concepts and relationships are represented using web ontology language 

(OWL). The hierarchical, nested relationships in OWL are depicted with nested rectangles; 

for example, nicotine_dependence is a nested subclass of response_to_chemical_stimulus.
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Fig. 3. Major concepts and relationships in the Smoking Behavior Risk Ontology.
The main highest-level classes are environmental_exposure, behavior, chemical_exposure, 

cellular_process and response_to_chemical_stimulus. Subclasses are shown as nested boxes. 

Relations are represented as directed lines. The nested representation was constructed using 

the Jambalaya viewer [63] in the Protege ontology editor [32]. Classes taken from other 

ontologies are labeled with boxed letters: G, Gene Ontology; S, SO-Pharm.
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Table 1.

Some of the concepts from existing ontologies used by SBRO

Ontology:term Use in SBRO

GO:cellular_process Parent class for all molecular pathways

GO:nicotine_catabolic_process Parent class for nicotine metabolism pathway in human hepatic cells

GO:behavior Parent class for smoking-related behaviors

GO:response_to_chemical_stimulus Parent class for all drug responses

GO:response_to_nicotine Parent class for acute and chronic physiological response to nicotine

PATO:quality Parent class for behavioral qualities

SO-Pharm:smoking_behavior Class for smoking behavior

SO-Pharm: genotype item Individual genotypes from a clinical trial

SO-Pharm: phenotype item Individual phenotypes from a clinical trial

SO-Pharm: clinical trial event Parent class for time points in a clinical trial

SBML: reaction Parent class for all chemical reactions in cellular pathways

SBML: species Parent class for all molecules in cellular pathways (including macromolecules and small molecules)

SBML: modifier Catalyzes relation

GO, gene ontology; PATO, Phenotype and Trait Ontology; SBML, systems biology markup language; SBRO, Smoking Behavior Risk Ontology; 
SO-Pharm, Suggested Ontology for Pharmacogenetics.
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Table 3.

Some smoking-related phenotypes from three genetic studies deposited in dbGAP, mapped to a combination 

of ontology terms

dbGAP
phenotype

Ontology
mapping

Study
(dbGAP
accession)

Variable
(dbGAP accession)

Value Entity (SBRO concept) Quality
(PATO
concept)

Clinical 
trial
event
(SO-
Pharm,
SBRO)

GAIN: major 
depression 
(phv00020.v1.p1)

Smoker (phv00020565.v1.p1) 0 daily_cigarette_smoking presence baseline

GAIN: major 
depression 
(phv00020.v1.p1)

Smoker (phv00020565.v1.p1) 1 daily_cigarette_smoking presence baseline

NEI age-related 
eye disease study 
(phv000001.v1.p1)

smk00 (phv00000072.v1.p1) 1 smoking_naive presence baseline

NEI age-related 
eye disease study 
(phv000001.v1.p1)

smk00 (phv00000072.v1.p1) 2 smoking_abstinence presence baseline

NEI age-related 
eye disease study 
(phv000001.v1.p1)

smk00 (phv00000072.v1.p1) 3 daily_cigarette_smoking presence baseline

Framingham 
SHARe Main 
Exams 
(phv000008.v2.p1)

Smoking now (phv00000072.v1.p1) 0 daily_cigarette_smoking presence baseline

Framingham 
SHARe Main 
Exams 
(phv000008.v2.p1)

Smoking now (phv00000072.v1.p1) 1 daily_cigarette_smoking presence baseline

Framingham 
SHARe Main 
Exams 
(phv000008.v2.p1)

Stopped smoking last
year or longer 
(phv00007749.v1.p1)

0 daily_cigarette_smoking presence baseline

Framingham 
SHARe Main 
Exams 
(phv000008.v2.p1)

Stopped smoking last
year or longer 
(phv00007749.v1.p1)

1 continuous_tobacco_ abstinence_without_ relapse presence baseline

Framingham 
SHARe Main 
Exams 
(phv000008.v2.p1)

Stopped smoking last
year or longer 
(phv00007749.v1.p1)

8 smoking_naive presence baseline

Phenotypes with exactly the same SBRO concept, PATO quality concept, and clinical_trial_event concept are the same, and could potentially be 
combined in a meta-analysis across the respective studies.

NEI, National Eye Institute; PATO, Phenotype and Trait Ontology; SBRO, Smoking Behavior Risk Ontology; SO-Pharm, Suggested Ontology for 
Pharmacogenetics.
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