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Abstract

The production of pharmaceutical proteins in plants is maturing, as shown by the recent approval 

of innovative products and the latest studies that showcase plant-based production systems using 

technologies and approaches that are well established in other fields. These include host cell 

genome engineering, medium optimization, scalable unit operations for downstream processing, 

bioprocess optimization and detailed cost analysis. Product-specific benefits of plant-based 

systems have also been exploited, including bioencapsulation and the mucosal delivery of 

minimally-processed topical and oral products with a lower entry barrier than pharmaceuticals for 

injection. Early success stories spearheaded by the FDA approval of Elelyso developed by Protalix 

have revitalized the field and further interest has been fueled by the production of experimental 

Ebola treatments in plants.
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Introduction

The recent outbreak of Ebola virus disease in western Africa has focused attention on plant-

derived pharmaceuticals because the experimental drug ZMapp, a combination of three 

humanized monoclonal antibodies that recognize an Ebola virus surface glycoprotein, was 

manufactured by transient expression in Nicotiana benthamiana plants by Kentucky 

BioProcessing under license from Mapp Biopharmaceuticals Inc. [1]. Transient expression is 

based on the use of Agrobacterium tumefaciens, plant viruses, or hybrid vectors with 

components of both, and exploits the abilities of these plant pathogens to infect plant tissues, 

spread systemically and/or achieve high protein yields in a short time. Indeed, transient 

expression systems using fresh leaves can yield grams of recombinant protein within a few 

weeks, as previously shown for influenza vaccine candidates [2]. This is a convenient niche 

for products that must be manufactured rapidly in response to an emergency, such as a 
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bioterrorist threat or epidemic. Plant-based production systems also have lower upfront 

investment costs, making them particularly suitable for deployment in developing countries 

where infrastructure costs present an entry barrier for research, development and 

manufacturing [3]. ZMapp is a suitable candidate for plant-based production but global 

manufacturing capacity is still limited. Therefore, existing manufacturing capacity based on 

mammalian cells will need to be leveraged in parallel.

The outbreak of Ebola virus disease has highlighted not only the potential advantages of 

plant-based production systems, but also the limited capacity and the lack of defined 

regulatory pathways for the development of plant-derived pharmaceutical proteins. Only a 

handful of manufacturing facilities around the world are approved to produce recombinant 

proteins in plants in accordance with good manufacturing practice (GMP), which is 

mandatory for pharmaceutical proteins administed to humans. Kentucky BioProcessing 

(Owensboro, Kentucky, USA), Icon Genetics (Halle, Germany), the Fraunhofer Center for 

Molecular Biotechnology (Newark, Delaware, USA), the Fraunhofer Institute for Molecular 

Biology and Applied Ecology (Aachen, Germany) and Medicago/Mitsubishi Tanabe Pharma 

(Quebec, Canada, and North Carolina, USA) each have facilities approved for the 

production of GMP-grade proteins in leafy crops such as tobacco. Further facilities are being 

constructed by Texas A&M University (College Station, Texas, USA) and G-CON. Ventria 

Bioscience (Fort Collins, Columbia, USA) can manufacture GMP-grade proteins expressed 

in rice seeds, Protalix Biotherapeutics (Israel) has an approved facility for carrot cell 

suspension cultures, Synthon/Biolex has a facility approved for duckweed, and in 2014 the 

Pharmaceutical Affairs and Sanitation Council in Japan awarded manufacturing and 

marketing approval to the Advanced Industrial Science and Technology (AIST) for 

interferon alpha produced in strawberries for the prevention of periodontal disease in dogs.

Although tobacco leaves have been adopted widely, the diversity of plant-based systems 

contrasts with the small number of microbial and animal-cell platforms regarded as industry 

gold standards. This can be regarded as a strength in terms of innovation for product-specific 

requirements, but also as a drawback in terms of standardization and regulatory 

harmonization. The limited number and capacity of GMP-compliant production facilities 

correlates with the relatively small number of plant-derived pharmaceutical products that are 

currently on the market or undergoing clinical development (Table 1). However, several 

companies with downstream processing (DSP) facilities have established commercial 

platforms for the production of non-pharmaceutical products to generate revenue in the 

interim without the lengthy and costly regulatory procedures required for clinical studies. 

The palette ranges from veterinary pharmaceuticals, technical enzymes and research 

reagents to media ingredients and cosmetic products (Table 2).

Veterinary pharmaceuticals are useful from a developmental perspective because they have a 

lower regulatory burden compared to human medicines. The demand for veterinary products 

has also increased because of the One Health Initiative, which aims to reduce the use of 

antibiotics in livestock production and thus the emergence of antibiotic-resistant and 

potentially zoonotic pathogens [http://www.onehealthinitiative.com/about.php]. These 

factors have encouraged the development of cost-effective, efficient and scalable production 

and delivery platforms for veterinary pharmaceuticals. Plant-based production systems 
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satisfy these demands, and plant tissues also offer unique opportunities for oral delivery thus 

removing the need for expensive processing [4–7]. This has resulted in the emergence of 

novel niche applications for plant-derived recombinant proteins, as discussed in the 

following sections.

Plant-derived pharmaceuticals for mucosal delivery

Mucosal delivery is beneficial for the administration of both human and veterinary 

pharmaceuticals and many candidates have been produced in plants to allow the delivery of 

either unprocessed or partially-processed plant tissues [8]. For example, passive 

immunization has been confirmed recently by the mucosal delivery of plant-derived 

antibodies against gastro-intestinal pathogens [9]. Furthermore, active immunity has been 

promoted by the delivery of plant-derived vaccines to mucosal surfaces, because these 

induce the production of pathogen-specific secretory IgA (sIgA) at the infection site [10].

Oral delivery is also preferable to daily subcutaneous injections of drugs indicated for 

autoimmune and inflammatory diseases, including functional peptides such as insulin and 

autoantigens that induce tolerance. The delivery of plant-derived autoantigens to the gut, the 

largest organ of the immune system, shows promise for the treatment of such diseases and 

also for the induction of tolerance to allergies[8,10–15]. Finally, it may even be possible to 

treat brain diseases by the oral delivery of plant-derived neurotherapeutic proteins fused with 

the transmucosal cholera toxin B (CTB) subunit, because such fusion proteins have been 

shown to cross the blood-brain and blood-retinal barriers in a mouse model [16].

One of the drawbacks of oral delivery is that proteins must withstand the harsh conditions in 

the gastrointestinal tract to reach their effector sites, i.e. the mucosal surface and gut-

associated lymphoid tissue. This can be achieved by the encapsulation of drugs in protective 

coatings, but plants provide a natural counterpart in which proteins are stored within cells or 

organelles that resist digestion, prolonging the opportunity for interactions with the immune 

system. Any plant tissue matrix may be suitable for bioencapsulation (Table 3). For 

example, Protalix Biotherapeutics is exploring the use of lyophilized carrot cells for the oral 

delivery of taliglucerase alfa in phase II clinical studies (www.protalix.com). Freeze-dried 

tobacco, Arabidopsis and lettuce cells have also proven effective [8,10]. The plant cell wall 

is difficult to digest and provides an initial defensive barrier, but even when this is breached 

proteins can be further protected by ensuring they accumulate in subcellular compartments 

such as plastids or seed storage organelles, the latter being able to withstand chemical, 

thermal and enzymatic degradation[17]. This strategy is advantageous for companies and 

costumers. The use of edible plant tissues allows the protein to be administered as 

minimally-processed plant material, thereby removing the need for expensive DSP steps, 

and the pharmaceutical can be stored for prolonged periods at ambient temperatures, e.g. in 

the form of unmilled grains. Such formulations create new regulatory challenges but these 

can be addressed by molecular profiling of the production host, including whole-genome 

sequencing as well as transcriptomic, proteomic and metabolomic analysis [18,19]. It may 

also be possible to market some products as non-pharmaceutical or health-promoting 

nutraceutical products, e.g. cereals with hypocholesterinemic activity [20] or improved 

nutritional properties (see Farré et al., this issue).
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Improving product quality and quantity by host cell engineering – new 

targets and technologies

The economic viability of a production process depends on the yields of the product and this 

is particularly important for topical applications where higher and more regular dosing 

schedules are necessary. Many factors affect intrinsic product yields including the control of 

transgene expression and protein targeting, biological properties of the host and the 

environment. However, the optimal combination of these factors must be established 

empirically, often based on high-throughput screening and modeling methods and large-

scale statistical experimental designs [21]. This also requires high-throughput cloning 

techniques for construct optimization [22,23]. The genetic background of the production 

host is an important factor that can be influenced by crossing, breeding and selection [24], 

but targeted engineering of the host genome can also be used to reduce the accumulation of 

endogenous storage proteins, thus providing further capacity for the storage of recombinant 

proteins [25]. A deeper understanding of recombinant protein storage and protein quality 

control in the endomembrane system will promote strategies such as the induction of ectopic 

storage organelles [26–29].

The accumulation of target proteins can be limited by post-translational degradation and 

product quality can be compromised by proteolysis. Several groups are currently charting 

the proteolytic activities of plant cells and developing strategies to suppress them [30–34]. 

The inhibition of specific proteases by host cell engineering may enhance product 

accumulation, quality and overall recovery. However, these advantages have to be weighed 

against the potential disadvantages, such as the prohibitive cost of protease inhibitors in 

large-scale processes and the potential impact on protein quality control if endogenous 

proteases are inactivated.

The targeted modification of glycosylation pathways has been used to manufacture 

glycoproteins whose function can be enhanced by specific glycoforms [35]. Further targets 

for host genome engineering include enzymes involved in modifications other than 

glycosylation, such as the synthesis of hydroxyproline, which is required for the production 

of collagen. Future targets may include non-product-related properties such as the 

polyphenol or fiber content, to reduce the level of contaminants released during DSP. The 

use of new genome engineering techniques, such as zinc finger and TALE nucleases and the 

recent CRISPR/Cas9 system, promise to simplify and enhance the development of 

pharmaceutical crops even further by providing the means to introduce transgenes at 

permissive sites and achieve homozygosity in one generation (see Hartung et al. and 

Kamoun et al., this issue).

Improving product quality and quantity by engineering at the protein level

Protein yields can be improved by the addition of stabilizing domains and fusion sequences, 

although such modifications may not be compatible with clinical applications and the 

removal of fusion partners during processing can be inefficient and expensive [36]. The 

formation of protein bodies derived from the endoplasmic reticulum (ER) can be induced in 

tissues that are not adapted for storage functions (e.g. leaves) by adding polypeptide 
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sequence tags derived from cereal prolamins, elastin-like polypeptides (ELPs) or fungal 

hydrophobins, thus increasing the stability of stored proteins and allowing them to remain 

intact after harvest. Hydrophobins and ELPs can also facilitate protein purification because 

they allow the solubility of the recombinant protein to be controlled [37–39]. The 

performance of vaccine candidates can also be enhanced using this strategy, e.g. by 

expressing virus-like particles (VLPs) or zein bodies as antigen-presenting formulations. 

Fusion proteins may also function as integrated adjuvants to increase vaccine efficacy at 

lower costs, e.g. the CTB and zein domains can both act as adjuvants [8,40].

Upstream and downstream processes engineering

Several production and processing facilities for plant-derived pharmaceuticals are now up 

and running, and technologies established in other fields to promote the transition from 

development to commercial manufacturing are beginning to emerge in plants and are likely 

to follow the same trends observed for other platforms such as mammalian cells. In this 

context, there have been several recent developments in bioprocess engineering [41,42], 

particularly in terms of medium optimization, standardization and streamlining of 

development and production, the increasing use of process analytical technologies (PAT) and 

online monitoring, automation, predictive scale-down models, disposable technologies, 

continuous production and purification processes and cost models to determine economic 

feasibility.

Each unit operation within a bioprocess typically has a number of input parameters that 

affect the desired output parameters of product quantity/quality and process time/cost. PAT 

can be used to gain a deeper insight into the unit operations required for the development of 

efficient and robust processes [43] but it also supports the optimization of processes using 

statistical approaches such as design-of-experiments (DoE) and multivariate analysis 

(MVA). These are widely used in the development of processes based on microbial and 

mammalian cells but are now becoming accepted as a strategy to optimize production using 

plant cells and even intact plants [44].

Scale-down models are important during bioprocess development because the individual 

upstream and downstream processing steps are interdependent and thus overall process 

optimization requires integrated analysis which is difficult to achieve at full production 

scale. Scale-down models are used to support the integrated analysis of multiple consecutive 

processing steps, which in the case of plants must include growth, development and 

harvesting as well as the traditional extraction, processing and purification stages [45,46]. 

One of the impacts of modeling is that it enables the costs of manufacturing to be evaluated 

with greater accuracy, which is necessary for the translation of laboratory processes into a 

commercial environment. Several costing studies have been reported recently, including 

those based on top-down analysis [47] and bottom-up approaches [48,49].

Conclusions and outlook

Plants have several key advantages for the production of recombinant pharmaceutical 

proteins in niche markets, including rapid production and scalability, the ability to produce 

Sack et al. Page 5

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



unique glycoforms, and the intrinsic safety of food and feed crops which allows the delivery 

of topical and mucosal products in unprocessed or partially processed tissues. Several recent 

reports discuss favorable head-to-head comparisons with plants outperforming other 

platforms [50–52]. These factors are drawing the attention of the pharmaceutical industry 

and a second wave of pharmaceutical products is now progressing through the clinical 

development pipeline.

The outlook for molecular farming is favorable because several alternative paths are 

available for product development. In addition to the typical ‘produce and purify’ route for 

biopharmaceutical products, there is also the potential for the oral administration of whole 

tissues, the topical or oral administration of partially-purified tissues such as flour pastes and 

juices, the topical use of crude extracts that are more similar to herbal products than 

conventional pharmaceuticals and may even constitute a new product category, and the 

combination of traditional medicinal plants with biotechnology-derived pharmaceutical 

extracts. As the interest in such products increases, we are likely to see more large-scale 

production facilities therefore increasing the global production capacity. With the rise of 

disposable equipment for DSP, it is even possible that inexpensive production infrastructure 

can be installed in developing countries for the rapid production of plant-based 

pharmaceutical products in the region for the region. The construction of further 

manufacturing facilities will allow more accurate cost analysis at larger scales, providing the 

information necessary to investigate the feasibility of pharmaceutical production on the scale 

of commodity products.
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Table 1
Examples of plant-derived pharmaceutical products assessed in clinical studies

Company Products Main Application Current Status

Protalix Elelyso Gaucher’s ERT FDA-approved for the 
US, but not for Europe

PRX-102 (alpha galactosidase) Fabry ERT Phase I/II

PRX-12 (oral glucocerebrosidase) Gaucher’s ERT Phase II

Ventria VEN100(lactoferrin) Antibiotic-associated diarrhea, anti-inflammatory Phase II

VEN120 Inflammatory bowel disease Phase I

VEN130 Osteoporosis Phase I

Biolex (now Synthon) Locteron™ HCV Phase II / IIb

Icon Genetics NHL vaccine MAPP66 HSV/HIV Phase I/II
Phase I

Medicago H5 Pandemic influenza vaccine Phase II/III, approved for 
emergency use

H5 intradermal Phase I

Seasonal influenza vaccine Phase I

Planet Biotechnology CaroRX Anti-caries antibody Approved as medical 
device

Fraunhofer IME HIV Antibody Microbicide Phase I

Fraunhofer CMB HA vaccine Vaccine Phase I

VAXX/ Arizona State 
University

NoroVAXX Vaccine Phase I

MAPP ZMapp Ebola antibody cocktail Emergency use
Phase I expected soon

Greenovation Fabry ERT Scheduled for Phase I

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 April 26.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Sack et al. Page 12

Ta
b

le
 2

C
om

m
er

ci
al

ly
 a

va
ila

bl
e 

pl
an

t-
pr

od
uc

ed
 r

ec
om

bi
na

nt
 p

ro
te

in
s

P
ro

du
ct

C
om

pa
ny

P
la

nt
 s

ys
te

m
A

pp
lic

at
io

n
A

dv
an

ta
ge

R
ef

er
en

ce

E
le

ly
so

Pr
ot

al
ix

C
ar

ro
t s

us
pe

ns
io

n
In

je
ct

ab
le

 p
ha

rm
ac

eu
tic

al
Pl

an
t-

sp
ec

if
ic

 g
ly

co
sy

la
tio

n
w

w
w

.p
ro

ta
lix

.c
om

, [
53

]

G
ro

w
th

 f
ac

to
rs

, c
yt

ok
in

es
O

R
F

B
ar

le
y 

se
ed

s
C

el
l c

ul
tu

re
 s

up
pl

em
en

t
E

nd
ot

ox
in

-f
re

e
[5

4]

G
ro

w
th

 f
ac

to
rs

O
R

F/
Si

fC
os

m
et

ic
s

B
ar

le
y 

se
ed

s
C

os
m

et
ic

 in
gr

ed
ie

nt
A

ni
m

al
-f

re
e

w
w

w
.o

rf
ge

ne
tic

s.
co

m

G
ro

w
th

 f
ac

to
rs

, c
yt

ok
in

es
, 

an
tib

od
ie

s
A

gr
en

V
ec

To
ba

cc
o 

le
av

es
 tr

an
si

en
t

R
es

ea
rc

h 
R

ea
ge

nt
A

ni
m

al
-f

re
e,

 C
os

ts
ht

tp
://

w
w

w
.a

gr
en

ve
c.

co
m

A
lb

um
in

, t
ra

ns
fe

rr
in

, l
ac

to
fe

rr
in

, 
ly

so
zy

m
e

V
en

tr
ia

/I
nV

itr
ia

R
ic

e 
se

ed
s

C
el

l c
ul

tu
re

 s
up

pl
em

en
t

A
ni

m
al

-f
re

e
w

w
w

.v
en

tr
ia

.c
om

/
w

w
w

.in
vi

tr
ia

.c
om

/
[5

5,
56

]

A
pr

ot
in

in
 (

no
n 

cl
in

ic
al

 g
ra

de
)

K
B

P
To

ba
cc

o 
le

av
es

 tr
an

si
en

t
R

es
ea

rc
h 

re
ag

en
t

C
os

t

L
ac

ca
se

, t
ry

ps
in

, a
vi

di
n

Pr
od

iG
en

e/
Si

gm
a

C
or

n 
se

ed
s

Te
ch

ni
ca

l r
ea

ge
nt

C
os

t
w

w
w

.s
ig

m
aa

ld
ri

ch
.c

om

C
an

in
e 

in
te

rf
er

on
 a

lp
ha

N
A

IS
T

St
ra

w
be

rr
y 

fr
ui

ts
V

et
er

in
ar

y 
ph

ar
m

ac
eu

tic
al

/o
ra

l
C

os
t, 

m
in

im
al

 p
ro

ce
ss

in
g

C
el

lo
bi

oh
yd

ro
la

se
 I

In
fi

ni
te

 E
nz

ym
es

C
or

n 
se

ed
s

Te
ch

ni
ca

l e
nz

ym
e

C
os

t
w

w
w

.in
fi

ni
te

en
zy

m
es

.c
om

/

A
nt

ib
od

y
C

IG
B

T
ra

ns
ge

ni
c 

to
ba

cc
o

U
se

d 
fo

r 
th

e 
pu

ri
fi

ca
tio

n 
of

 a
 H

B
V

 v
ac

ci
ne

C
os

t, 
an

im
al

-f
re

e

C
ol

la
ge

n
C

ol
lP

la
nt

T
ra

ns
ge

ni
c 

to
ba

cc
o

T
is

su
e 

cu
ltu

re
, p

ha
rm

ac
eu

tic
al

 a
pp

lic
at

io
ns

 
ar

e 
en

vi
sa

ge
d

A
ni

m
al

 f
re

e,
 "

vi
rg

in
“ 

co
lla

ge
n

ht
tp

://
w

w
w

.c
ol

lp
la

nt
.c

om
/

G
ro

w
th

 f
ac

to
rs

, c
yt

ok
in

es
, 

an
tib

od
ie

s
N

B
M

R
ic

e 
ce

ll 
su

sp
en

si
on

B
io

re
ag

en
ts

, C
os

m
et

ic
 in

gr
ed

ie
nt

s
A

ni
m

al
-f

re
e,

 e
nd

ot
ox

in
-f

re
e

ht
tp

://
w

w
w

.n
bm

s.
co

.k
r/

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 April 26.

http://www.protalix.com
http://www.orfgenetics.com
http://www.agrenvec.com
http://www.ventria.com/
http://www.invitria.com/
http://www.sigmaaldrich.com
http://www.infiniteenzymes.com/
http://www.collplant.com/
http://www.nbms.co.kr/


 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Sack et al. Page 13

Ta
b

le
 3

R
ec

en
t 

ex
am

pl
es

 o
f 

pl
an

t-
pr

od
uc

ed
 p

ro
te

in
s 

fo
r 

to
pi

ca
l a

pp
lic

at
io

n

Ta
rg

et
/p

ro
du

ct
A

pp
lic

at
io

n 
ar

ea
P

la
nt

 s
pe

ci
es

/o
rg

an
E

nc
ap

su
la

ti
on

P
ro

ce
ss

in
g 

de
gr

ee
D

el
iv

er
y

R
ef

er
en

ce

Fa
ct

or
 V

II
I 

an
tig

en
s

H
em

op
hi

lia
 A

To
ba

cc
o 

le
af

C
hl

or
op

la
st

s
H

om
og

en
iz

ed
 le

af
O

ra
l

[1
3]

C
ry

 1
 a

nd
 C

ry
 2

C
ed

ar
 p

ol
le

n 
al

le
rg

en
s

R
ic

e 
se

ed
s

Pr
ot

ei
n 

bo
di

es
R

ic
e 

gr
ai

ns
O

ra
l

[5
7]

Ig
A

R
ot

av
ir

us
To

m
at

o 
fr

ui
t

M
at

ri
x

Fr
ui

t d
er

iv
ed

 f
or

m
ul

at
io

ns
O

ra
l

[5
8]

A
ng

io
te

ns
in

 (
A

C
E

2 
an

d 
A

ng
 1

-7
)

H
yp

er
te

ns
io

n
To

ba
cc

o 
le

af
C

hl
or

op
la

st
s

Ly
op

hi
liz

ed
 le

af
O

ra
l

[1
2]

A
C

E
2 

an
d 

A
ng

 (
1-

7)
U

ve
iti

s 
an

d 
au

to
im

m
un

e 
uv

eo
re

tin
iti

s
To

ba
cc

o 
le

af
C

hl
or

op
la

st
s

L
ea

f 
po

w
de

r
O

ra
l

[1
4]

A
nt

ib
od

y 
2G

12
Im

m
un

od
ef

ic
ie

nc
y 

sy
nd

ro
m

e
To

ba
cc

o 
le

af
N

on
e

Pu
ri

fi
ed

V
ag

in
al

/m
uc

os
al

w
w

w
.p

ha
rm

a-
pl

an
ta

.n
et

D
es

ig
ne

r 
Ig

A
E

nt
er

ot
ox

ig
en

ic
 E

. c
ol

i i
nf

ec
tio

n
A

ra
bi

do
ps

is
 s

ee
ds

Se
ed

 m
at

ri
x

Se
ed

O
ra

l
[6

]

In
te

rf
er

on
 a

lp
ha

Pe
ri

od
on

ta
l d

is
ea

se
St

ra
w

be
rr

y 
fr

ui
ts

M
at

ri
x

Ly
op

hi
liz

ed
 f

ru
its

O
ra

l

H
IV

-1
 p

24
Im

m
un

od
ef

ic
ie

nc
y 

sy
nd

ro
m

e
A

ra
bi

do
ps

is
 th

al
ia

na
 a

nd
 c

ar
ro

t
E

R
Fr

es
h 

an
d 

fr
ee

ze
-d

ri
ed

O
ra

l
[5

9]

E
IT

 (
E

H
E

C
)

H
em

or
rh

ag
ic

 c
ol

iti
s 

an
d 

he
m

ol
yt

ic
-u

re
m

ic
 s

yn
dr

om
e

To
ba

cc
o 

le
af

C
hl

or
op

la
st

Fr
ee

z-
dr

ie
d

O
ra

l
[6

0]

E
xe

nd
in

-4
D

ia
be

tis
 ty

pe
 2

To
ba

cc
o 

le
af

C
hl

or
op

la
st

s
Ly

op
hi

liz
ed

O
ra

l
[6

1]

E
xe

nd
in

-4
 (

fu
se

d 
w

ith
 tr

an
sf

er
ri

n)
D

ia
be

tis
 ty

pe
 2

N
. b

en
th

am
ia

na
 le

af
E

R
Pa

rt
ia

lly
 p

ur
if

ie
d

O
ra

l
[6

2]

PR
R

SV
 e

nv
el

op
e 

gl
yc

op
ro

te
in

Po
rc

in
e 

re
pr

od
uc

tiv
e 

an
d 

re
sp

ir
at

or
y 

sy
nd

ro
m

e 
vi

ru
s

B
an

an
a 

le
af

E
R

Fr
es

h 
le

af
O

ra
l

[6
3]

Ty
p 

II
 c

ol
la

ge
n 

(C
II

25
6-

27
1 

an
d 

A
PL

6)
R

he
m

at
ho

id
 a

rt
hr

iti
s

R
ic

e 
se

ed
St

or
ag

e 
va

cu
ol

es
M

ill
ed

 s
ee

ds
O

ra
l

[1
5]

m
uc

oR
ic

e-
A

R
P1

R
ot

av
ir

us
-i

nd
uc

ed
 d

ia
rr

he
a

R
ic

e 
se

ed
PB

II
M

ill
ed

 s
ee

ds
O

ra
l

[6
4]

H
5

In
fl

ue
nz

a
ar

ab
id

op
si

s
E

R
Fr

ee
ze

-d
ri

ed
O

ra
l

[1
0]

T
B

-R
IC

s
T

ub
er

cu
lo

si
s 

va
cc

in
e

To
ba

cc
o 

le
af

N
on

e
Pu

ri
fi

ed
In

tr
an

as
al

 b
oo

st
er

[6
5]

Pr
ot

ec
tiv

e 
an

tig
en

A
nt

hr
ax

 v
ac

ci
ne

To
ba

cc
o 

an
d 

br
as

si
ca

 le
af

C
hl

or
op

la
st

s
Fr

es
h 

le
av

es
O

ra
l

[6
6]

N
or

ov
ir

us
 N

ar
ita

 1
04

 v
ir

us
 li

ke
 p

ar
tic

le
s

G
as

tr
oe

nt
er

iti
s

N
. b

en
th

am
ia

na
 le

af
V

L
Ps

Pu
ri

fi
ed

In
tr

an
as

al
[6

7]

A
lp

ha
 s

ub
un

it 
of

 s
oy

be
an

 b
et

a-
co

ng
ly

ci
ni

n
H

yp
er

ch
ol

es
te

ro
le

m
ia

R
ic

e 
se

ed
St

or
ag

e 
va

cu
ol

es
G

ro
un

d 
se

ed
 p

re
pa

ra
tio

n
O

ra
l

[2
0]

D
er

 p
1 

T
g 

ri
ce

B
ro

nc
hi

al
 a

st
hm

a,
 a

lle
rg

ic
 r

hi
ni

tis
 a

nd
 a

to
pi

c 
de

rm
at

iti
s

R
ic

e 
se

ed
Pr

ot
ei

n 
bo

di
es

Se
ed

s
O

ra
l

[6
8]

H
PV

16
-L

1 
an

d 
LT

-B
C

er
vi

ca
l c

an
ce

r 
va

cc
in

e
To

ba
cc

o 
le

af
E

R
Pu

ri
fi

ed
O

ra
l

[6
9]

B
ut

yr
yl

 C
ho

lin
e 

E
st

er
as

e 
(B

ch
E

)
Pr

ot
ec

tio
n 

ag
ai

ns
t n

eu
ro

to
xi

c 
ch

em
ic

al
s

N
.b

en
ta

m
ia

na
 le

af
N

on
e

Sa
bi

liz
ed

 p
la

nt
 e

xt
ra

ct
Sp

ra
y 

Fo
r 

in
ha

la
tio

n
Pl

an
tV

ax
.I

nc
, R

oc
kv

ill
e

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 April 26.

http://www.pharma-planta.net

	Abstract
	Introduction
	Plant-derived pharmaceuticals for mucosal delivery
	Improving product quality and quantity by host cell engineering – new targets and technologies
	Improving product quality and quantity by engineering at the protein level
	Upstream and downstream processes engineering
	Conclusions and outlook
	References
	Table 1
	Table 2
	Table 3

