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Abstract

Next-generation sequencing of the immunoglobulin gene repertoire (Ig-seq) produces large 

volumes of information at the nucleotide sequence level. Such data have improved our 

understanding of immune systems across numerous species and have already been successfully 

applied in vaccine development and drug discovery. However, the high-throughput nature of Ig-seq 

means that it is afflicted by high error rates. This has led to the development of error correction 

approaches. Computational error correction methods use sequence information alone, primarily 

designating sequences as likely to be correct if they are observed frequently. In this work, we 

describe an orthogonal method for filtering Ig-seq data, which considers the structural viability of 

each sequence. A typical natural antibody structure requires the presence of a disulfide bridge 

within each of its variable chains to maintain the fold. ABOSS, our AntiBOdy Sequence Selector 

uses the presence/absence of this bridge as a way of both identifying structurally viable sequences 

and estimating the sequencing error rate. On simulated Ig-seq datasets, ABOSS is able to identify 

more than 99% of structurally viable sequences. Applying our method to six independent Ig-seq 

datasets (1 mouse and 5 human), we show that our error calculations are in line with previous 

experimental and computational error estimates. We also show how ABOSS is able to identify 

structurally impossible sequences missed by other error correction methods.

1 Introduction

Effective recognition and elimination of noxious molecules from jawed vertebrates relies on 

the versatility of their immune systems. Antibodies, secreted products of B cells, play a key 

role in recognizing antigens – structural motifs on pathogenic molecules. Antibodies can be 

raised against potentially any antigen (1). As a result of this binding plasticity, antibodies are 

currently the most successful class of biotherapeutics (2, 3).

Next-generation sequencing of the immunoglobulin gene repertoire (Ig-seq) produces large 

volumes of information at the nucleotide sequence level, allowing interrogation of snapshots 

of antibody diversity. Such data have improved our understanding of immune systems across 

numerous species and have already been successfully applied in vaccine development and 
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drug discovery e.g. (4, 5). However, the high-throughput nature of Ig-seq means that it is 

afflicted by high error rates, which makes it difficult to distinguish between Ig-seq artifacts 

and true nucleotide alterations introduced by the somatic hypermutation (SHM) machinery 

of B cells.

Several experimental Ig-seq error correction approaches have been proposed, however an 

agreed standard does not yet exist (6). Existing experimental approaches for error correction 

include taking invariant sequence portions as a proxy for estimating error or barcoding 

sequences that should be identical. For instance, Galson et al., (7) performed sequencing of 

the constant portions of the antibody heavy chain. As this region is typically sequence 

invariant, it offered an estimated error rate on the variable portions sequenced in the course 

of the same study. Khan et al., (8) barcoded individual antibody cDNA transcripts with 

unique molecular identifiers (UMI) prior to PCR. The resultant pool of genetic data was 

sequenced and identically barcoded sequences were put into separate clusters where a 

consensus sequence was devised. All other members of the cluster were corrected with 

respect to this consensus sequence. Error can be introduced even in this method in the early 

steps of sequencing sample preparation such as reverse transcription and PCR (9, 10). 

Devising a correct sequence within the clusters is heavily dependent on sequence 

redundancies, which precludes correction of singleton clusters using the barcode approach 

(9, 10).

Techniques such as barcoding or sequencing constant portions are time consuming and 

require specialized experimental setups. To address such issues, several computational error 

correction tools have been developed (6). These applications all operate by building 

consensus sequences using homology clustering. The majority of these tools work only in 

the remit of complementarity determining region 3 of the VH domain (CDR-H3) (11, 12), 

largely ignoring the rest of the sequence. MIXCR is the most commonly used Ig-seq error 

correction tool to date (13). It supports the analysis of entire VH or VL chains and performs 

sequencing error correction. MIXCR works by aligning sequences from an Ig-seq dataset to 

reference V, J and C genes followed by identifying “gene feature sequences”. This is a k-mer 

of residues identical across multiple sequences and is found in CDR-H3 by default. These 

“gene feature sequences” are then used to sort antibody sequences into sets of separate 

clonotypes. The number of unique clonotypes is always over-estimated due to PCR and 

sequencing errors. To overcome this, “correct” sequences are found by performing heuristic 

multilayer clustering on these clonotypes, where the most redundant clonotypes are treated 

as correct. A more recently developed antibody repertoire construction tool, IgReC (14), 

takes a different approach. It uses Hamming graphs to identify correct sequences. 

Benchmark analysis on barcoded Ig-seq data shows that the IgReC pipeline is as accurate as 

experimental error correction approaches (14). This suggests that advances in algorithm 

development can potentially alleviate the need for experimental Ig-seq correction. All 

currently available computational methods consider sequence information alone. In this 

paper, we consider how knowledge of an antibody structure may help to identify sequencing 

errors by finding sequences that are not structurally viable as structural viability is crucial 

for the correct functioning of an antibody. We then use this structural information to estimate 

sequencing error rates.
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A typical antibody structure requires the presence of a disulfide bridge within each of the 

variable chains. This bridge helps to maintain the immunoglobulin fold. Cysteines at 

positions 23 and 104 (IMGT numbering (15)) must be present in structurally viable natural 

antibody sequences (16–19). There is evidence that some antibodies can still fold when the 

disulfide bond is ablated (20–22). However, such antibodies have been found via rational 

protein engineering where the conserved cysteines are mutated alongside further 

modifications to the rest of the antibody sequence that stabilize the overall structure (20–22). 

ABPC48 is the only example of an antibody that naturally lacks cysteine at position 104 

(18). APBC48 is a mouse antibody derived from plasmacytoma (23). Although, ABPC48 

antibody is able to fold, restoration of cysteine at position 104 significantly improves its 

stability (22).

Here we describe a novel computational tool, ABOSS (AntiBOdy Sequence Selector) that 

uses the presence/absence of the conserved cysteines in an antibody sequence to create a 

structure based estimate of the sequencing error rate in Ig-seq data. As opposed to other 

error correction tools which operate at the nucleotide sequence level, ABOSS uses amino 

acid sequences as they relate directly to protein structure. ABOSS both filters out amino acid 

sequences that are not structurally viable as well as those likely to contain erroneous residue/

positions. Due to its use of structural information rather than homology clustering, ABOSS 

is orthogonal to all other computational methods for error estimation.

Examining ABOSS performance on simulated Ig-seq datasets indicated that ABOSS 

successfully isolates about 99% of structurally viable sequences, whilst preserving most of 

the SHM generated diversity. We tested ABOSS on six separate Ig-seq datasets and found 

that our error calculations based on structural viability were in line with error estimates 

declared in other recently published studies.

2 Materials and Methods

2.1 ANARCI Parsing

ABOSS supports several input formats. These can be amino acid sequences in the FASTA 

file or raw IgBlastn outputs (24).

The first step of ABOSS is to parse every sequence through ANARCI (25), an antibody 

numbering program. ANARCI parsing acts as a pre-filtering step removing sequences that 1) 

contain unusual insertions/deletions in the framework and canonical CDR regions 2) do not 

align to the respective species Hidden Markov Models (HMM) of the IMGT germline 3) 

have a J gene sequence identity of less than 50% to the IMGT germline (of the respective 

species) or truncated framework 4 region. Calculation of the J gene sequence identity allows 

us to remove sequences where indels have occurred in CDR-3 and framework 4. At this 

point, ABOSS also removes sequences in human and mouse datasets that have CDR-H3s 

longer than 37 amino acids. This cutoff is in place to remove sequences with erroneously 

long CDR-H3s (26, 27). These are chimeric sequences which arise as a result of PCR error. 

Sequences, which pass these initial tests, are numbered using the IMGT scheme (15). This 

provides a consistent frame of reference for sequences, and defines CDR and framework 

regions. We employ the IMGT numbering scheme in ABOSS since it assigns length 
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mismatched CDRs located in roughly structurally equivalent space to identical residue 

numbers (15, 28).

2.2 Residue Error Rate Estimation

IMGT numbering enables the calculation of amino acid distributions by position. IMGT 

positions 23 and 104 are used to estimate the error rate in the data. In all naturally occurring 

antibodies both these positions are always a cysteine residue (16, 18). Some antibody pseudo 

V genes encode for a non-cysteine residue at position 23 and 104, but these antibodies are 

not structurally viable (17). Therefore, under a conservative model, any amino acid 

divergence from cysteine at these positions can be treated as error. We define the error to be 

equal to the largest non-cysteine amino acid proportion found at either of the two positions 

(Figure 1). The dataset used in Figure 1 would be ascribed an error rate of 0.0027 (the 

occurrence of glycine at position 104). Thus, all amino acids at a position that occur with 

proportion of less than 0.0027 across the dataset are considered erroneous. This will remove 

all the non-cysteine residue types at position 23 and 104 in the data as they all occur less 

than 0.0027 but will also indicate several other positions where residues may be erroneous. 

In this fashion, we provide an error estimate for individual residues, which can be 

extrapolated to the entire sequence.

2.3 Structure based filtering of Ig-seq data

The next stage is ABOSS filtering. In this step if the proportion of an amino acid at a 

position is below the residue error rate, amino acids of that type at that position are flagged 

as potentially erroneous.

ABOSS creates a reference matrix, which contains the “allowed” amino acids at each IMGT 

position. The allowed amino acids are those whose proportion in the Ig-seq dataset are 

greater than the residues error rate at the respective position (see previous section). The 

reference matrix also contains the amino acids from IMGT germline sequences as they 

represent structurally viable antibodies. If less than 20 entries are used to calculate amino 

acid proportions at a position, this position is not included in the reference matrix.

Once the reference matrix is calculated, every sequence from the Ig-seq dataset is compared 

to it. For a given position in a sequence from the Ig-seq dataset a flag is placed if the amino 

acid in the sequence is not present in the reference matrix. ABOSS outputs a csv file of the 

ANARCI parsed sequences, their redundancies, CDR-H3 regions, flagged residue/positions, 

V and J genes, and query names of the original raw nucleotide sequences from the IgBlastn 

output. The ABOSS filtered dataset refers to the set of sequences with zero flagged residue/

positions.

2.4 Data management

We have tested ABOSS on six Ig-seq datasets (Table I). Two datasets from Khan et al., (8), 

the raw sequences (Khan_R) and the error corrected sequences (Khan_C), each of these 

datasets comprised three immunized datasets of a single mouse that were pooled together 

(2.4m sequences). The Galson et al., (7) dataset (HEPB) consists of sequences from hepatitis 

B studies (29, 30) at a time point before the 11 participants were vaccinated (9.9m 
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sequences). The third and fourth datasets are proprietary UCB Pharma Ltd datasets of 5.6m 

VH (UCB_H) and 9.3m VL (UCB_L) chain sequences (31). The UCB data were generated 

from the non-antigen challenged B cells of 494 pooled participants. The Vander Heiden et 

al., (32) datasets (Healthy_H, Healthy_L) include sequences from four healthy B cell 

donors. A mixture of VH and VL gene primers were used in sequencing material 

preparation, which produced pooled VH/VL Ig-seq datasets. Healthy_H and Healthy_L are 

the sorted heavy and light chain sequences respectively. This plethora of diversity of Ig-seq 

datasets was employed to test ABOSS across heterogeneous sequencing setups.

2.5 In silico simulation

We performed in silico error simulation on two Ig-seq datasets, UCB_H and Khan_R. The 

simulations were performed at the nucleotide level. The nucleotide sequences that 

corresponded to the amino acid sequences that passed ABOSS with zero flagged residue/

positions (see ABOSS filtered dataset in Table II) acted as starting points for our simulation. 

During the simulation each sequence in the starting dataset was subjected to randomized 

nucleotide mutations. The distribution of the number of nucleotide mutations was 

proportional to the distribution of flagged residue/positions in the respective redundant Ig-

seq data determined by ABOSS analysis (see Section 3.2.), whilst mutation positions were 

stochastically selected along the VH chain. Only sequences where random mutations were 

introduced were added to the final simulation dataset. As UCB_H and Khan_R datasets were 

generated using Illumina sequencing technology, only nucleotide substitutions were 

considered in the error simulations.

To assess the robustness of ABOSS, we varied both residue error rate and dataset size in our 

error simulations. To increase the residue error rate, every entry from the originally 

calculated distribution of flagged residue/positions was amplified by an error multiplier. 

Separate simulations were carried out for individual values of the error rate multiplier that 

ranged between one and eight. The simulation final dataset sizes were equivalent to the size 

of the respective ANARCI parsed Ig-seq dataset (see ANARCI parsed dataset in Table II). 

Separate simulations were also performed where the size of the simulation final dataset was 

varied to be between one and eight times smaller than the respective ANARCI parsed Ig-seq 

dataset.

2.6 Antibody SHM lineage tree simulation

We carried out two separate SHM simulations on the nucleotide sequences of the Healthy_H 

and UCB_H datasets. Nucleotide sequences, whose translated amino acids had zero ABOSS 

flagged residue/positions in Healthy_H, were assigned as the most recent common ancestors 

(MRCA) in the simulations. Two different clonal lineage trees (Lineage_A and Lineage_B) 

were employed for the number of progenitor sequences and SHM substitutions. We used the 

human HH_S5F targeting model (33) from the SHazaM package (http://

shazam.readthedocs.io/en/version-0.1.9---baseline-fixes/) to perform SHM substitutions in 

the lineage trees. All MRCA and progeny sequences were added to the final SHM 

simulation datasets.
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In the Lineage_A simulation experiment, two progenitor sequences originated from a single 

MRCA. Both of these sequences harbored two nucleotide SHM substitutions. In the 

Lineage_B SHM experiment, two progenitors were produced by MRCA with two and four 

nucleotide substitutions respectively. The former progenitor formed a further four offspring 

sequences with one, one, three and six SHM substitutions. Finally, the offspring with 3 SHM 

substitutions produced another progeny also with 3 nucleotide substitutions.

3 Results

3.1 The ABOSS Algorithm

ABOSS is a computational method that leverages structural antibody information to 

calculate the sequencing error rate and flag potentially erroneous residue/positions in Ig-seq 

sequences. Specifically, we exploit the knowledge of the conserved cysteines at positions 23 

and 104, which shape and stabilize the conformation of the antibody variable chains. The 

presence of these conserved cysteines can be used as a way of both identifying structurally 

viable sequences and estimating the sequencing error rate.

ABPC48 is the only characterized natural antibody that lacks either cysteine at either 

position (20). A small number of structurally stable antibodies with pairwise substitutions of 

the conserved cysteines based on the ABPC48 antibody scaffold have been engineered (21, 

22, 34). These pairwise substitutions require further stabilizing mutations to the antibody 

structure, often to the opposite variable chain (21, 22, 34). The known structurally viable 

non-cysteine pairs seen at positions 23 and 104 are summarized in (18). In our Ig-seq 

datasets, we rarely observe the pairwise substitution of cysteines. For instance, the total 

number of instances when the substitution of both cysteines was observed in the UCB_H 

data was 811 which corresponded to ~0.015% of UCB_H. Of these 811 pairwise 

substitutions, the potentially viable substitutions as described in (18) were serine – serine, 

serine – alanine, alanine – serine and tyrosine– valine which appeared 24, 2, 1 and 1 times 

respectively. The six amino acids that constitute the largest proportions of non-cysteine 

residue types at positions 23 and 104 in our six raw Ig-seq datasets are always the amino 

acids one nucleotide edit distance from the cysteine codons (Figure 1). The top non-cysteine 

residue type at positions 23 and 104 varies across our Ig-seq datasets, demonstrating the 

stochastic nature of this amino acid substitution. It was previously demonstrated that SHM 

substitutions are significantly reduced at positions 23 and 104 in gene-specific amino acid 

substitution profiles of SHM (35). This must be due to negative structural selection, as SHM 

substitution still takes place at these positions in passenger alleles and using the HH_S5F 

computational model (35). This evidence suggests that the substitutions in conserved 

cysteines seen in Ig-seq datasets are highly likely to be sequencing errors.

In the first step of the ABOSS protocol, all sequences are parsed using ANARCI (25), which 

IMGT numbers (15) the sequences. Antibody sequences with low sequence identities to 

ANARCI HMM profiles, unusual insertions/deletions along the antibody chain are 

discarded. Next, ABOSS calculates the residue error rate using the ANARCI parsed 

sequences. The residue error rate is taken as the largest non-cysteine amino acid proportion 

found at position 23 or 104 (Figure 1). The residue error rate is then used to flag specific 

residue/positions in individual sequences.
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The workflow of the algorithm is summarized in Figure 2. ABOSS analysis takes less than 

10h wall-clock time for 5m unique antibody amino acid sequences on a standard 8 core 

desktop computer (intel i7-6700). ABOSS is parallelized allowing for shorter run-times on 

more powerful machines. ABOSS is available via http://opig.stats.ox.ac.uk//resources.

3.2 ABOSS analysis on raw Ig-seq data

We ran ABOSS on six Ig-seq datasets (Table I, Table II). We consider two sequences 

redundant if they have identical length and identical amino acid compositions. ANARCI 

parsing removed between 3-23% of sequences in the Ig-seq samples (Table II). The 

ANARCI parsing step removed the largest proportion of sequences from Healthy_L 

followed by the Healthy_H, UCB_L, Khan_R, UCB_H and HEPB datasets respectively. In 

the second step, ABOSS filtering, residue/position in the sequences are flagged as potential 

errors. In the Khan_R was the dataset with the smallest proportion of sequences with zero 

ABOSS flagged residue/positions (26.6%) (Table II). The HEPB dataset had the highest 

proportion of zero ABOSS flagged residue/positions (65.9%) followed by Health_L, 

UCB_L (37.3%), Healthy_H and UCB_H (33.7%).

Current Ig-seq error correction pipelines assign greater confidence to highly redundant 

sequences and manipulate the nucleotide sequences of rare sequences (6, 8, 13, 14). In 

contrast, ABOSS does not have a direct link between sequence redundancy and “correct” 

sequences. To examine the performance overlap of ABOSS and redundancy based Ig-seq 

error correction tools, we compared the number of ABOSS flagged residue/positions to the 

sequence redundancy for our six datasets (Figure 3). In every dataset, sequences that are 

more redundant tend to have fewer ABOSS flagged residue/positions. This suggests that 

even though ABOSS is not a redundancy based technique, its results are still in line with the 

widely-adopted methodology based on sequence redundancy. ABOSS does flag residues as 

erroneous in a number of highly redundant clones which might be flagged as correct by 

redundancy-reliant methods. If a sequence was highly redundant it could in theory avoid any 

of its residues being flagged by ABOSS as every residue/position in this sequences would be 

present more times than the residue error rate. The horizontal dashed lines in Figure 3 shows 

the redundancy necessary to achieve this. Only a single sequence from the Healthy_L 

dataset reached such a level of redundancy (Figure 3F).

3.3 Ig-seq error simulation to estimate sequence volumes and error rates tolerated by 
ABOSS

In order to investigate the types of Ig-seq datasets that ABOSS can successfully analyze, we 

benchmarked ABOSS with respect to dataset redundancies, sequencing error rates and input 

sequence volumes. We tested ABOSS on two datasets with contrasting depth and breadth of 

coverage: the UCB_H and Khan_R datasets (see Table I). The starting datasets for the 

simulation consisted of sequences that passed ABOSS analysis with zero flagged residue/

positions. The sizes of the simulation final datasets (UCB_H_Sim and Khan_R_Sim) were 

based on the number of sequences that passed the ANARCI parsing step (see Table II). We 

used the distribution of the number of flagged residue/positions in the UCB_H and Khan_R 

datasets as calculated by ABOSS (see Figure 3) to introduce erroneous residue/positions into 

our simulation starting datasets. The mutation substitution positions were stochastically 
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selected along the VH chain. From these starting points, the simulations were performed as 

described in materials and methods (see section 2.5).

The simulation results are shown in Figure 4 and Supplemental Figure 1. Using sizes and 

error rates that match the original data ABOSS recovered 99.6% and 99% of the correct 

sequences incorporated into the UCB_H_Sim and Khan_R_Sim datasets respectively. 

Reducing the UCB_H_Sim and Khan_R_Sim dataset sizes does not appear to influence the 

percentage of correct sequences recovered by ABOSS analysis. Increasing the error rates has 

a minor effect on the recovered number of correct sequences from the Khan_R_Sim dataset 

and a much larger effect on the recovery of correct sequences from the UCB_H_Sim dataset. 

This difference is due to the far lower initial redundancy of the UCB_H data.

ABOSS also retained small numbers of sequences from UCB_H_Sim and Khan_R_Sim that 

were not present in the simulation starting datasets (Figure 4). These sequences are still 

structurally viable. The number of these sequences was larger in the UCB_H_Sim dataset 

(~30%) than in the Khan_R_Sim dataset (~17%) (Supplemental Figure 1). As the residue 

error rate was increased the simulation starting datasets constituted larger proportions of the 

ABOSS filtered UCB_H_Sim and Khan_R_Sim datasets (Figure 4, Supplemental Figure 1).

The outputs from these error simulations suggest that ABOSS performance becomes robust 

when either the Ig-seq data is redundant or more than ~600k of non-redundant sequences are 

available.

3.4 ABOSS analysis on SHM generated diversity

The SHM machinery of B cells increases antibody diversity by introducing nucleotide 

substitutions in the variable (V) region (37). SHM helps to fine tune an antibody to its 

cognate epitope (38). These substitutions are known to exhibit uneven frequencies along the 

V region (33, 35). We exploited the 5-mer nucleotide HH_S5F targeting model of SHM (33) 

to examine the ability of ABOSS to flag errors, whilst preserving SHM generated diversity 

in Ig-seq datasets.

The model requires a clonal tree reference to estimate rates of substitutions. We used two 

distinct architectures of antibody clonal lineage trees (Lineage_A and Lineage_B) to 

construct such substitutions matrixes. We used these two lineages to have coverage of the 

spectrum of SHM mutations as Lineage_A has a low substitution rate, whereas Lineage_B 

has a high one. Using the HH_S5F model combined with either of the Lineage_A or 

Lineage_B SHM references, the simulations were performed on Healthy_H and UCB_H. 

These two datasets were selected to test ABOSS performance on low (UCB_H) and high 

(Healthy_H) redundancy data. The sequences with zero ABOSS flagged residue/positions 

were used as the most recent common ancestor (MRCA) that were then employed as 

templates to which SHM mutations were introduced. The HH_S5F targeting model (33) 

introduced roughly the same SHM substitution ratios along the VH region in the two lineage 

trees (Figure 5, Supplemental Figure 2). There was a biased increase in SHM substitutions 

in framework 3, CDR regions and positions flanking the CDRs similar to previous results 

(33, 35). As the HH_S5F model does not consider structural selection pressure on the heavy 

chain positions, the conserved cysteines were mutated, which resulted in the residue error 
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rates of 0.002567 (Lineage_A) and 0.008 (Lineage_B) in UCB_H, and 0.002513 

(Lineage_A) and 0.0076 (Lineage_B) in Healthy_H simulation datasets respectively. The 

Lineage_A produced residue error rates were within the observed range of human Ig-seq 

data, whilst the Lineage_B generated residue error rates exceeded this range (Table II). 

ABOSS exhibited no preferential selection of unmutated germline V gene sequences over 

sequences that harbour SHM mutations in the Ig-seq data (Supplemental Figure 3).

Most of the HH_S5F generated diversity was preserved by ABOSS analysis (Figure 5). 

ABOSS flagged residue/positions uniformly along the VH chain, with the exception of 

CDR-H3, where fewer residue/positions were flagged. These proportions of ABOSS flags 

are unrelated to the pattern of generated SHM substitutions, which has a strong bias towards 

framework 3 and CDR loops.

These results demonstrate that ABOSS is able to flag structurally non-viable residue/

positions, whilst preserving the majority of SHM substitutions. However, some true rare 

SHM substitutions may still be removed by ABOSS, as their positional presence in the V 

region is below the residue error rate. Therefore, highly SHM altered Ig-seq datasets may 

have a higher proportion of true mutations incorrectly flagged as erroneous.

3.5 ABOSS and IgReC, an Ig-seq computational error correction tool

We compared ABOSS to IgReC, a computational Ig-seq error correction tool. IgReC 

clusters and corrects PCR and sequencing errors in Ig-seq data based on sequence 

redundancy and homology. IgReC was recently benchmarked alongside other commonly 

used tools to error correct Ig-seq data (14). Its performance was considered comparable if 

not better than all other tools tested. IgReC relies on identification of clonotypes and 

sequence clustering.

We ran IgReC on the UCB_H and Healthy_H datasets as IgReC requires full-length VH or 

VL sequences and the HEPB and Khan_R datasets have truncated framework 1 regions. 

IgReC modifies sequences of Ig-seq datasets making it difficult to carry out an overlap 

comparison with ABOSS. IgReC removed approximately 1.5% of UCB_H and 8% of 

Healthy_H but modified nearly 50% and 30% of the sequences to ones not seen in the 

original UCB_H and Healthy_H datasets respectively (Table III).

For both datasets roughly 30% of the sequences in the IgReC-corrected set contained 

ABOSS flagged residue/positions. The redundancy of sequences that did not pass ABOSS 

but are found in the IgReC-corrected data is lower than the average of the IgReC-corrected 

data (Table S1).

As the data above suggests that IgReC and ABOSS remove different sequences ABOSS was 

run on the IgReC-corrected UCB_H and Healthy_H datasets. ABOSS filtered out 3,327,793 

sequences (59.7%) from the IgReC-corrected UCB_H with a residue error rate of 0.0055. 

This error rate was very similar to that given by ABOSS for the original UCB_H dataset (see 

Table II). Among the IgReC-corrected UCB_H sequences filtered out by ABOSS, 37,671 

(1.1%) sequences failed to pass ANARCI, while the rest contained ABOSS flagged residue/

positions, of which 120,264 (3.6%) sequences lacked conserved cysteines. Applying 
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ABOSS to the IgReC-corrected Healthy_H dataset yielded a residue error rate of 0.0041, 

which filtered 685,546 sequences (52%). Of these filtered sequences, 144,154 (21%) 

sequences failed ANARCI parsing, and of the rest with flagged residue/positions, 33,627 

(4.9%) lacked cysteines at positions 23 and/or 104. IgReC analysis does not appear to 

correct stop codons, as at least one was identified in ~85.5% of the sequences that failed to 

pass ANARCI parsing from the IgRec-corrected Healthy_H dataset.

We then tested the reverse protocol running IgReC on the ABOSS filtered UCB_H and 

Healthy_H datasets. IgReC generates structurally incorrect sequences (~0.01%) when it is 

run on these ABOSS filtered datasets. Many of these sequences had a nucleotide indel 

introduced by IgReC. IgReC also altered the sequences of over 40% and 6% of the data to 

ones which were absent in the original UCB_H and Healthy_H datasets respectively (Table 

III).

Given this data, we would suggest that IgReC analysis can be enhanced by first using 

ABOSS to filter out structurally impossible Ig-seq data.

3.6 Comparison to experimental Ig-seq error correction methods

We also compared the results of ABOSS to two different experimental approaches. First to 

the work of Galson et al., (7). Their methodology of residue error estimation employs an 

analogous approach to ours. It is based on the proportion of nucleotide mismatches to the 

germline in the sequence invariant constant region, which was adjacent to the framework 4 

region of the heavy chain (FW-H4). ABOSS analysis on their HEPB dataset estimated the 

residue error rate to be 0.22%. This is in the agreement with the residue error rates estimated 

by Galson et al., (7) which ranged between 0.19% and 0.79%.

Secondly, we contrasted ABOSS with the experimental/computational error correction 

protocol of Khan et al., (8). This method considers the entirety of the VH domain by 

applying barcodes to cDNA prior to sequencing, followed by clustering of identically 

barcoded sequences and error correction. The Khan_C dataset is the experimentally 

corrected version of the Khan_R dataset. In the process of this error correction protocol 

sequences are computationally modified (~33% of Khan_C sequences have been altered 

from the sequences experimentally determined in the Khan_R dataset). This maybe to 

another sequence present in the Khan_R dataset (increasing redundancy from 3.7 in Khan_R 

to 45.3 in Khan_C) or to a new sequence altogether. This modification means that the 

redundancy of sequences changes and that 0.5% of non-redundant (0.02% of redundant) 

sequences in the Khan_C dataset are not present in the original Khan_R dataset. These 

sequence changes make comparison with ABOSS difficult as within the ABOSS protocol no 

sequences are altered.

ABOSS analysis on Khan_R selects a similar number of non-redundant sequences to 

Khan_C (~50,000), but only ~6,000 of these sequences are directly observed in the Khan_C 

dataset (Table IV). In terms of redundant sequences, ABOSS selects a far smaller set. This 

reflects the fact that sequences have been modified to increase the redundancy of specific 

sequences in the Khan_C dataset. The redundant overlaps between the ABOSS filtered 

Khan_R dataset and the Khan_C dataset are 36.8% and 89.6% respectively (Table IV). 
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Around 60% of Khan_C sequences are not seen in the ABOSS filtered Khan_R dataset of 

these about 1% fail the ANARCI parsing step (suggesting they would not produce viable 

antibodies), 0.04% are not found in Khan_R, the others contain residue/positions that are 

ABOSS flagged as below the residue error rate. Those flagged by ABOSS include ~0.2% 

redundant and ~8% non-redundant sequences that lack a cysteine at either position 23 or 

104.

ABOSS provides orthogonal functionality to Ig-seq data error correction and can be used to 

complement the UMI barcode approach, an increasingly common practice in Ig-seq data 

analysis (39). Performance of the barcode approach is heavily dependent on drawing a 

consensus sequence from a pool of identically barcoded sequences. Two common problems 

in the barcode approach are when a large number of the barcoded sequences are singletons 

or several identically barcoded sequences share the highest redundancies in a cluster. These 

problems hamper the ability of the approach to correct data efficiently. ABOSS can be used 

prior to clustering to prevent all structurally non-viable sequences from becoming consensus 

sequences.

UMI barcodes are also used for accurate detection of template amplification and 

quantification biases in Ig-seq datasets (8–10, 40). This allows for the precise calculation of 

the amount and diversity of sequencing templates (8). In this scenario, ABOSS should not be 

run prior to the barcode correction approach as it is a conservative tool that always reduces 

the dataset size and never alters antibody sequences.

3.7 The orthogonality of ABOSS

As an example of how ABOSS identifies potentially structurally not viable sequences that 

are not picked up by other techniques, Figure 6 shows an example of an antibody sequence 

from the Khan_C dataset (8). This sequence is translated into amino acids in the first reading 

frame. This sequence cannot be structurally viable as FW-H4 and the distal end of CDR-H3 

do not align to the known IMGT amino acid germline. Translating this sequence into the 

second reading frame reveals a FW-H4 and a distal end of CDR-H3 that now align to the 

IMGT amino acid germline. This suggest that a single nucleotide insertion was introduced 

into CDR-H3.

If we run ABOSS on Khan_C (the experimentally/computationally error corrected set of 

Khan_R), the ANARCI parsing step in conjunction with the check for conserved cysteines at 

positons 23 and 104 removed 11.6% of the unique sequences. These structurally impossible 

sequences correspond to 0.8% of the total redundant dataset (Figure 7). The inability of 

ANARCI to align the full-length FW-H4 to the IMGT germline was the main cause for 

sequences from the Khan_C dataset to fail ANARCI parsing as these sequences were 

considered to have a truncated FW-H4 region.

These results demonstrate how leverage of our knowledge of immunoglobulin folding can 

help to filter data, even that, which has been generated by a barcoding approach.

We have examined the robustness of the ABOSS protocol by running it on a dataset parsed 

by either ANARCI or IgBlastn (24), a sequence-centered Ig-seq data processing tool. 
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ANARCI parsing removed ~9% more sequences than IgBlastn (Table V). However, if 

ABOSS is run on the ANARCI parsed data or on data already passed by IgBlastn 

approximately, the same number of sequences are obtained. Examination of the sequences 

ANARCI removes and IgBlastn does not reveals that these sequences tend to not have a full-

length framework 4 region or nothing at position 23, or had unusual indels in canonical CDR 

and framework regions. The ANARCI parsed Healthy_H and Healthy_L datasets contained 

almost all (>99.98%) sequences that IgBlastn called productive. ABOSS analysis generated 

almost identical outputs for Healthy_H and Healthy_H_IgBlastn, whereas there was an 

increase (~4%) in the number of Healthy_L_IgBlastn sequences compared to Healthy_L as a 

result of the slightly smaller residue error rate.

4 Discussion

ABOSS is an orthogonal redundancy-neutral method that uses structural information to 

calculate sequencing error rate estimates for Ig-seq datasets. The novelty of our approach is 

founded in the application of current knowledge of immunoglobulin folding to identify and 

flag potential errors in Ig-seq sequences.

ABOSS has been tested on six different Ig-seq datasets ranging from 1,422,405 sequences to 

9,985,575 sequences, which were generated by a variety of sequencing methods. The 

protocol is rapid and takes 10h to analyze 5m unique antibody sequences on a standard 

desktop computer. ABOSS calculated residue error rates agree well with experimental error 

rates where available as in Galson et al., (7).

ABOSS identified 99% of correct antibody sequences in the simulated Ig-seq data when 

using dataset sizes and error rates matching those in the experiments. Decreasing the size of 

the simulation Ig-seq data did not affect the percentage of correct sequences recovered. Our 

simulation results suggest that even at far higher error rates ABOSS performs well as long as 

either the redundancy is high or the dataset size is large enough (~600k unique sequences). 

The model selected to introduce in silico sequencing errors was based on Illumina 

technologies, where nucleotide substitutions can happen stochastically along the VH chain. 

For Roche 454 datasets (now one of the most common sources of Ig-seq data (36)) 

nucleotide indel introduction along the chain is the main origin of sequencing errors so 

further simulations of error might be necessary to understand the behaviour of ABOSS.

We also ran ABOSS on Ig-seq data with computationally simulated SHM diversity to assess 

its ability to preserve true mutations. These simulations indicated that ABOSS was able to 

spot structurally incorrect residue/positions, whilst preserving the SHM generated diversity. 

It is hard to assess the accuracy of SHM substitutions introduced by the HH_S5F model in 

the structural context. In the functional antibody repertoire there are a number of positions 

where SHM substitutions are not observed, in particular, positions 23 and 104, but are seen 

in the HH_S5F model (35). Therefore, SHM in functional genes has a negative 

reinforcement effect on the residue error rate, which will mean ABOSS is less likely to flag 

positions that harbour SHM substitutions.
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The nature of ABOSS analysis is orthogonal to current Ig-seq correction techniques in 

particular it does not alter sequences but rather removes those it considers to contain 

impossible structural features. Comparison to leading experimental and computational Ig-

seq error correction methods that do alter sequences shows that these approaches retain as 

well as create antibody sequences that are structurally non-viable (i.e. lack of cysteines at 

conserved position 23 and 104, or antibody regions that are out of the correct reading 

frame). These results suggest that ABOSS should be used alongside current state-of-art 

error-correction protocols to increase confidence of structural viability of Ig-seq sequences.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Calculation of the residue error rate in terms of structural viability.
(A) Three-dimensional structure of the VH chain (PDB code: 5WUV) with the conserved 

disulfide bridge shown. Framework (grey) and CDRs regions (red), the cysteine bond 

between positions 23 and 104 in yellow. (B) The distribution of amino acid types found at 

positions 23 and 104 for an Ig-seq dataset. Since both positions in natural antibodies should 

be cysteines, the non-cysteine occurrence indicates possible sequencing error.
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Figure 2. Workflow of ABOSS.
ABOSS input is antibody amino acid sequences in the FASTA format. Every sequence from 

the input file is IMGT-numbered with ANARCI (ANARCI parsing). The amino acid 

distribution by IMGT position is calculated for successfully ANARCI parsed sequences. The 

residue error rate is estimated based on the amino acid distributions at positions 23 and 104 

(see Figure 1 for more details). The estimated residue error rate together with the ANARCI 

numbered IMGT germline genes are used to flag potentially erroneous residue/positions in 

individual Ig-seq sequences. Filtered Ig-seq dataset refers to a collection of sequences that 

pass ABOSS analysis with zero flagged residues/positions.
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Figure 3. Sequence redundancy relative to the number of ABOSS flagged residue/positions in the 
sequences of our six datasets (see Table I for more details): UCB_H (A), UCB_L (B), Khan_R 
(C), HEPB (D), Healthy_H (E) and Healthy_L (F).
The ABOSS filtering step outputs the number of flagged residue/positions for every 

sequence in the ANARCI parsed Ig-seq dataset. Zero flagged residue/positions indicates that 

the sequence is structurally viable. The general trend in each Ig-seq dataset is that the more 

redundant the sequence the fewer ABOSS flagged residue/positions it has. The horizontal 

dashed line represents the residue error rate in terms of the number of entries required for a 

residue/position to be identified as structurally viable.
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Figure 4. Examination of ABOSS performance on Ig-seq error simulation datasets.
Ig-seq data simulation was carried out based on the previously calculated numbers of 

ABOSS flagged residue/positions in two Ig-seq datsets, UCB_H and Khan_R (see Figure 3). 

The X-axis corresponds to UCB_H_Sim and Khan_R_Sim dataset sizes used for simulation 

(the percentages relative to the sizes of respective datasets that passed ANARCI are shown 

in parentheses). The Y-axis shows the multiplier of the original distribution of erroneous 

residue/positions in the Ig-seq datasets (see Figure 3). The total number of ABOSS filtered 

sequences (black) and the number of the correct sequences (grey) are pictured (The 

percentages are given in Supplemental Figure 1). The overlapping region indicates the 

proportion of the correct sequences that passed ABOSS relative to the total number of 

ABOSS filtered sequences.
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Figure 5. ABOSS performance on SHM simulated Ig-seq data diversity.
Two antibody clonal lineage trees (Lineage_A and Lineage_B) were employed to provide 

the background mutational reference to introduce SHM substitutions into the ABOSS 

filtered UCB_H dataset using the human HH_S5F targeting model (33). The x-axis shows 

positions along the VH chain, and the y-axis shows the proportions of residue/positions in 

the simulation datasets. The figures on the left depict the proportion of SHM substitutions 

introduced at positions in the VH chain. The figures on the right represent the proportions of 

ABOSS flagged residue/positions in the simulation datasets.
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Figure 6. ABOSS flags structurally non-viable antibody sequences.
(A) The distal part of the VH chain sequence of an antibody that is selected as correct in the 

Khan_C dataset. The closest germline matches of the V and J genes for this sequence are 

IGHV5-4*02 and IGHJ3*01 respectively. This sequence is shown in the first reading frame. 

The FW-H4 region and the distal end of CDR-H3 of this sequence do not align to an IMGT 

amino acid germline. (B) Translating this antibody sequence into the second reading frame 

creates FW-H4 and the distal end of CDR-H3 that align to the IMGT amino acid germline. 

(C) An arbitrary deletion of a nucleotide from the middle of the CDR-H3 region generates a 

structurally viable antibody sequence when it is translated in the first reading frame.

Kovaltsuk et al. Page 21

J Immunol. Author manuscript; available in PMC 2019 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. Identification of structurally non-viable antibody sequences using first steps of ABOSS 
on the Khan_C datasets.
Each sequence from the Khan_C (Table I) dataset is examined for structural viability using 

ABOSS. (A) The tabulated outputs gives the total number sequences that did not pass 

ANARCI. (B) The pie chart shows the percentage of sequences that fail the ANARCI step 

and those that lack a cysteine at position 23 and 104. The reasons include: 1) A sequence 

lacks a cysteine at position 23 or 104 2) An indel is present in the framework or canonical 
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CDR regions 3) A non-amino acid residue is present in a sequence. 4) A sequence does not 

align to the IMGT amino acid germlines of V or J genes.

Kovaltsuk et al. Page 23

J Immunol. Author manuscript; available in PMC 2019 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Kovaltsuk et al. Page 24

Table I
Summary of the datasets used.

The seven datasets (Khan_R, Khan_C, HEPB, UCB_H, UCB_L, Healthy_H and Healthy_L) were obtained 

from different sequencing methodologies, organisms and immunization protocols. The Khan_R and Khan_C 

datasets are the immunized mouse 1 dataset of the Khan et al., (8) study before and after the barcode 

correction approach. These datasets are from repeated Ig-seq of the same mouse. The majority of sequences in 

this Ig-seq dataset start at position 8. The Khan_R and Khan_C datasets consist of antibody amino acid and 

corresponding nucleotide sequences. The Khan_R dataset has the highest redundancy amongst the interrogated 

non-corrected datasets. We have removed the roughly 10% synthetic spike-ins in the Khan_R and Khan_C 

datasets. The HEPB dataset from Galson et al., (7) is from 11 participants. Standard Illumina Ig-seq was 

performed. The reads were gene-aligned and processed using IMGT/HighV-Quest. Due to selection of PCR 

primers, most of the sequences start at position 17. This dataset contains amino acid sequences only. The 

dataset’s redundancy is almost two times lower than the Khan_R data. The UCB proprietary Ig-seq datasets 

were obtained from 494 participants. The UCB_H and UCB_L datasets comprise 5.6m and 9.3m sequences 

respectively. The UCB_H and UCB_L datasets contain both antibody amino acid and corresponding 

nucleotide sequences. The UCB datasets were aligned with IgBlast (24), V and J genes identified, and pre-

filtered for stop codons, they contain full-length variable chain sequences as described in Krawczyk et al., 

(31). The UCB_H and UCB_L datasets are the least redundant amongst the datasets. The Healthy_H and 

Healthy_L datasets come from four healthy human B cell donors from the Vander Heiden et al., (32) study. In 

this study, sequencing primers for both heavy and light chain genes were used at the same time forming pooled 

raw nucleotide samples. The raw nucleotide Ig-seq datasets were obtained from the OAS resource (36) 

followed by translating sequences into amino acids and antibody chain separation using IgBlastn (24).

Dataset name Study description Total dataset size Antibody chain Dataset average redundancy Participants

Khan_R Raw sequences of Immunized 
mouse 1 from Khan et al., (8)

2.4m Heavy 3.74 1 (mouse)

Khan_C Barcode corrected sequences of 
immunized mouse 1 from Khan 

et al., (8)

2.4m Heavy 45.3 1 (mouse)

HEPB Human hepatitis B vaccination 
from Galson et al., (7)

9.9m Heavy 1.93 11

UCB_H Proprietary UCB Ig-seq of the 
VH chain

5.6m Heavy 1.15 494

UCB_L Proprietary UCB Ig-seq of the 
VL chain

9.3m Light 1.12 494

Healthy_H VH chains from healthy human 
B cell donors from Vander 

Heiden et al., (32)

1.4m Heavy 1.9 4

Healthy_L VL chains from healthy human 
B cell donors from Vander 

Heiden et al., (32)

6.3m Light 2.96 4
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Table II
ABOSS analysis of six Ig-seq datasets

In the table, dataset sizes are given as the number of redundant sequences, the number of non-redundant 

sequences are shown in parentheses. Starting datasets are the inputs for ABOSS. ANARCI parsed datasets 

contain sequences that are successfully IMGT-numbered. ABOSS filtered datasets are the number of 

sequences that contain zero flagged residues. The percentage of sequences with zero flags are calculated as a 

percentage of redundant ABOSS passed sequences over the total number of starting redundant sequences. 

Residue error rates are calculated as described in Figure 1

Data source Starting dataset ANARCI
parsed
dataset

ABOSS filtered dataset Sequence percentage with 
zero flags

ABOSS Residue Error 
Rate (%)

HEPB 9,985,575
(5,175,036)

9,700,893
(4,932,588)

6,579,118
(3,226,473)

65.9 % 0.22

Khan_R 2,445,354
(653,520)

2,247,761
(521,675)

649,685
(47,593)

26.6% 1.5741

UCB_L 9,371,465
(8,380,540)

8,021,407
(7,120,100)

3,494,319
(2,983,103)

37.3% 0.4674

UCB_H 5,645,304
(4,925,532)

5,277,305
(4,587,918)

1,903,703
(1,561,082)

33.7% 0.5892

Healthy_H 1,422,405
(745,276)

1,135,185
(558,171)

486,437
(176,012)

34.2% 0.5427

Healthy_L 6,317,736
(2,135,745)

4,860,389
(1,372,804)

2,667,263
(386,165)

42.2% 0.4121
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Table III
Interrogation of IgReC performance on UCB_H and Healthy_H.

IgReC was run on the raw nucleotide UCB_H and Healthy_H datasets as well as the ABOSS filtered data. 

IgReC constructed datasets derived from the raw data contained roughly 50% and 30% of sequences that were 

different to ones found in the UCB_H and Healthy_H datasets respectively. When tested on the ABOSS 

filtered datasets, IgReC was unable to find V and J germline references for 8,843 sequences in ABOSS filtered 

UCB_H and 10,365 in ABOSS filtered Healthy_H. IgReC also generated ~42% and ~7% of sequences that 

were not present in the original UCB_H and Healthy_H datasets. The default parameters were used to run 

IgReC: ./igrec.py –s <reads.fasta> –l <IGH> –o <output_dir>. The number of non-redundant values are shown 

in parentheses.

Outputs % of sequences found in the original dataset

ABOSS filtered UCB_H 1,903,703 (1,561,082) 100 (100)

IgReC-corrected UCB_H 5,572,963 (4,069,318) 51.4 (43.3)

IgReC on ABOSS filtered UCB_H 1,894,860 (1,320,438) 57.3 (47.9)

ABOSS on Healthy_H 486,437 (176,012) 100 (100)

IgReC-corrected Healthy_H 1,303,128 (367,235) 71.6 (60.4)

IgReC on ABOSS filtered Healthy_H 476,072 (61,281) 93.1 (87.9)
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Table IV
Comparison analysis of ABOSS and the barcode approach of Khan et al., (8)

ABOSS was run on the Khan_R dataset. The ABOSS outputs were contrasted with the Khan_C dataset (see 

Table I for dataset information). (A) The overlap presents the percentage of total sequences that are shared 

between the Khan_C and ABOSS filtered Khan_R datasets. ABOSS appears to be more conservative than the 

barcode approach.

Data source Dataset size Redundancy Overlap

Khan_C 2,385,080 (52,623) 45.3 36.8%

ABOSS filtered Khan_R 649,685 (47,593) 13.7 89.6%
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Table V
IgBlastn and ANARCI parsing.

Performance of IgBlastn and ANARCI parsing was investigated on two datasets, Healthy_H and Healthy_L 

(see Table I for more details). IgBlastn analysis was perform on the nucleotide sequences that were 

downloaded from the OAS resource (36). IgBlastn productive called sequences were put into 

Healthy_H_IgBlastn and Healthy_L_IgBlastn datasets respectively. ANARCI parsing was performed on the 

translated amino acid version of Healthy_H and Healthy_L (Table I). All four datasets were then subjected to 

ABOSS analysis.

Dataset name Starting dataset ANARCI parsed dataset ABOSS filtered dataset ABOSS Residue Error Rate (%)

Healthy_H 1,422,405
(745,276)

1,135,185
(558,171)

486,437
(176,012)

0.5427

Healthy_H_IgBlastn 1,228,129
(597,976)

1,135,116
(558,129)

486,429
(176,008)

0.5427

Healthy_L 6,317,736
(2,135,745)

4,860,389
(1,372,804)

2,667,263
(386,165)

0.4121

Healthy_L_IgBlastn 5,361,955
(1,539,964)

4,859,848
(1,372,519)

2,776,176
(386,146)

0.4118
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