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A brain-plausible neuromorphic on-the-fly learning
system implemented with magnetic domain wall
analog memristors
Kun Yue1*, Yizhou Liu2*, Roger K. Lake2†, Alice C. Parker1†

Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like
the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices
and their implementations in circuits are exploited. Here, we describe a general-purpose spiking neuromorphic
system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs)
that exhibit many different states with persistence over the lifetime of the device. The research includes micro-
magnetic and SPICE modeling of the MAM, CMOS neuromorphic analog circuit design of synapses incorporat-
ing the MAM, and the design of hybrid CMOS/MAM spiking neuronal networks in which the MAM provides
variable synapse strength with persistence. Using this neuronal neuromorphic system, simulations show that
the MAM-boosted neuromorphic system can achieve persistence, can demonstrate deterministic fast on-the-fly
learning with the potential for reduced circuitry complexity, and can provide increased capabilities over an
all-CMOS implementation.
INTRODUCTION
Bioplausible neuromorphic systems exploiting the brain’s computa-
tional methods contain hardware realizations of neural plasticity
and complex synaptic connections. Neuromorphic systems range
from those built with custom asynchronous analog circuits to those
built with conventional synchronous digital processors (1–4), from
those that mimic biological behavior precisely to those that mimic
biological behavior coarsely. One of the main challenges in construct-
ing these neuromorphic systems is the need for persistent memory
embedded in the neural processing. This need, coupled with the ad-
vantage of small, lower-power circuitry, self assembly, and the ability
to provide more three-dimensional connectivity, has led neuro-
morphic researchers to examine the use of nanotechnologies in con-
junction with custom analog circuits (5–8).

Spintronic devices have been proposed as promising hardware
candidates for neuromorphic computing due to their prominent
properties such as nonvolatility, low power consumption, and com-
patibility with CMOS (complementary metal-oxide semiconductor)
technologies (9–12). Numerous theoretical neuromorphic proposals
have been explored based on spintronic devices, and some of them
have been experimentally demonstrated (13–16). Recently, it has also
been reported that a spintronic device incorporating amagnetic domain
wall (DW) exhibits the functionality of an analog memristor (17, 18),
promoting its implementation in neuromorphic circuits different from
existing proposals. This magnetic domain wall analog memristor
(MAM) potentially provides a uniform programming signal and long
retention time, which is required for implementing persistent memory
in analog synapse circuits.

Here, we describe a brain-plausible neuromorphic on-the-fly
learning system with hybrid CMOS/MAM technologies, with the ad-
vantages of on-chip, online, and timing perceptive learning without
forgetting. This spiking neuromorphic system is embedded with spike
timing–dependent plasticity (STDP) learning, which supports learning
while in operation and as circumstances change. The proposed system
is fully designed with transistor-level circuit details, and no external
computing units are required for the demonstrated applications. This
is the first application of an STDP-based learning analog hardware
implementation that learns to detect differences in timing of signals.
In this system, the network learns the temporal relation of the input
sequence using the same neuron and synapse designs. A broad range
of perceptual learning tasks can benefit from this brain-plausible de-
sign. Our design includes a physical model of MAM, analog neuro-
morphic circuits with CMOS/MAM hybridization, and neuronal
networks constituted by analog circuit neural element models. The
spintronic device enables deterministic memristive behavior with ultra-
low-energy operation that has inspired a feasible VLSI (very large scale
integration) neuromorphic design, achieving an on-the-fly learning pro-
cess with spike train signals.
RESULTS
Magnetic domain wall analog memristor
As the key component of our neuromorphic architecture, the charac-
teristic behavior of MAM is first analyzed. The structure of a MAM is
illustrated in Fig. 1. It consists of a heavymetal (HM) layer, a magnetic
free layer with perpendicular magnetic anisotropy (PMA), a tunnel
barrier, and a magnetic fixed layer. The magnetic free layer hosts a
magnetic DW that separates the spin-up (blue) and spin-down (red)
regions.When an electrical current is flowing in the negative x direction
through theHM, a y-polarized spin current is injected into the free layer
via the spin Hall effect (Fig. 1) and drives a DWmotion against the di-
rection of the current. Because of the pinning effects (both intrinsic and
extrinsic pinning), a critical current to initiate the DW motion exists.
Only current with amplitude above the critical value can trigger a DW
motion, and the critical current here is 0.1 mA (~1 × 1011 A m−2). The
tunnel magnetoresistance (TMR) of this device can be read out by a
vertical (z direction) electrical current. Note that the reading current
used here is well below the critical current of theDWmotion, so it does
1 of 9



SC I ENCE ADVANCES | R E S EARCH ART I C L E
not affect the position of the DW. The TMR is determined by the rel-
ative magnetization direction between the two magnetic layers and
thus depends on the explicit position of the DW in the free layer. Be-
cause the DW motion is almost continuous depending on the sample
shape, defects, and other variations, the TMR also changes continuous-
ly, imitating the continuously varying strength of an analog synapse.

Combining the in-plane and out-of-plane current, this MAM
device is able to achieve the functionalities of an analog memristor.
A fixed in-plane current pulse with amplitude above the critical value
is used for the DW motion. Each incoming current pulse changes the
DW position and the corresponding resistance state, and the resist-
ance state can be read out via the out-of-plane current. Here, we con-
sider a magnetic free layer with geometry 1000 nm × 108 nm × 1 nm.
A Néel-type magnetic DW is stabilized in the free layer. A series of
micromagnetic simulations were performed to capture the microscop-
ic dynamics of MAM (for details of the micromagnetic simulation, see
Methods). Furthermore, PMA variations were also considered in the
simulations, which is usual in experiments and could affect the device
performance. Fifty MAM devices with different PMA variations were
simulated and implemented in our circuit simulations. The calculated
resistance (averaged over 50 devices) as a function of the input current
pulse is shown in Fig. 1 (inset), which is fitted to the reported exper-
imental values (18). Depending on the current direction, the device
resistance either increases or decreases quasi-linearly, which is similar
to the functionality of the Set/Reset signal for an analog memristor.

To demonstrate the potential of this novel spintronic analog
memristor in neuromorphic circuits and systems, an integrated
SPICE model is used for circuit simulation. We extracted the micro-
magnetic simulation results as a lookup table and implemented it in
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
Verilog-A to create a SPICE model. The MAM is assumed to be a
four-terminal device, where two terminals are used for the resistor
and the other two terminals are used for controlling resistance Set/
Reset. The resistance is decreased by the Set signal until a minimum
value is reached and increased by the Reset signal until a maximum
value is reached. The result is shown in Fig. 2D. The synaptic plas-
ticity of the following neuromorphic circuits is based on this device.

Multistate synapse circuit
Figure 2 (A and B) shows a Biomimetic Real-Time Cortex (BioRC)
analog CMOS excitatory synapse circuit in 45-nm technology (19) and
its transient simulation results. The input action potential (AP) consists
of spikes generated by a CMOS axon hillock circuit (20) with a max-
imum amplitude of 0.65 V. The excitatory postsynaptic potential
(EPSP) magnitude of this particular synapse circuit is approximately
14% of the AP, with about five times duration of the AP. This partic-
ular simplified BioRC synapse design realizes short-term memory
through the duration of the EPSP and can support long-termmemory
by adjusting the input of the neurotransmitter knob NT to control
neurotransmitter concentration in the synapse. Other BioRC synapses
also allow control of ion channel receptor concentration, providing
another memory mechanism (21). However, the BioRC synapse as
implemented in CMOS does not provide persistent memory unless
the NT and receptor controls are generated continuously, because
charge leakage occurs. To mimic a multistate human brain synapse
biologically, the resistance properties of theMAM are exploited in this
neuromorphic system. Figure 2 (C and D) shows the circuit design
and simulation results. The Set/Reset signal varies the resistance of
the MAM, and the output voltage of the synapse circuit is input to
Fig. 1. Schematic view of the MAM. Yellow arrows indicate the magnetization direction. An electrical current flow in the x direction could induce a DW motion in the
magnetic free layer. The TMR of this device is read out using a vertical current (z direction). Inset: Calculated resistance of the device after injecting both positive and
negative current with an amplitude of 5 × 1011 A m−2 and a duration of 1 ns.
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the resistance terminal of the MAM, resulting in excitatory post-
synaptic current (EPSC) output. A load capacitor is connected at
the MAM output to measure the EPSP variation in voltage. The input
AP is generated by an axon hillock circuit, and the Set/Reset signal is
set as stimuli. The resistance of MAM changes deterministically
according to each Set/Reset signal, which is a fixed current pulse with
±0.5-mA amplitude and 1-ns duration generated by a pulse generator.
The MAM also contains pinning areas for DW near its ends so that,
when the resistance ofMAM reaches its maximum (minimum) value,
it will not respond to the Reset (Set) signal anymore.

On-chip learning method
A learning method, STDP, is embedded in this spiking neuromorphic
hardware system. STDP is implemented as a circuit in 45-nm CMOS
and embedded with a synapse and a MAM to represent the basic
learning element shown in Fig. 3.

STDP learning
In a spiking neuromorphic system, it is natural to use biomimetic
STDP as the learning method. In STDP, the weight dynamics depend
not only on the current weight but also on the relationship between pre-
synaptic and postsynaptic APs (22). This means that, besides the syn-
aptic weight, each synapse keeps track of the recent presynaptic spike
history. In terms of our STDP model, every time a presynaptic spike
arrives at the synapse, the presynaptic spike will cause charge accumu-
lation Xpre in diffusion capacitance of a transistor, and then the charge
will decay gradually. Every time the postsynaptic neuron spikes, charge
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
Xpost is also accumulated and then decays. When a postsynaptic spike
arrives at the synapse due to back propagation from the axon hillock,
the weight change Dw is calculated on the basis of the presynaptic
charges. A simplified STDP mathematical model is given below

Dw ¼ �hð�1Þ∂xpre∂t ; if Xpost > C
0; if Xpost ≤ C

�
ð1Þ

where h is the amount of weight change at each time step of a synapse,
Xpre is the accumulated charge from the pre signal, Xpost is the accumu-
lated charge from the post signal, and C is a constant greater than Xpre.
The assumption of this equation is that bothXpre andXpost are decaying
over time after rising high instantly. If the post signal arrives before the
pre signal decays to 0, theweight of this synapsewill be increased by h. If
only the post signal arrives, whichmeans the output neuron fires before
with the firing of presynaptic neuronswithin an infinite time, theweight
of this synapse will be decreased by h.

The novel biomimetic circuit implementation of this STDP equa-
tion is shown in Fig. 4A; only eight transistors and two pulse generators
are used in the circuit. This circuit operates on charges, thus avoiding
continuous current to save power. Each synapse in this design has its
own STDP circuit, and the possible power consumption of memory
operation can be reduced. h is analogous to the resistance change of
MAM for each pulse. Xpre and Xpost are analogous to electrical charges,
and charge signals are decaying over time through biasing transistors
connected to the ground. If and only if the pre signal arrives first, the
Fig. 2. Synapse circuit implementation and simulation results. (A) BioRC synapse circuit. NT, neurotransmitter quantity; Re, reuptake control; KR, K+ channel re-
ceptor quantity control. (B) Simulation results of the synapse circuit with 45-nm CMOS. (C) Resistive multistate synapse circuit. (D) Simulation result of resistive multi-
state synapse circuit with hybrid of 45-nm CMOS and MAM.
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connected post gated transistor will be charged. Then, if the post signal
arrives successively, the Set pulse will be triggered and the Reset signal is
inhibited by discharging. The resistance of MAM will be decreased by
one Set pulse to increase the strength of this synapse. If only the post
signal arrives, the Set signal will not be triggered, because the pre-
charging of the pre transistor gate is absent, and the post signal will
trigger the Reset pulse without discharging inhibition. The resistance
ofMAMwill be increased by one Reset pulse to decrease the strength
of this synapse. All the charging nodes in this circuit are discharged by a
constant bias transistor to implement the differential timing factor
dQ/dt. In the mathematical model, the amplitude of Dw is a continu-
ous value depending on the product of h and the differential equation.
However, the amplitude of Dw in the circuit implementation is a dis-
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
crete value of the resistance change ofMAMfor each pulse. A positive-
edge input will trigger this circuit to generate one current pulse output
with fixed amplitude and duration, in this case 0.5 mA and 1 ns. The
simulation results shown in Fig. 4B present three scenarios:

1) Scenario 1: If both pre and post spikes arrive in sequence and
the timing interval is short enough, the Set pulse is triggered and the
resistance of MAM is decreased. If the resistance of the MAM reaches
its minimum value, the MAM will no longer respond to the Set pulse.

2) Scenario 2: If both pre and post spikes arrive in sequence with
the timing interval slightly longer than the first scenario, neither signal
Set nor Reset will be triggered. This scenario is shown in Fig. 4B around
70 ns. The reason for this phenomenon is that the decayed Xpre cannot
serve as a source to enable the Set pulse trigger, but it is strong enough
Fig. 3. Illustration of basic STDP learning element implementation including pre/postsynaptic neurons simplified to the axon hillock, synapse circuit with
MAM, STDP learning circuit, current mirror for isolation, and capacitor for current integration.
Fig. 4. STDP circuit implementation and simulation results. (A) STDP learning circuit. (B) Simulation results of the STDP learning circuit and the MAM response.
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to enable the discharge of Xpost and then inhibit the post signal to
trigger the Reset signal.

3) Scenario 3: If only the post signal arrives or the time interval
between signal pre and post is long enough, the Reset signal is trig-
gered and the resistance is increased. If the resistance of the MAM
reaches its maximum value, the MAM will no longer respond to
the Reset pulse anymore.

Neuronal networks
We connect neuron and synapse circuits in a networked manner to
create a neuronal network. Unlike traditional artificial neural networks
processing mathematical models of neural elements on digital pro-
cessors, our neuromorphic hardware models an asynchronous neu-
ronal network with custom analog circuits modeling biological
neurons to a first order. Both pattern recognition and timing percep-
tive neuronal networks are presented in this section, and the details
are discussed below.

Feed-forward neuronal network for pattern recognition
The basic model of the feed-forward neuronal network is shown in
Fig. 5A. In Fig. 5C, the configuration of the feed-forward neuronal
network, which is constituted with 25 input neurons, 20 output
neurons, and 500 synapses with initial random strengths, is shown.
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
The randomness generation circuit is introduced in (23). The input
neuron is simplified to the axon hillock circuit shown in Fig. 3. All
the EPSC outputs of the synapses are connected with a current mirror
(24) shown in Fig. 3. All isolated EPSC outputs from the current mir-
rors are connected together to realize linear current addition. The sum-
mation of the current is connected to an RC (resistance·capacitance)
element (10 MΩ/500 fF) to constitute a simplified dendritic arbor
along with converting to voltage output. Then, the output of the den-
dritic arbor is connected to the axon hillock of each output neuron.
The pattern in Fig. 5B is fed into the neuronal network, and the
simulation results are shown in Fig. 5D. The pattern is 5 × 5 pixels
with 1-bit binary value, and then the pattern is encoded as 0.7-V
pulses of 0.1-ns duration and repeated six times with 15-ns interval
between the repetitions. These pulses activate the input neurons,
and then the network learns this pattern adaptively. After the first
echo, five output neurons fired spikes to respond to this pattern. If
the input pattern stimulates the output neuron, the synapses that re-
ceived both pre and post signals will be strengthened according to
STDP learning scenario 1 or will keep the same strength according
to scenario 2, while the synapses that only received post signal will be
weakened according to scenario 3.

On the basis of the randomization of initial synapse strengths,
output neurons 8, 15, and 17 have relatively stronger initial states and
Fig. 5. Neuronal network configuration for pattern recognition. (A) Feed-forward neuronal network example. Each input neuron receives image pattern pulses
from one pixel, generating a presynaptic spike for synapses. The STDP synapses are initialized with random weights and receive pre and post spikes. The output
neurons receive and integrate EPSPs using current adders. If the voltage of the capacitor accumulating the EPSPs exceeds 0.4 V, then the output neuron generates
a post spike. The network has m input neurons, n output neurons, and m × n synapses. In this example, three input neurons, three output neurons, and nine synapses
are shown. (B) Pattern example input to the neural network. Pattern is converted as pulses and fed to the input neurons six times successively. (C) Network
configuration of 25 input neurons, 500 synapses, and 20 output neurons. This network is simulated using HSPICE at the transistor level. (D) Simulation results of
the pattern recognition. Neurons 8, 14, 15, and 17 learned this pattern, while neuron 10 has not learned the pattern. Other nonresponding output neurons are not
shown here.
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timing dynamics, so they learn the pattern during the first trial.
Output neuron 10has fair initial synapses states, but the delay between
pre and post signals is too long to trigger the strengthening for synapses
instead of weakening. Output neuron 14 weakens the synapses for
the first trial like output neuron 10, but the timing is good for trials
3 and 4. This situation is due to the fact that STDP learning scenario 2
happens for neuron 14 during the first trial. Therefore, neuron 14 still
has high enough EPSP to trigger the output neuron, and then the STDP
strengthens the synapses to learn this pattern eventually. After training
with six trials, this pattern is stably recognized by four output neurons.
A more detailed simulation result of learning three successive patterns
can be found in the SupplementaryMaterials. Because an unsupervised
learning is implemented here, multiple neurons may fire for the same
pattern. The trained neurons firing for the same pattern can be clustered
into one class using traditional clustering technologies such as winner-
take-all method (25) or normalization method (26). The pattern capac-
ity of this neuronal network depends on the number of post neurons.
For instance, in the above network configuration, the maximum num-
ber of recognized pattern is 20, and each recognizable pattern has cer-
tain variation tolerance. For more patterns, this network can be scaled
withmore post neurons. For deeper scaling of this type of network, add-
ing more layers can increase its accuracy. However, the extra layers just
implement an averaging function for a set of patterns or features.

Neuronal network for timing perceptive learning
Aneuronal network for timingperceptive learning is also implemented
using the same circuit elements introduced above in a different
network configuration. This example is provided to further highlight
the role ofMAMs, STDP, andpersistentmemory in learning and recall.
The neuronal network is not intended tomimic biologicalmechanisms
and is different from previously reported continuous in situ learning
(27–29). Other than the general pattern recognition function, the neu-
ronal network proposed here can also learn the temporal relationship
of a pattern sequence. It recognizes a sequence of spikes from each
input neuron, and each input neuron represents different patterns to
be recognized. The neuronal network is illustrated in Fig. 6A, where
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
25 neurons are connected as a sequential neuron chain with strong
excitatory synapses, another 5 neurons representing patterns are fully
connected with the neuron chain, the sequential neurons are precon-
nected to the STDP synapses, and the pattern neurons are post-
connected to the STDP excitatory synapses. The sensory neurons
are connected as inputs to the pattern neurons in a one-to-one man-
ner through strong excitatory synapses. The pattern neurons can rep-
resent signals or symbols that are a complex combination of signals
from the sensory neurons. The learning process of this neuronal
network is shown in Fig. 6B. After the start signal triggers the neuron
chain from N0, the neurons fire successively from N0 to N24 behaving
like a clock.While the neuron chain is firing, any firing sequence of the
pattern neuron from P0 to P4 will be learned by the STDP synapses
between the sequential neurons and pattern neurons. After the
learning process, this neuronal network enters the recall process,
shown in Fig. 6B around 0.3, 0.6, and 0.9 ms. During the recall process,
the sequential neuron chain is triggered by the recall signal to fire suc-
cessively and the pattern neurons fire according to the learning result,
while the sensory neurons are quiet. Because of the subsequent STDP,
the strong excitatory synapses between the sensory neurons and the
pattern neurons will be depressed and become weak excitatory
synapses. This depressive process is designed to be very strong so that
the connection breaks in one shot and potential redundant learning
process can be avoided. As a result of the recall process, the learning
result is reinforced, and the pattern neurons are isolated from the sen-
sory neurons to complete the abstraction. In the case of multiple se-
quential neurons connecting to one pattern neuron, the STDP will
lead to forgetting in the recall process. For example, N1 and N24 both
can trigger the P0 pattern neuron through a learned strong excitatory
synapse in Fig. 6A. If N1 fires and triggers P0, the synapse between N24

and P0 should be weakened and forgotten. This issue is solved by
setting the amplitude of strengthening to be five times larger than
the amplitude of weakening. After several cycles of recall, the pattern
neurons can be completely isolated from the sensory neurons with lit-
tle influence on the synapses between pattern neurons and sequential
neurons, as shown in Fig. 6C.
Fig. 6. Neuronal network configuration for timing perceptive learning. (A) Neuronal network for timing perceptive learning. (B) Simulation result of the timing
perceptive learning without timing factor calibration. (C) Simulation result of the timing perceptive learning with timing factor calibration.
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The delay between sequential neurons is about 5.9 ns, so the
start signal is given every 300 ns to start each period of the neuron
chain. The most important difference between the learning period
and the recall period is the timing shift of the pattern neuron firing.
During learning, the pre and post signals happen in a small time
window, but during the recall process, the post signal is triggered
by the pre signal. The timing shift is ±3 ns, so it does not have im-
portant influence on the accuracy of the learned sequence. However,
because our neuromorphic system is an online learning system, this
shifting will trigger the learning of next sequential neuron during
the recall period. As a result, the learned sequence will shift every
period and lead to an erroneous duplication by the recall process, like
the P1 and P2 output shown in Fig. 6B. This issue is solved in Fig. 6C
by discovering the minimum overlap time window for two succes-
sive STDP processes in this circuit configuration. By applying and
adjusting the overlap time window, this neuronal network can han-
dle both the learning and recall processes without extra control. The
missing signal shown in the third period of S2 output is due to
multiple sequential neurons connecting to one pattern neuron as
discussed above. Multiple versions of this neuronal network can be
combined together and managed by a higher architecture for more
complicated applications.
DISCUSSION
We presented a neuromorphic system with magnetic analog mem-
ristor, analog circuit implementation, and spiking-based on-the-fly
learning neuronal networks. All the circuit components are built
using conventional CMOS components except theMAM. Other mem-
ristive devices can also be used for the synapse circuit in our framework
with an appropriate pulse trigger. This work is designed to be a bio-
mimetic implementation of neuromorphic computing system elements
as opposed to conventional neural networks, as the subunits of
biological neural compartments are efficiently realized with analog
circuits and the operation of each neuron is independent of the others
and asynchronous. For instance, the subunits in the central nervous sys-
tem include multiple synaptic terminals (so-called boutons) of a pre-
synaptic neuron, postsynaptic terminals, dendritic arbors, and axon
hillock of the postsynaptic neuron. Moreover, each biological synapse
contains presynaptic release sites, cleft, and postsynaptic ion channels.
Furthermore, our implementation of plasticity of the learning synapse
through changes in the individual MAM is analogous to the fact that
each of the synaptic connections between a pair of biological neurons
is individually plastic. The large number of MAM devices during
the potentiation/depression of the learning synapse circuit is anal-
ogous to the intermediate process of biological short-term and
long-term memory and can also be used to realize structural plas-
ticity in future circuits.

The proposed architecture also offers several advantages in terms
of reliability. Even if the resistance amplitudes of the devices have
some variations, the design will continue to perform synaptic efficacy
and plasticity. In addition, each device within a synapse gets
programmed less frequently than reused integrated memory, which
effectively increases the overall lifetime of a MAM synapse. The po-
tentiation and depression are event-driven processes, further improving
power efficiency and endurance-related issues. The power consumption
of MAM can be further reduced by optimizing material parameters
such as the effective spin Hall angle and the damping constant of the
free layer (30–33).
Yue et al., Sci. Adv. 2019;5 : eaau8170 26 April 2019
In summary, we propose a novel hybrid neuromorphic system
comprising MAM devices with nonideal characteristics to efficiently
implement on-the-fly learning when processing spike signals. This
system is shown to overcome several important challenges that are
characteristic to traditional memristive devices proposed for neuro-
morphic circuits, such as the asymmetric conductance response, limita-
tions in resolution and dynamic range, as well as device-level variability
(34). The analog circuit-based STDP design also has the features of ef-
ficient transistor cost, low power consumption, and intrinsic tolerance
for process variations (35). Hence, the proposed system and the
corresponding simulations are an important tool toward the realization
of highly efficient, large-scale neuronal networks based on advanced
nanodevices with typical experimentally observed nonideal charac-
teristics. Our results could also benefit applications such as neuro-
morphic robots, context understanding, and video processing.
METHODS
Details of micromagnetic simulation
The micromagnetic simulations were carried out using MuMax3
(36) with the damping-like spin torque (tDL) and the field-like spin
torque (tFL) terms

tDL ¼ �hs� ðs� sÞ; tFL ¼ �hFLs� s ð2Þ

where s is the magnetization unit vector and s is the spin polarization.
We considered a magnetic DW device with size 1000 nm × 108 nm ×
1 nm. The simulation cell size was 2 nm × 2 nm × 1 nm. h ¼ gℏjqSH

2edMs

describes the amplitude of tDL, where j is the current density, qSH =
0.1 is the spin Hall angle of the HM, and d is the thickness of the
magnetic free layer. hFL = Dh denotes the amplitude of the field-like
spin torque, and we took D = 0.1 in the simulation. We assumed a
thick HM layer and almost all the currents injected through the
HM; thus, we could neglect the in-plane spin transfer torque for
the DW motion. The exchange interaction J = 15 pJ/m, PMA
Km = 800 kJ/m3, Dzyaloshinskii-Moriya interaction D = 0.5 mJ/m2,
damping constant a = 0.3, saturation magnetizationMs = 1000 kA/m,
and magnetic dipole-dipole interaction were taken into account in
the simulation.

To further consider the weak disorder effect, which is common in
DW devices, random grain shape was also included with an average
grain size equal to 20 nm. The random grain shape was implemented
with the Voronoi tessellation, and the PMA was randomly distributed
over all grains with a Gaussian distribution and an SD of 0.02 Km. Fifty
devices were simulated with different random PMA distributions. The
corresponding lookup tables were used in the circuit simulations, and
there was no obvious performance change in the circuit simulations.
Pinning areas near the end of the magnetic free layer were simulated
by setting a larger PMA constant, which could be experimentally
achieved by either tuning the thickness of the magnetic free layer or
putting an adjacent pinning layer.

The device resistance was estimated on the basis of the micromag-
netic simulation results and calibrated to the experimental values
(18, 37–39). The TMR can be expressed asR ¼ x

L RP þ L�x
L RAP, where

x is the position of the DW and L is the length of the magnetic layer
(17). RP and RAP are the TMR for parallel and antiparallel magneti-
zation configuration, respectively, and the TMR ratio is taken to be
90%. The effect of voltage on the TMR was also considered in the
lookup table (38).
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SPICE
The SPICE model of the MAM was developed by a lookup table
method inVerilog-A. The numerical simulation results were extracted
as lookup tables and then embedded in Verilog-A model block. Elec-
trical terminals were defined as a, b, c, and d. Terminals a and b were
used as reading ports. A resistor was assigned between a and b, and the
value of this resistor was indexed with the lookup tables. Terminals c
and d were used as writing ports with a constant resistance assigned
in between. An internal variable “state” was related with the voltage
between c and d iteratively. Then, the value of state was used as
searching ID to retrieve the instant resistance value. All the circuit
simulations were executed on HSPICE version L-2016.06 for linux64.
The PTM (Predictive Technology Model) 45-nm LP (Low Power)
library from ASU (Arizona State University) (19) was used as CMOS
models in this work.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaau8170/DC1
Fig. S1. Simulation results of the successive pattern recognitions.
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