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Machine learning in a data-limited regime: Augmenting
experiments with synthetic data uncovers order in
crumpled sheets

Jordan Hoffmann1*, Yohai Bar-Sinai1*†, Lisa M. Lee1, Jovana Andrejevic1, Shruti Mishra1,
Shmuel M. Rubinstein1†, Chris H. Rycroft1,2
Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-
dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data
are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impasse by augmenting the
experimental dataset with synthetically generated data of a much simpler sister system. Specifically, we study
spontaneously emerging local order in crease networks of crumpled thin sheets, a paradigmatic example of
spatial complexity, and show that machine learning techniques can be effective even in a data-limited regime.
This is achieved by augmenting the scarce experimental dataset with inexhaustible amounts of simulated data
of rigid flat-folded sheets, which are simple to simulate and share common statistical properties. This consid-
erably improves the predictive power in a test problem of pattern completion and demonstrates the usefulness
of machine learning in bench-top experiments where data are good but scarce.
INTRODUCTION
Machine learning is a versatile tool for data analysis that has perme-
ated applications in a wide range of domains (1). It has been particu-
larly well suited to the task of mining large datasets to uncover
underlying trends and structure, enabling breakthroughs in areas as
diverse as speech and character recognition (2–5),medicine (6), games
(7, 8), finance (9), and even romantic attraction (10). The prospect of
applying machine learning to research in the physical sciences has
likewise gained attention and excitement. Data-driven approaches
have been successfully applied to data-rich systems such as classifying
particle collisions in the Large Hadron Collider (LHC) (11, 12), clas-
sifying galaxies (13), segmenting large microscopy datasets (14, 15), or
identifying states of matter (16, 17). Machine learning has also
enhanced our understanding of soft matter systems: In a recent series
ofworks, Cubuk, Liu, and collaborators (18–20) have used data-driven
techniques to define and analyze a novel “softness” parameter gov-
erning the mechanical response of disordered, jammed systems.

All examples cited above address experimentally, computationally,
or analytically well-developed scientific fields supplied by effectively
unlimited data. By contrast,many systems of interest are characterized
by scarce or poor-quality data, a lack of established tools, and a limited
data acquisition rate that falls short of the demands of effective ma-
chine learning. As a result, the applicability of machine learning to
these systems is problematic and would require additional tools. This
would potentially be of high value to the experimental physics com-
munity and would require novel ways of circumventing the data lim-
itations, either experimentally or computationally. Here, we study
crumpling and the evolution of damage networks in thin sheets as a
test case for machine learning–aided science in complex, data-limited
systems that lack a well-established theoretical, or even a phenomeno-
logical, model.
Crumpling is a complicated and poorly understood process: As a
thin sheet is confined to a small region of space, stresses spontaneously
localize into one-dimensional regions of high curvature (21–23),
forming a damage network of sharp creases (Fig. 1B) that can be
classified according to the sign of the mean curvature: Creases with
positive and negative curvature are commonly referred to as valleys
and ridges, respectively. Previous works on crumpled sheets have
established clear and robust statistical properties of these damage
networks. For example, it has been shown that the number of creases
at a given length follows a predictable distribution (24), and the
cumulative amount of damage over repeated crumpling is described
by an equation of state (25). However, these works do not account for
spatial correlations, which is the structure we are trying to unravel.
The goal of this work was to learn the statistical properties of these
networks by solving a problem of network completion: Separating
the ridges from valleys, can a neural net be trained to accurately re-
cover the location of the ridges, presented only with the valleys? For
later use, we call this problem partial network reconstruction. The
predominant challenge we are addressing here is a severe data lim-
itation. As detailed below, we were unable to perform this task using
experimental data alone. However, by augmenting experimental
data with computer-generated examples of a simple sister system
that is well understood, namely, rigid flat folding, we trained an ap-
propriate neural network with significant predictive power.

The primary dataset used in this work was collected in a previous
crumpling study (25), where the experimental procedures are detailed
and are only reviewed here for completeness. Mylar sheets (10 cm by
10 cm) are crumpled by rolling them into a 3-cm-diameter cylinder
and compressing them uniaxially to a specified depth within the cy-
lindrical container, creating a permanent damage network of creasing
scars embedded into the sheet. To extract the crease network, the sheet
is carefully opened up and scanned using a custom-made laser profi-
lometer, resulting in a topographic height map from which the mean
curvature is calculated. The sheet is then successively recrumpled and
scanned between 4 and 24 times, following the same procedure. The
curvature map is preprocessed with a custom algorithm based on the
Radon transform (for details, see section S1) to separate creases from
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the flat facets and fine texture in the data (Fig. 2A). The complete dataset
consists of a total of 506 scans corresponding to 31 different sheets.
RESULTS
Failures with only experimental data
As stated above, the task we tried to achieve is partial network recon-
struction: inferring the location of the ridges given only the valleys
(Fig. 2A). Our first attempts were largely unsatisfactory and demon-
strated little to no predictive power. Strategies for improving our
results included subdividing the input data into small patches of dif-
ferent length scales, varying the network architecture, data represen-
tation, and loss function, and denoising the data in different ways.We
approached variants of the original problem statement, trying to pre-
dict specific crease locations, distance from a crease, and changes in
the crease network between successive frames. In all these cases, our
network invariably learned specific features of the training set rather
than general principles that hold for unseen test data, a common pro-
blem known as overfitting. The main culprit for this failure is insuffi-
cient data: The dataset of a few hundred scans available for this study is
small comparedwith standard practices inmachine learning tasks [for
example, the problem of handwritten digit classification using the
MNIST database, which is commonly given as an introductory exer-
cise in machine learning, consists of 70,000 images (5)]. Moreover, as
creases produce irreversible scars, images of successive crumples of the
same sheet are highly correlated, rendering the effective size of our
dataset considerably smaller.

Overfitting can be addressed by constraining themodel complexity
through insights from physical laws, geometric rules, symmetries, or
other relevant constraints. Alternatively, it can bemediated by acquir-
ingmore data. Sadly, neither of these avenues is viable: Current theory
of crumpling cannot offer significant constraints about the structure
or evolution of crease networks. Furthermore, adding a significant
amount of experimental data is prohibitively costly: Achieving a data-
set of the size typically used in deep learning problems, say 104 scans,
would require thousands of lab hours, given that a single scan takes
about 10 min. Last, data cannot be efficiently simulated since, while
preliminary work on simulating crumpling is promising (26, 27), gen-
erating a simulated crumpled sheet still takes longer than an actual
experiment. A different approach is needed.

Turning to a sister system: Rigid flat folding
An alternative strategy is to consider a reference system free from data
limitations alongside the target system, with the idea that similarities
between the target and reference systems allow a machine learning
model of one to inform that of the other. This is similar to transfer
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learning (28), but in this case, rather than repurpose a network, we
supplement the training data with that of a reference system. In our
case, a natural choice of such a system is a rigid flat-folded thin sheet,
effectively amore constrained version of crumpling that is well under-
stood. Rigid flat folding is the process of repeatedly folding a thin sheet
along straight lines to create permanent creases, keeping all polygonal
faces of the sheet flat during folding. For brevity, we will henceforth
omit the word “rigid” and refer simply to flat folding.

Known rules constrain the structure of the flat-folded crease network:
Creases cannot begin or terminate in the interior of a sheet—they must
either reach the boundary or create closed loops; the number of ridge
and valley creases that meet at each vertex differs by two (Maekawa’s
theorem); last, alternating sector angles must sum to p (Kawasaki’s
theorem) (29). Given these rigid geometric rules, we expect partial
network reconstruction of rigid flat-folded sheets to be a much more
constrained problem than that of crumpled ones.

However, while experimentally collecting flat-folding data is only
marginally less costly than collecting crumpling data, simulating it on
a computer is a straightforward task, which provides a dataset of a
practically unlimited size. We wrote a custom code to do this using
the Voro++ library (30) for rapid manipulation of the polygonal
folded facets, as described in section S2. Typical examples are shown
in Figs. 1C and 2B and fig. S1.

Having flat folding as a reference system provides foremost a con-
venient setting for comparing the performance of different network
architectures. The vast parameter space of neural networks requires
testing different hyperparameters, loss functions, optimizers, and data
representations with no standard method for finding the optimal
combination. This problem is exacerbated when it is not at all clear
where the failure lies: Is the task at all feasible? If so, is the network
architecture appropriate? If so, is the dataset sufficiently large?
Answering these questions with our limited amount of experimental
data is very difficult. In contrast, for flat-folded sheets, we are certain
that the task is feasible and our dataset is comprehensive, so experi-
mentation with different networks is easier. After testing many archi-
tectures, we identified a network capable of learning the desired
properties of our data, reproducing linear features and maintaining
even nonlocal angle relationships between features.

Network structure
The chosen network is amodified version of the fully connected SegNet
(31) deep convolutional neural net. As outlined in Fig. 2A, each crease
network is separated into its valleys and ridges. The neural net,N , is
given as an input binary image of the valleys, denoted X (“input” in
Fig. 2). The output of the network, NðXÞ, is the predicted distance
transform of the ridges, Y. That is, for each pixel, Y is the distance to
Fig. 1. Examples of crease networks. (A) A 10 cm by 10 cm sheet of Mylar that has undergone a succession of rigid flat folds. (B) A sheet of Mylar that has been
crumpled. (C) A simulated rigid flat-folded sheet. The sheet has been folded 13 times. Ridges are colored red, and valleys are blue.
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the nearest ridge pixel (“target” in Fig. 2). Training is performed by
minimizing the L2 distance (the “loss”) between the predicted dis-
tance transform, Ŷ ¼ NðXÞ, and the real one

L ¼ ∑
i
ðŶ i � YiÞ2 ð1Þ

where the summation index i represents image pixels. The motiva-
tion for this choice of representation is that creases are sharp and
narrow features, and therefore, if we requireN to predict the precise
location of a crease, even slight inaccuracies would lead to vanishing
gradients of L, making training harder. See Materials and Methods
below for full details of the implementation.
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In silico flat folding
For exclusively in silico–generated flat-folding data, the trained network
performs partial network reconstruction with nearly perfect accuracy,
as demonstrated in Fig. 2B: The agreement between the true location
of the valleys (red lines) and their predicted location (bright colors) is
visibly flawless. As a means of quantifying accuracy, we present the
confusion matrices of the predicted and true output (Fig. 2B).

Confusion matrices are a common way to quantify classification
errors, and since we are predicting the distance from a crease, the
problem can be thought of as a classification problem: Choosing
some thresholds according to typical values of the distances, we can
ask for each point in space whether it is close to a crease, far from it,
or at an intermediate distance. The confusion matrix measures what
percentage of each class is correctly classified and, if not, what class it
is wrongly classified as.We define three equal bins, based on the relative
distance from the predicted ridges. The upper row in the matrix
corresponds to pixels that are closest to the ridges, and the lower row
corresponds to the farthest pixels. Similarly, the first and last columns
correspond to the closest and farthest predicted distances. Thus, the top
left entry in the matrix contains the probability of correctly predicting
regions closest to a ridge, which is approximately 90%.

Partial network reconstruction of in silico flat-folded sheets is itself a
nontrivial task requiring the knowledge of a complicated set of geomet-
rical rules. Tasked to a human, inferring these rules from the data would
require non-negligible effort inwriting an explicit algorithm. The neural
network, however, solves this problem with relative ease.

Experimental flat folding
As an intermediate step between in silico flat-folding and experimen-
tal crumpling data, we next examine the performance of the neural
network on experimental flat-folding scans. Figure 2C reveals that
the resulting prediction weakens by comparison, a consequence of
noise present in experimental data that is absent from the in silico
samples. Noise occurs in the form of varying crease widths, fine tex-
ture, and missing creases that are undetected in image processing. In
some cases, even the true creases that aremissed during processing are
correctly predicted, which also introduces error to our accuracymetric
(see, for example, the center of the second panel of Fig. 2C). While
sufficient data of experimental flat folding would likely allow the
network to distinguish signal from noise, in our data-limited regime,
noise must be added to the generated in silico data to help the network
learn to accurately predict experimental scans and avoid overfitting.

We examine the effect of adding several types of noise on the pre-
diction accuracy on experimental input (Fig. 3, A to E). We observe
considerable improvement and find that adding experimentally realis-
tic noise (Fig. 3E) is more effective than toggling individual pixels ran-
domly (Fig. 3, B and D). We found that the noise type that leads to
optimal training is to randomly add and remove patches of input that
are approximately the same length scale as the noise in the experimen-
tal scans. We also find that it is important to provide input data with
lines of variable width to prevent the network from expecting only
creases of a particular width. For complete details of the different noise
properties, see Materials and Methods.

While the values in the confusion matrices in Fig. 3E might seem
low, it is noteworthy that themetric used here is not trivial to interpret:
It compares the L2 distance from a distance map, which is particularly
sensitive to noise since a localized noise speckle in a region remote
from valleys perturbs a large region of space (essentially, of the size
of its Voronoi cell). To gauge the effect of noise on the accuracymetric,
A B

C

In silico

Experimental
–

(input)

Far Near

Confusion matrix accuracy:
(target)

Fig. 2. A schematic of the processing pipeline. (A) From the height map, a
mean curvature map is calculated and denoised with a Radon transform–based
method. Valleys (black) and ridges (red) are separated. The binary image of the
valleys (X) is the input to the neural network (N ). The distance transform of the
binary image of the ridges is the target (Y). Brighter colors represent regions closer
to ridges. These color conventions are consistent through all the figures in this paper.
(B) Two samples of predictions on generated data. The true fold network is super-
imposed on the predicted distance map. It is seen that the true ridges (red) coincide
perfectly with the bright colors, demonstrating strong predictive power. Below the
predictions, we show confusion matrices, with the nearest third of pixels, the middle
third, and the furthest third. (C) Two predictions, as well as their corresponding con-
fusion matrices, using the network trained on generated data (without noise) and
applied to experimental scans.
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we randomly toggle a fraction P of pixels in an otherwise perfect flat-
folding example and recompute the entries of its confusion matrix, as
presented in Fig. 3F. With realistic noise levels, i.e., P ~ 10−3, we can
expect accuracy values between 0.75 and 0.80 in the upper left and
lower right entries of the confusion matrix, comparable to the values
reported in Fig. 3E. That is, for experimental flat folding, we achieve
accuracy levels that are comparable to what is expected for a perfect
prediction with noisy preprocessing.

Experimental crumpling
For crumpling, we train the neural network using a combination of
30% experimental crumpling and 70% in silico flat-folding data,
which was noised as described above. We also tried pretraining on
in silico data prior to training on crumpling data but observed no im-
provement. Training on this combined dataset, the resulting predic-
tions accurately reconstruct key features of the crease networks
in crumpled sheets, which were not achieved in prior attempts. In
Fig. 4, we present predictions on entire sheets (Fig. 4A) and a few close-
ups on selected regions (Fig. 4B). The confusion matrices suggest that
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the network is often relatively accurate in predicting regions that are
directly near a crease (upper left entry) and large open spaces (lower
right entry), classifying these regions with 50 to 60% accuracy. In addi-
tion, fig. S3 shows the prediction on each of the 16 successive crumples
of the same sheet held out from training.

The ratio of 70% in silico data was chosen since it provides optimal
predictions, as shown in Fig. 5A. We present three different metrics to
quantify the predictive power: the L2 loss of Eq. 1, the Pearson corre-
lation between the prediction and the target, and the average of the
upper left and lower right of the confusion matrix (classification ac-
curacy). We find that all accuracy metrics are optimized for training
on 50 to 70% in silico data. It is also interesting to see in what way this
affects the prediction: In Fig. 5D, we show that when trained solely on
experimental data, the neural network produces a blurred and in-
decisive prediction, while for 100% flat-folding data, the network pre-
dicts only unrealistic straight and long creases.

In addition to these metrics, one can compare the network’s output
to “random” network completion, i.e., to a network that construes a
pattern having the statistical properties of a crease network but is only
Fig. 3. Effect of noise type on prediction. (A to E) An example noised image (top), an example prediction (middle), and the corresponding confusion matrix (bottom)
for different types of artificial noise. Noise types are described concisely in the title of each panel, and complete specifications are given in Materials and Methods. (F) The
upper left value of the confusion matrix when each pixel of the near-perfect prediction from Fig. 2B was randomly toggled with probability P. (G) The network from (E) applied
on an additional experimental scan (from left panel of Fig. 2C). The average confusion matrix on all experimental scans is shown.
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weakly correlated with the input image. Although a generative model
for crease networks is not available, we can sample crease patterns
from the experimental data and compare the predicted distance maps
to those measured from these randomly selected samples. This is dis-
cussed in section S5, where it is seen that our prediction for a given
crease pattern is overwhelmingly closer to the truth than any sampled
patch from other experiments (fig. S5).

The similarity of flat folding and crumpling
These results demonstrate that augmenting the dataset with in
silico–generated flat-folding data allows the network to discern some
underlying geometric order in crease networks of experimental
crumpling data. This suggests that the two systems share some com-
mon statistical properties, and it is interesting to ask how robust this
similarity is. One may suspect that the main contribution of the in
silico data is merely having a multitude of intersecting straight lines,
which are the main geometric feature that is analyzed, but that the
specific statistics of these lines is not crucial.

As explained above, flat-folding networks are characterized by two
theorems: Maekawa’s theorem, which constrains the curvatures (ridge/
valley) of creases joined in each vertex, and Kawasaki’s theorem, which
constrains the relative angles at vertices. We tested the sensitivity of our
prediction to replacing the in silico data used in training with crease
networks that violate these rules: We obtained crease networks that
Hoffmann et al., Sci. Adv. 2019;5 : eaau6792 26 April 2019
violate Maekawa’s theorem by taking flat-folding networks and ran-
domly reassigning curvatures to each crease, and crease networks that
violate Kawasaki’s theorem by perturbing all vertex positions. Last, we
obtained crease networks that violate both rules by performing both
perturbations simultaneously. Examples of perturbed networks are
shown in fig. S6, with additional details about the perturbation process.

The effect is quantified in Fig. 5 (B and C). We define, for a given
sheet, the “deterioration” as the ratio between the loss of a network
trained on 70% experimental data and 30% perturbed flat-folding data
to that of a network trained on the same ratio of experimental and
unperturbed data. It is seen that breaking the flat-folding rules leads
to consistently worse performance for all types of perturbations.

We cross-validated with four different experiments covering a total
of 198 sheets. Although for some small fraction (<5%) of the sheets
training on perturbed data has led tomarginally better performance, this
happenedmostly in sheets with low loss, and the improvement is neg-
ligible. On average, the network trained on perturbed data has a loss
approximately 35% higher than that of the network trained on un-
perturbed data.

These results, namely, that training on perturbed flat-folding
networks led to inferior performance, again suggest a similarity be-
tween crumpled crease networks and flat-folded networks. We did
not quantitatively study the detailed effect of the different kinds of
perturbations—i.e., whether violating Kawasaki’s rule, Maekawa’s rule,
Fig. 4. Predictions on crumpling. (A) One sheet that was successively crumpled, shown after four and seven crumpling iterations. Color code follows Fig. 2.
(B) Closeups on selected smaller patches from the same image, broken down to prediction, prediction and target, and prediction and input.
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or both results in more or less accurate predictions. Instead, equipped
with this physical insight, we propose to directly probe the statistical
similarity with traditional methods by measuring vertex properties in
crease networks, a study that will be reported elsewhere.
DISCUSSION
Experimental data are paramount to our understanding of the
physical world. However, prohibitive data acquisition rates in many
experimental settings require augmenting experimental data to
draw meaningful conclusions. In particular, computer simulations
now play a significant role in exploratory science; many experimental
conditions can be accurately simulated to corroborate our understand-
ing of empirical results.

Despite these advances, the simulation of certain phenomena is
inhibited by insufficient theoretical knowledge of the system or by
demanding computational resources and development time. For
crumpling, without a deeper understanding that would allow the
Hoffmann et al., Sci. Adv. 2019;5 : eaau6792 26 April 2019
use of simplified/reduced models, simulations require prohibitively
small time steps, small domain discretization, or both (26). Here, we
show that even with a small experimental training set, augmenting the
dataset by computer-generated, artificially noised data of flat folding,
salient features of the ridge network can be predicted from the sur-
rounding valleys: The network successfully predicts the presence of
certain creases, as well as their pronounced absence in certain loca-
tions (see Fig. 4B). Moreover, our results demonstrate a statistical sim-
ilarity between flat folding and crumpling, evidenced by the fact that
when flat-folding data are replaced with data of similar geometry but
different statistics, the algorithm does not succeed in learning the
underlying distribution to the same extent (Fig. 5B).

Our results demonstrate the capacity of a neural network to learn,
at least partially, the structural relationship of ridges and valleys in a
crease pattern of crumpled sheets. The next step is to understand the
network’s decision process, with the aim of uncovering the physical
principles responsible for the observed structure. However, while in-
terpretation of trained weights is currently a heavily researched topic
A

D

B C

b

in silico

Pure crumpling flat folding

both
Fig. 5. Effect of fraction generated data. (A) Three quantifications of the predictive power of the model when trained on varying amounts of generated data and a
constant amount of crumpling data. Strong predictive power corresponds to low loss (red) and large Pearson correlation and classification accuracy (blue and green,
respectively). (B) Deterioration (see main text) for each sheet in the validation set, as a function of the rescaled loss. Colors correspond to different perturbations and
marker styles to cross-validation sample. It is seen that all tested perturbations lead to worse predictive power (above the gray reference line). The few points below the
reference line occur at high crumple number and low absolute loss. (C) Histogram of all points in (B). Values to the right of the red line correspond to deterioration
when using unphysical data. (D) Example target and predictions for the various models considered in previous panels.
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[see (32–34), among many others], there is not yet a standard method
to do so. Our ongoing work seeks to probe the network’s inner
workings by perturbing the input data. For example, we can individ-
ually alter input pixels and quantify the effect of perturbation on the
prediction relative to the original target. Alternatively, we can examine
the effect of adding or removing creases or test the prediction on in-
puts that do not occur naturally in crumpled sheets. Some preliminary
results are discussed in section S4.

Improving the experimental dataset by performing dedicated
experiments or replacing the simulated flat folding with simulated
crumpling data is also a promising future direction. While we have
only demonstrated the advantages of data augmentation for one prob-
lem, it is tempting to imagine how it may apply to other systems in
experimental physics. In addition to providing insights into the struc-
ture of crease patterns, a quantitative predictive model (i.e., an oracle)
could serve as an important experimental tool that allows for targeted
experiments, especially when experiments are costly or difficult. As
shown above, a trained neural network is able to shed light on where
order exists, even if the source of the order is not apparent.

Replacing the scientific discovery process with an automated
procedure is risky. Frequently, hypotheses that were initially proposed
are not the focal points of the final works they germinated, as observa-
tions and insights along the way sculpt the research toward its final
state. This serendipitous aspect of discovery has been of immense im-
portance to the sciences and is difficult to include in automated data
explorationmethods, which is an area of ongoing research (35–37). By
showing that data-driven techniques are able to make nontrivial pre-
dictions on complicated systems, even in a severely data-limited re-
gime, we hope to demonstrate that these tools should become a
valuable tool for experimentalists in many different fields.
MATERIALS AND METHODS
Experiments
Experimental flat-folding and crumpling data were performed on
10 cm by 10 cm sheets of 0.05-mm-thick Mylar. Flat folds were per-
formed successively at random, without allowing the paper to unfold
between successive creases. Crumpled sheets were obtained by first
rolling the sheet into a 3-cm-diameter cylinder and then applying axial
compression to a specified depth between 7.5 and 55 mm. Sheets were
successively crumpled between 4 and 24 times.

To image the experimental crease network, crumpled/flat-folded
sheets were opened up, and their height profile was scanned using a
home-built laser profilometer. The mean curvature map was calcu-
lated by differentiating the height profile and then denoised using a
custom Radon-based denoiser (the implementation details of which
are given in section S1). A total of 506 scans were collected from 31
different experiments.

Network architecture and training
Data were fed into a fully convolutional network, based on the SegNet
architecture (31) with the final soft-max layer removed, as we did not
perform a classification problem. The depth of the network allows for
long-range interactions to be incorporated without fully connected
layers. The network was implemented in Mathematica, and optimiza-
tion was performed using the Adam optimizer (38) on a Tesla 40c
graphics processing unit (GPU) with 256 GB of random-access
memory (RAM) and a computer with a Titan V GPU and 128 GB
of RAM. Code is freely available. See “materials availability” below.
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For training, the in silico–generated input data were augmented
with standard data augmentation methods: Symmetric copies of each
original were generated by reflection and rotation. All images were
down sampled to have dimensions of 224 by 224 pixels. For crumpling
data, creases were also linearized to lookmore similar to the experimen-
tal input. An example of the effect of linearizing is shown in fig. S2.

Noise
Noise was added to the input in a few different ways (presented in
Fig. 3B). The noise of each panel was generated as follows:

A. No noise.
B. “White” noise: Each pixel was randomly toggled with 5%

probability.
C. Random blur: Input was convolved with a Gaussian with a

width drawn uniformly between 0 and 3. The array was then thresholded
at 0.1. Here and below, “thresholded at z” means a pointwise threshold
was imposed on the array, such that values smaller than z were set to
0 and otherwise set to 1.

D. Each pixel was randomly toggled with 1% probability and then
passed through random blur (C).

E. Input was random blurred [as in (C)] but thresholded at 0.55.
We denote the blurred-and-thresholded input as ~X . Then, ~X was
noised using both additive and multiplicative noise, as follows:
Y and Z are two random fields drawn from a pointwise uniform
distribution between 0 and 1 and convolved with a Gaussian of width
seven (pixels) and thresholded at 0.55. Last, the “noised” input is

minð~X þ ð1� YÞ; 1Þð1� ZÞ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaau6792/DC1
Section S1. Radon transform–based detection method
Section S2. In silico generation of flat-folding data
Section S3. Prediction on 16 sheets
Section S4. Probing the network: Ongoing work
Section S5. Another approach to error quantification
Section S6. Perturbing the in silico data
Fig. S1. In silico–generated flat-folded crease networks.
Fig. S2. Comparison between the preprocessed curvature map and the linearized version.
Fig. S3. Prediction on a sheet that was crumpled 16 times.
Fig. S4. Additional test results.
Fig. S5. Prediction accuracy.
Fig. S6. Examples of perturbed in silico data.
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