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Abstract

Affecting 5% of all preschool-aged children, developmental stuttering -- also called childhood 

onset fluency disorder-- is a complex, multifactorial neurodevelopmental disorder characterized by 

frequent disruption of the fluent flow of speech. Over the past two decades, neuroimaging studies 

of both children and adults who stutter have begun to provide significant insights into the 

neurobiological bases of stuttering. This review highlights convergent findings from this body of 

literature with a focus on functional and structural neuroimaging results that are supported by 

theoretically-driven neurocomputational models of speech production. Updated views on possible 

mechanisms of stuttering onset and persistence, and perspectives on promising areas for future 

research into the mechanisms of stuttering are discussed.

Verbal communication, facilitated by effortless and fluent speech production, is one of the 

defining characteristics of being human. Speech production requires the coordination of 

hundreds of muscles of the head, face, neck, and abdomen on a millisecond time scale, and 

in an overlapping manner. Humans are nearly flawless in our ability to constantly adapt to 

situational changes in speaking rate, articulation, and emotional load. Not only must we 

coordinate speech sounds like consonants and vowels, but also regulate pitch, rhythm, 

loudness, and prosody in order to produce natural sounding fluent speech. This requires 

input from multiple cortical and subcortical brain regions and finely tuned interactions 

among large scale neural networks. While most speakers take this complex feat for granted, 

people who stutter are acutely aware of how the process can go awry and lead to speech 

disruptions.

Stuttering is a disorder that specifically affects a speaker’s ability to produce fluent speech. 

More than 5% of the general population, cutting across differing languages, ethnicity, and 

socioeconomic status, report ever having stuttered. Most cases of stuttering are not 

associated with brain injury, nor is stuttering linked to any obvious deficits affecting 

cognitive, linguistic, or psychiatric functions. Despite the relatively high lifetime prevalence 

(see Box 1) and its detrimental effects on communication for those afflicted, stuttering 

remains an under-investigated and poorly understood disorder. The etiology and mechanisms 
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behind stuttering are largely unexplained, and limited options for effective treatments are 

available for those affected.

In the past two decades, an increasing number of studies and several recent meta-analyses 

and review papers highlight convergent findings of functional neuroanatomical differences 

in speakers who stutter relative to fluent speakers. Despite these important advances, a 

neural mechanistic understanding of stuttering remains elusive. It is unclear why up to 5% of 

preschool age children begin to stutter but only about 20% of those children develop lifelong 

chronic stuttering. We do not know why stuttering severity fluctuates in an individual, why 

stuttering can be alleviated through manipulation of auditory feedback or with an external 

pacing signal, or why stuttering can be exacerbated during stressful speaking situations. In 

this review, we summarize critical functional neuroanatomical differences linked to 

stuttering that provide clues to answering these questions. Based on results reported to date, 

updated views on possible mechanisms of stuttering onset and persistence are discussed.

Clues to the neural bases of stuttering

Aberrant sensory-motor integration for speech production

The most commonly reported finding with regard to neural bases of stuttering involves 

decreased white matter ‘integrity’ along parts of the left arcuate/superior longitudinal 

fasciculus in both children and adults who stutter (Sommer and others 2002; Chang and 

others 2008; Watkins and others 2008; Cykowski and others 2010). Sometimes referred to as 

the dorsal auditory tract (Hickok and Poeppel 2007; Saur and others 2008), this pathway 

interconnects speech motor and auditory areas to enable mapping between speech sounds 

and motor plans for articulation. The relevant areas include major perisylvian cortical 

structures critical to speech and language development, encompassing the inferior frontal 

gyrus (IFG), ventral premotor cortex (vPMC), ventral motor cortex (vMC), and posterior 

superior temporal gyrus (pSTG) (Figure 1). All of these areas have been found through 

multiple measures of structure and function to differ in stuttering speakers. There is 

empirical evidence and theoretical perspectives pointing to probable deficits in integrating 

auditory feedback into the speech motor program in stuttering (Max and others 2004). The 

accumulating findings from neuroimaging research focused on left perisylvian motor and 

auditory cortical structures seem to corroborate these earlier perspectives. Below, we review 

some of these findings by each cortical area to interpret how deficits found in critical 

structures supporting auditory-motor integration may contribute to stuttering.

Left IFG/ventral premotor cortex (vPMC)—The left IFG updates speech articulatory 

plans as a function of the sensory context (Guenther 2016), and is a critical structure 

supporting speech planning (Flinker and others 2015). The left IFG (BA 44,45) and vPMC 

regions showed significantly decreased white matter integrity (Sommer and others 2002; 

Chang and others 2008; Watkins and others 2008; Cykowski and others 2010; Connally and 

others 2013; Chang and others 2015) and decreased gray matter volume (Chang and others 

2008; Kell and others 2009; Beal and others 2013) in both adults and children who stutter. 

The pars opercularis (BA44) showed aberrant developmental trajectories of cortical 

thickness (Beal and others 2013) and white matter integrity (Chang and others 2015) in 
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people who stutter (PWS) compared to controls. This area also shows aberrant brain activity 

during speech production tasks in speakers who stutter (Watkins and others 2008; Neef and 

others 2016). Broca’s area and the right homologue showed abnormally decreased cerebral 

blood flow in PWS, which was especially the case for severe stutterers (Desai and others 

2016). Hemodynamic responses measured with functional near infrared spectroscopy 

(fNIRS) during a picture description task showed significant decreases in the left dorsal IFG 

and premotor cortex in school-age children who stutter compared to the control group 

(Walsh and others 2017). These results collectively suggest deficiencies in left IFG function 

in stuttering, which in turn may implicate deficits in the speech planning phase for stuttering 

speakers.

Functional coupling between vPMC/IFG and other left hemisphere speech areas is also 

reported to be deficient: for instance, IFG connectivity with primary motor cortex (M1) (Lu 

and others 2009), and with the inferior parietal lobe (Neef and others 2016), significantly 

differed in stuttering speakers relative to fluent speakers. Further, people who stutter exhibit 

aberrant functional connectivity between the basal ganglia and IFG during both speech (Lu 

and others 2010) and non-speech tasks (Metzger and others 2017). These functional 

connectivity differences may affect efficient integration of speech planning and motor 

execution, as well as speech planning and sensory input areas.

Primary motor cortex/M1—Stuttering has long been considered a disorder of motor 

control (Zimmermann 1980; Kent 1984; Ludlow and Loucks 2003). Aberrant M1 activity 

has been linked to disfluent speech production in stuttering speakers (Belyk and others 

2017). The anomalous function of M1 observed in stuttering speakers is likely influenced by 

deficient functional links to speech planning areas (Vanhoutte and others 2015). For 

example, activity in the cortical speech motor execution area in M1 preceded that in IFG/

speech planning region in people who stutter, a reversal of what was seen in controls 

(Salmelin and others 2000).

Further demonstrating possible motor deficiencies during speech preparation, stuttering 

speakers did not show the typical left-lateralized excitability in the left M1 tongue 

representation during speech preparation. In addition, the extent to which the left M1 tongue 

representation was facilitated was negatively correlated with stuttering severity, e.g., the 

more left lateralized, the less severe (Neef, Hoang, and others 2015).

Neural oscillations during motor preparation preceding speech production were also 

reported to be aberrant in stuttering speakers (Mersov and others 2016; Mersov and others 

2018). Neural oscillations are rhythmic fluctuations of neural excitability that reflect 

synchronized activity across distributed groups of neurons (Buzsáki and Draguhn 2004; 

Lakatos and others 2008). When oscillatory phases align, this indicates neurons are firing in 

a synchronous manner, in turn reflecting increased communication and neuronal processing 

(Singer 1999; Varela and others 2001; Fries 2005). Neural oscillations are categorized based 

on the characteristic frequencies at which the rhythms occur; among these, beta oscillations 

that occur in the 12-30 Hz range are prevalent in the motor system (Pogosyan and others 

2009; Joundi and others 2012; Kilavik and others 2013). Aberrant beta oscillations were 

reported in both children (Ozge and others 2004; Etchell and others 2016) and adults who 
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stutter (Joos and others 2014; Kikuchi and others 2016; Mersov and others 2016; Mock and 

others 2016; Saltuklaroglu and others 2017). Specifically, in the case of adults who stutter, 

beta desynchronization and synchronization that occur characteristically during movement 

preparation and execution respectively, were both exaggerated relative to controls in 

stuttering speakers (Mersov et al., 2016). The authors suggested that adults who stutter may 

have an overly inhibited motor system that requires heightened beta suppression 

(preparation) to disengage prior to speech initiation. In sum, these results point to anomalous 

neural activity in the M1, and abnormal neural coordination during speech preparation and 

execution in stuttering.

Posterior superior temporal gyrus (pSTG)—The pSTG interconnects with the 

premotor and inferior frontal areas via a number of major white matter tracts, such as the 

superior longitudinal fasciculus dorsally, and the extreme fiber capsule system (EFCS)/

uncinate fasciculus (UF) ventrally (See figure 1). As alluded to in previous sections, 

preparation and execution of speech in stuttering speakers cannot be considered in isolation 

from sensory regions, as speech movements are planned and executed in the context of the 

expected sensory (auditory, somatosensory) targets (i.e., speech sounds generated as a result 

of the speech movements). Much evidence points to aberrant interaction between auditory-

motor integration for speech in stuttering speakers. It is well-established that auditory 

feedback manipulations (e.g., masking noise, frequency-shifted feedback, or delayed 

auditory feedback) can induce fluency in people who stutter, at least temporarily 

(Kalinowski and others 1993; Stuart and others 2008; Saltuklaroglu and others 2009; R.J. 

Ingham and others 2012; Foundas and others 2013; van de Vorst and Gracco 2017) (Box 2). 

Studies investigating sensorimotor adaptation to auditory perturbations indicate that adults 

who stutter show reduced adaptation compared to controls (Nudelman and others 1992; Cai 

and others 2012; Loucks and others 2012; Cai and others 2014) whereas children who stutter 

show the same amount of adaptation as fluent children (Daliri and others 2017). Notably, 

speech-induced suppression of the auditory cortex was delayed in latency in children who 

stutter, indicating aberrant interaction of the auditory and motor areas were present even in 

children (Beal and others 2011).

Deactivation of left auditory cortices (STG, MTG) during speech tasks in people who stutter 

is one of the “neural signatures” highlighted in meta-analyses of fMRI and PET studies on 

stuttering (Brown and others 2005; Budde and others 2014). Interestingly, activity in the 

bilateral pSTG and right STG in particular heightens during fluent speech in people who 

stutter. When compared to solo reading, induced fluency conditions such as metronome 

paced speech and choral speech showed heightened activity in the auditory cortex that 

overshot the controls’ activity in the same areas (Toyomura and others 2011). Although 

speculative, this may suggest that deactivation of the auditory cortex occurs when stuttering 

is anticipated in order to reduce sensory mismatch between actual and predicted speech 

sounds (Eliades and Wang 2008).

The studies reviewed in this section relevant to sensorimotor integration in speech 

production point to deficient functional neuroanatomy of the left premotor, motor, and 

auditory cortical areas, and the white matter tracts interconnecting these structures, in 

speakers who stutter. These structures collectively form critical scaffolding for fluent speech 
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and language development during childhood. Evidence of anomalous development of this 

cortical network in speakers who stutter corroborate previous reports of weaker performance 

in tasks requiring sensorimotor integration. These results also offer clues to why auditory 

feedback manipulation (e.g., delayed auditory feedback) could have a powerful influence on 

fluent speech production in speakers who stutter.

Aberrant timing and sequencing of speech sounds

Speech motor control requires coordination of movement sequences that occur with precise 

timing, often expertly adjusting to changes in speech rate, emotional state, and modulations 

in rhythm, intonation and prosody of the continuous speech stream. Stuttering has thus also 

long been considered a disorder of timing (Van Riper 1982; Donald G Mackay 1984; Kent 

1984; Caruso and others 1994). More recent theoretical perspectives corroborate the critical 

role of timing-related neural circuits in stuttering (Alm 2004; Etchell and others 2014). 

These perspectives are supported by accumulating evidence pointing to deficient interaction 

among cortical and subcortical regions in stuttering speakers (Wu and others 1997; Lu and 

others 2010; Chang and Zhu 2013; Wieland and others 2015) that are linked to both rhythm 

and speech processing.

Basal Ganglia—The classic left hemisphere speech motor control regions discussed in the 

previous sections interface with subcortical structures at multiple levels, and are all key 

components of the basal ganglia-thalamo-cortical motor circuit (hereafter, BGTC loop) 

(Maguire and others 2000; Maguire and others 2002; Alm 2004; Maguire and others 2004; 

Chang and Zhu 2013; Civier and others 2013). The function of the BGTC loop is implicated 

in the selection and initiation of movement sequences (e.g., (Brotchie and others 1991; 

Marsden and Obeso 1994; Mink 1996) including the sequence of gestures for a word or 

syllable (Bohland and Guenther 2006; Bohland and others 2010). According to a 

biologically plausible neurocomputational model of speech sound sequencing and motor 

initiation (GODIVA model) (Bohland and others 2010; Civier and others 2013), the BGTC 

loop is responsible for initiating the articulatory gestures within a syllabic motor program at 

the appropriate time by activating neurons in an initiation map in SMA. Projections from 

sensory, motor, and premotor cortical areas to the putamen provide a detailed “sensorimotor 

context” that the basal ganglia monitor to determine exactly when to initiate the next gesture 

in the sequence.

For example, left vPMC provides information about the syllable currently being produced, 

SMA and vMC provide information about the ongoing articulatory gesture, ventral 

somatosensory cortex (vSC) provides information about the current somatosensory state, 

and posterior auditory cortex (pAC) provides information about the current acoustic signal 

being produced. When the BG recognize that the current gesture is nearly complete, a 

“completion signal” is sent to the supplementary motor area (SMA) that extinguishes 

activity in the initiation map neurons coding the current gesture and activates the neurons 

coding the next gesture. In the context of GODIVA, the structural and functional differences 

reviewed in previous sections concerning vMC and vPMC in stuttering speakers may make 

it relatively difficult for the BGTC loop to identify the proper sensorimotor context for 

initiating the next gesture in a speech sequence, leading to moments of stuttering. Prediction 
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and planning of proper timing of upcoming sounds relate to an internalized timing 

mechanism localized in core structures such as the basal ganglia and SMA, which intersects 

with other areas to support timing in a context dependent manner (Figure 3) (Merchant and 

others 2013).

Relevant to this discussion is beta oscillations that were mentioned under the previous 

section on M1. Given that beta power reliably decreases before movement and is increased 

after movement, examining the time course of beta modulation provides a mechanism for 

maintaining predictive timing. Beta activity seems to cue the initiation and end of a 

movement sequence, enabling internally driven timing of movement sequences (Bartolo and 

Merchant 2015). Furthermore, striatal beta activity allows utilization of sensory cues to 

guide behavior (Leventhal and others 2012). According to Fujioka et al. (2012), “beta 

oscillations reflect functional coordination between auditory and motor systems, and … 

coherence in beta oscillations dynamically configure the sensorimotor networks for 

auditory-motor coupling” (Fujioka and others 2012) (p.1791). Thus, it could be speculated 

that beta oscillations provide a mechanism for coordinating auditory and motor systems in 

producing speech sequences that are internally timed. If beta oscillations are affected in 

stuttering (see previous section for relevant studies), stuttering speakers could have deficits 

in tasks that require internal timing of events that require auditory-motor integration. Using 

rhythm discrimination tasks, this was indeed found to be the case in both children (Wieland 

and others 2015) and adults who stutter (Chang and others 2016).

Impaired structural connectivity affecting core areas that support internal timing, such as the 

SMA and putamen, has been reported in stuttering speakers. The left SMA/preSMA area is 

also interconnected with the left posterior IFG via the frontal aslant tract ([FAT]; (Dick and 

others 2014)), which was shown in recent studies to support language production (Catani 

and others 2013). The FAT was found to be aberrant in white matter integrity in stuttering 

speakers (Kronfeld-Duenias and others 2014), and axonal stimulation that transiently 

lesioned the FAT led to transitory stuttering (Kemerdere and others 2015). These findings 

add to the literature that accounts for why conditions that provide external timing cues 

(metronome-paced speech, choral reading, singing) may play a compensatory role during 

speech production in adults who stutter. If neural pathways that support internally timed 

movement are affected in stuttering, external pacing conditions may provide PWS with cues 

upon which to time their speech movements, so that they do not need to rely on deficient 

internal timing (Adams and Ramig 1980; C.C. Andrews and others 2012).

Cerebellum—Dysfunctional BG circuits may lead to an increased influence of the 

cerebellum and a compensatory network encompassing the cerebellum-thalamus-SMA 

(Kotz and others 2009). In Parkinson’s Disease for example, cerebellar circuits are proposed 

to compensate for timing deficits present in the disorder (Kotz and Schwartze 2010; 

Merchant and others 2013). The cerebellum may play a compensatory role due to its 

function in predicting and tuning movements on the basis of an efferent copy of sensory and 

motor information (Miall and Wolpert 1996; Wolpert and others 1998). The cerebellum 

selectively contributes during self-initiated sounds; it makes rapid predictions about the 

sensory consequences of self-generated movement (Blakemore and Sirigu 2003), which 

makes it critical for action-perception coupling (Christensen and others 2014).
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In this context, it is interesting to note that most studies examining brain function in 

stuttering have reported anomalous cerebellar activity. To point out a few, Lu et al. (2009) in 

an fMRI study reported that two parallel neural circuits-- the cerebellum-left premotor 

circuit and the BG-IFA/premotor circuit—were involved in atypical planning and production 

processing in stuttering speakers (Lu and others 2009). Fox and colleagues (2000) on the 

other hand, showed that cerebellar activity was correlated with fluent utterances in adults 

who stutter (Fox, R.J. Ingham, J.C. Ingham, Zamarripa, Xiong, and Lancaster 2000a). 

Heightened cerebellar activity was observed in stuttering speakers, which was even further 

heightened and then lowered following therapy (De Nil and others 2003). The cerebellar 

peduncles that carry efferent and afferent fibers interconnecting cerebellum to cerebrum 

were found significantly reduced in white matter integrity in speakers who stutter (Connally 

and others 2013). An interesting case study reported a patient in whom stuttering emerged 

after right cerebellar infarction (Tani and Sakai 2011). The current body of evidence 

suggests that the cerebellum could play a compensatory role to deficient BGTC function in 

stuttering. The compensation is not completely successful however, because it does not 

altogether alleviate stuttering. Furthermore, there is ample evidence that performance on 

tasks that require a fully functioning efference copy mechanism, which relies on cerebellar 

function, is affected in stuttering speakers (Daliri and Max 2017). Future research that 

further investigates the role of cerebellar circuits in stuttering would clarify some of these 

outstanding questions.

The compensatory and/or maladaptive role of right hemisphere homologues

Historically, stuttering has been attributed to abnormal laterality of the brain (ORTON 1927; 

Travis 1978). This idea has persisted, and has been in part corroborated by results reported 

in some neuroimaging studies. Morphometry studies of adults who stutter consistently find 

right hemisphere anomalies in the speech network, mostly in the form of larger regional 

volume/thickness (Jancke and others 2004) and higher white matter integrity (Jancke and 

others 2004; Neef and others 2017), which contrasts sharply with the smaller volume/

thickness and decreased integrity of white matter tracts found in the left hemisphere of 

children who stutter (Chang and others 2008; Beal and others 2013; Chang and others 2015; 

Chow and Chang 2017) (for meta-analyses see (Brown and others 2005; Belyk and others 

2014). With regard to measures of brain function, adults who stutter showed increased beta 

oscillations across the cortex, particularly in the right temporo-parietal lobe during a reading 

task (Rastatter and others 1998). Another study found that adults who stutter tended to have 

more right-lateralized suppression of beta power in the mouth motor cortex during single-

word reading, while fluent speakers showed a primarily left-lateralized pattern (Salmelin and 

others 2000). Similar right laterality was observed in decreased alpha and beta oscillations 

during rest in children who stutter, which was proposed to reflect reduced cortical 

maturation (Ozge and others 2004).

There has been much debate about whether such changes are adaptive or maladaptive. Some 

authors assert the right IFG over-activation is adaptive and has negative correlations with 

stuttering severity (e.g. (Preibisch and others 2003; Kell and others 2009)). In a seminal 

study, Fox et al., (1996) reported right hemisphere activation was stronger in fluent than 

stuttered speech ((Fox and others 1996), see also (Braun and others 1997)). Vanhoutte and 
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colleagues found enhanced right contingent negative variation (CNV; an event related 

potential linked to motor preparation) to be associated with fluent relative to stuttered speech 

(Vanhoutte and others 2015; Vanhoutte and others 2016). Other authors suggest right 

hemisphere involvement is maladaptive. For example, adults who stutter with greater 

rightward planum temporale asymmetry tended to exhibit significantly greater disfluency 

than those who had more leftward asymmetry (Foundas and others 2004). Overactivation of 

the right hemisphere is positively correlated with stuttering rate (Fox, R.J. Ingham, J.C. 

Ingham, Zamarripa, Xiong, and Lancaster 2000a), and stuttering therapy reduces right sided 

activation (De Nil and others 2003).

In a recent meta-analysis, Neef et al., (2015) reported that activity in some right hemisphere 

regions like the pars orbitalis and SMA was related to disfluency, but that activation in left 

hemisphere regions like Heschl’s gyrus, planum temporale, posterior STG, and pars 

opercularis as well as the middle, superior medial gyrus and the inferior parietal lobule was 

related to fluency (Neef, Anwander, and others 2015). To further elucidate the basis for right 

inferior frontal hyperactivity reported in many previous studies —maladaptive or 

compensatory-- Neef et al. (2017) conducted a combined fMRI-DTI study to investigate 

structural connectivity of subsections of the right IFG. They found white matter tracts that 

interconnect right posterior IFG, SMA, and preSMA (right frontal aslant tract) and between 

the right frontal pole and anterior thalamic nuclei (right anterior thalamic radiation), were 

associated with greater stuttering severity, suggesting a possible maladaptive role of these 

tracts in stuttering speakers. On the other hand, connection strength of the right uncinate 

fasciculus, which interconnects the right frontal pole to auditory cortices, was found to be 

negatively correlated with stuttering severity, suggesting a possible compensatory role of this 

tract in stuttering speakers (Neef and others 2017).

The overall interpretation of this pattern of results within the DIVA/GODIVA framework is 

that the core deficit in stuttering is an impairment of the left hemisphere feedforward control 

system (and thus left hemisphere anomalies are found in both adults and children who 

stutter), and this deficit forces over-reliance on right hemisphere feedback control 

mechanisms, eventually leading to right hemisphere morphological changes seen in adults 

who stutter. These interpretations await confirmation through studies involving children who 

stutter, to possibly help clarify the role of right hemisphere homologues in fluent and 

stuttered speech.

Brain developmental trajectories linked to stuttering persistence and recovery

There is a relatively high rate of natural recovery from stuttering during childhood (Box 1). 

Knowing the basis for persistence versus recovery has significant implications for clinical 

management of stuttering. These may include helping find an early prognostic marker for 

persistent stuttering and later, neural target for developing novel intervention.

Recent studies have begun to shed light on indices predicting persistence or recovery in 

children. In one study, Mohan and Weber (2015) examined neural activity mediating 

phonological processing in 7-8 year old children who had recovered from stuttering, those 

with persistent stuttering, and controls. An ERP response indexing phonological 

segmentation and rehearsal was observed to be attenuated for persistent children who stutter. 

Chang et al. Page 8

Neuroscientist. Author manuscript; available in PMC 2019 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This response was present in recovered children who stutter similar to controls, but it was 

localized with an atypical lateralization relative to controls. There is also kinematic evidence 

of a maturational lag in speech motor coordination in 5- to 7- year old children with 

persistent stuttering compared to controls and children recovered from stuttering (Usler and 

others 2017). Specifically, children with persistent stuttering exhibited higher variability in 

articulatory movement regardless of length or syntactic complexity of the speech stimuli, 

which the authors attributed to a higher variability in speech planning and execution and due 

to increased “neuromotor noise”. This disrupts proper integration of sensory information to 

optimal execution of the speech motor plan ((Wolpert 2007), cited in (Usler and others 

2017)).

In an earlier study, children with persistent stuttering were found to exhibit immature 

patterns of neural response for syntactic processing relative to fluent controls and children 

who recovered from stuttering (Usler and Weber-Fox 2015). A lag in syntactic structure 

processing could be linked to anomalous development of the left IFG. Increased syntactic 

ability has been linked to increased specialization of the left IFG (Nuñez and others 2011), 

and the white matter tracts that interconnect auditory and IFG, compared to the connection 

between auditory to PMC, tends to increase with age (and language acquisition) and are 

uniquely present in humans (Friederici 2012). Thus, through very different measures 

encompassing speech kinematic variability and language/syntactic processing, results from 

Weber and colleagues largely corroborate neuroimaging results pointing to deficits affecting 

sensory-motor integration for speech planning and production in children with persistent 

stuttering.

Developmental trajectories relevant to auditory-motor integration were examined by Chow 

and Chang (2017), who showed in a longitudinal investigation that children with persistent 

stuttering had flat or depressed maturational curves associated with white matter integrity in 

the left arcuate fasciculus. The recovered children, while showing common deficits along 

this tract and other areas that were shared with that found in persistent children, 

demonstrated age-related increases in white matter integrity in the same regions, e.g., 

exhibited normalized developmental trajectory (Chow and Chang 2017) (Figure 4).

Another study examining differences between persistent and recovered groups used surface-

based measures of cortical size and shape (Garnett and others, 2018). Here, persistent 

children were found to have decreased cortical thickness in left ventral motor cortex (vMC) 

and ventral premotor cortex (vPMC) areas relative to controls (Figure 5). This was not found 

to be the case in recovered children. Recovered children had decreased gyrification in the 

SMA and Pre-SMA areas with age, which may indicate better long-range connectivity with 

regions such as the left IFG (Garnett et al., 2018). These results support previous convergent 

findings in the literature that point to possible deficits in left speech motor areas in speakers 

who stutter. The motor cortical areas found to differentiate persistent children from controls 

play critical roles in interfacing with sensory, motor execution, and basal ganglia-cortical 

timing areas.

In sum, compared to their fluent counterparts, children with persistent stuttering exhibit 

more immature speech motor coordination, lack of age-appropriate growth in white matter 
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tracts relevant to auditory-motor integration, and aberrant cortical thickness in left ventral 

motor and premotor areas. Recovered children on the other hand seem to achieve more 

typical patterns of white matter development with age, despite initially having similar 

neuroanatomical risk factors associated with stuttering. Recovered children may also achieve 

greater long-range connectivity involving PreSMA and SMA, regions that are critical to 

timing. Studies investigating persistent and recovery during childhood are only just 

emerging. More research in this area is warranted to reveal the basis for the risk for 

stuttering, and mechanisms behind recovery during childhood. The results from these studies 

are expected to contribute to important clinical implications for early detection and 

intervention development in stuttering.

Bringing it all together: a plausible neural framework for stuttering

Neuroimaging studies to date that employed widely varying methods, including the imaging 

modality itself, participant demographics, sample sizes, and age ranges have reported at 

times conflicting and divergent findings on the functional neuroanatomy of stuttering. 

Nevertheless, some convergent findings have emerged that strongly suggest neural circuit 

level deficits that affect planning and execution of self-initiated, intrinsically timed sound 

sequences. As reviewed in previous sections, these neural circuits encompass: 1) auditory-

motor cortical areas primarily in the left hemisphere that enable speech motor planning and 

execution guided by the sensory context; 2) basal ganglia-thalamocortical loop and 

cerebellum that provides the temporal structure of speech including initiation and timing of 

speech sequences. Coordination between these neural circuits crucially relies upon 

interaction between component areas within each circuit.

A useful subcortical-cortical framework for speech perception and production that might be 

considered in this context is one proposed by Kotz and colleagues (Kotz and Schwartze 

2010; Kotz and others 2016). Here, it is argued that the auditory cortical areas interact with 

the temporal processing system (basal ganglia and cerebellum) to establish basic timed 

routines during speech acquisition that form the basis for acquiring more advanced 

sophisticated behavior (e.g., longer sequences of speech sounds). In this framework, the 

BG’s contribution is thought to be reduced to a supplementary function once the routines are 

acquired, whereas the cerebellum continues to be actively engaged in computing sensory 

information. According to Kotz and colleagues, auditory information can be transmitted to 

the cerebellar temporal processing system via neural pathways between the cerebellum and 

cochlear nuclei. The cerebellum (dentate; the nonmotor part of the cerebellum) in turn 

projects to the frontal cortex (PreSMA/SMA) via the thalamus; the frontal cortex then 

connects to BG, forming the circuit that encompass the auditory-cerebellar- thalamus- 

frontal-striatal (BG) regions (Figure 6).

According to the reviewed studies in this paper, most of the connections as well as 

component areas in Figure 6 were found to be abnormal in structure and/or function in 

stuttering speakers. Given previous reports of cerebellar compensation for BG dysfunction, 

specifically involving cerebellar-thalamic-SMA proper projection for speech production 

(Kotz and others 2009), it is not surprising that many studies to date have reported 

hyperactivity in each of these regions during speech tasks in stuttering speakers (Fox, R.J. 
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Ingham, J.C. Ingham, Zamarripa, Xiong, and Lancaster 2000b; Budde and others 2014). 

This is also consistent with what was proposed in an influential theory paper where 

cerebellar compensation to a core BG deficit was proposed (Alm 2004). The subcortical-

cortical model shown in figure 6 provides an updated framework in which future studies 

might consider investigating component areas and networks that are relevant to stuttering. 

Characterizing the functional anatomical differences and connectivity strengths of 

component areas might help elucidate possible mechanisms of speech disfluencies 

manifested in stuttering.

Outstanding questions for future research

The mechanisms behind the core symptoms of stuttering may very well involve abnormal 

function of the neural circuits reviewed in previous sections. The individual manifestation of 

stuttering behavior can vary however, depending on factors such as emotional reactions and 

motor compensatory behaviors and therapy, which may interact with core neural deficits. For 

instance, stuttering severity can be exacerbated by greater demands on attention, linguistic 

complexity, and emotional significance of the speech context (Smith and Weber 2017). 

Complex interactions among these factors as they relate to stuttering are likely to be better 

explored with methods that enable examination of large scale neural network interactions. 

Complex brain function likely emerges from whole-network topology rather than isolated 
regions and connections, but to date there has been little empirical study combining these 

powerful approaches to determine mechanisms of neurodevelopmental and psychiatric 

disorders, including stuttering. In a recent study, we applied a whole brain connectomics 

approach to examine functional interactions within and between large scale neural networks 

across the whole brain (Chang and others 2017). This approach revealed a common deficit in 

stuttering children regardless of later recovery or persistence involving the somatomotor 

network (which encompasses the speech motor networks). The persistent children were 

differentiated from recovered children in how the attention networks interacted with the 

default mode network; the latter anti-correlate with task positive networks such as attention 

networks in typical development. The anomalous functional interactions involving neural 

networks other than those directly involved in speech motor control seem to suggest their 

critical role in developing persistent stuttering. Future studies that involve such large scale 

connectomics approaches, potentially through data sharing across different research labs, are 

expected to lead to greater insights into network markers for persistent stuttering. 

Furthermore, these studies may be better able to give us insights into why there are 

comorbidities in stuttering such as attention, phonological issues, emotional issues in adults, 

etc. and basis for recovery vs persistence.

Another area of investigation involves examining the links between brain anomalies and 

genetics. Genes causative of persistent stuttering have begun to be identified (Kang and 

others 2010; Raza and others 2015). By studying the genetics of large families with high 

incidence of persistent stuttering in Pakistan and Cameroon, mutations in four genes related 

to intracellular trafficking functions have been linked to persistent stuttering. Mutations in 

these four genes have been reported to cumulatively account up to 20% of unrelated 

individuals with persistent stuttering (Frigerio-Domingues and Drayna 2017). How these 

mutations in these genes affect the ability to produce fluent speech remains unknown. As 
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discussed in the previous sections, persistent stuttering is associated with subtle functional 

and anatomical anomalies. Because stuttering is a highly heritable disorder, genetics is likely 

to contribute to the brain anomalies associated with stuttering. However, this proposition has 

not been tested.

This question could be answered through imaging genetics approaches (Meyer-Lindenberg 

and Weinberger 2006). One such approach might be applying neuroinformatic methods 

where expression of genes linked to stuttering can be examined in terms of their expression 

patterns across the brain, using data provided by the Allen Institute for Brain Science (AIBS; 

http://www.brain-map.org/). Regional expression of the genes can be examined in the 

context of brain areas that differed in stuttering speakers. In a recent such analysis, Chow 

and colleagues found that two of the four genes related to persistent stuttering (GNPTG and 

NAGPA) exhibited a strong positive correlation with between-group absolute differences in 

gray matter volume (GMV). Further gene set enrichment analysis revealed that genes that 

highly correlate with the GMV differences between children who stutter and controls were 

enriched for energy metabolism in mitochondria. The results suggested that the effect of 

stuttering related gene mutations could be exacerbated in brain areas with high energy 

consumption such as the motor cortices during a sharp increase in metabolic rate during 

early childhood that co-occurs with the “explosion” of language development from 2 to 5 

years of age. Since stuttering onset occurs during a period of rapid increase in brain energy 

utilization, this stage of development may be a period of vulnerability for children with a 

genetic predisposition to stuttering due to steep changes energy demands related to 

synaptogenesis and myelination. This study is significant, as it shows for the first time how 

genes that have been linked to stuttering may affect speech via aberrant brain structure as 

found in persistent stuttering children (Chow and Chang 2018).

Future research on the biological bases of stuttering is expected to lead to meaningful 

clinical applications that may include designing novel interventions based on a mechanistic 

understanding of the basis of stuttering. Better insights into the neural basis of stuttering is 

also expected to lead to better objective markers that could help identify children at risk for 

stuttering near symptom onset. Such advances could help children who are most at risk for 

persistent stuttering by providing intensive therapy that can be delivered to them before 

disfluent speech patterns become established. If successful, these approaches in the future 

may help children avoid developing a chronic life-time disorder that affects a most 

fundamental human faculty-- efficient communication via fluent speech production.
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Box 1.

Stuttering Epidemiology

Life-time incidence

Stuttering is a childhood onset disorder that affects up to 8% of preschool age children 

(Dworzynski and others 2007; Yairi and Ambrose 2013).

Prevalence

Stuttering is present in approximately 1% of the general population (due to natural 

recovery during childhood; see below) (Craig and others 2002).

Time of onset

Onset of stuttering occurs for most children between 2-4 years of age, a period coinciding 

with a dynamic time of language development (Yairi and Ambrose 1992).

Natural recovery

Most children (~80%) grow out of stuttering naturally, typically between 2-4 years post 

stuttering onset (G. Andrews and Harris 1964; Yairi and Ambrose 1999).

Sex ratio

Like in the case of many neurodevelopmental disorders, stuttering affects many more 

males than females. Near onset, the sex ratio is closer to 2:1 (male: female) (Yairi and 

Ambrose 1999), while by adulthood this ratio is increased to 4:1 (Bloodstein 1995).

Co-occurrence with other neurodevelopmental conditions

Stuttering commonly co-occurs with conditions such as ADHD (Felsenfeld and others 

2010; Donaher and Richels 2012) and phonological delay in children (Byrd and others 

2007). Anxiety, social anxiety in particular, is a major concomitant and prevalent in 

adults who stutter (Iverach and Rapee 2013; Craig and Tran 2014), however it is not 

commonly reported in children and is at present not considered a causal factor in the 

onset of stuttering (Kefalianos and others 2014).
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Box 2.

Fluency inducing conditions and clues to possible deficits in internal 
timing of movement

Auditory feedback manipulation

Delayed auditory feedback (DAF) devices present real-time feedback of one’s own 

speech that is slightly (~60ms) delayed. In speakers who stutter, this effect elicits near-

fluent speech (Unger and others 2012; Foundas and others 2013), but disrupts speech in 

fluent speakers. Under auditory masking conditions, such as white noise, stuttering is 

also reduced (Bloodstein 1995).

Speech paced with external timing cues

When speakers who stutter speak to the beat of an external rhythm such as a metronome, 

during singing, or in unison with another person (choral speech), stuttering is markedly 

reduced and almost completely fluent even in the most severe cases (Park & Logan, 

2015). Such techniques are also associated with more ‘normalized’ brain activation 

patterns (i.e., similar to activation patterns found in nonstuttering speakers), such as 

increased left frontotemporal activation, and reduced motor activation, including right 

frontal opercular areas (De Nil and others 2003; Neumann and others 2005; Giraud and 

others 2008; Kell and others 2009; Toyomura and others 2011; Toyomura and others 

2015).
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Figure 1. 
Speech-language cortical areas and the dorsal and ventral pathways that interconnect them. 

Multiple studies examining stuttering speakers have reported decreased white matter 

integrity in the left dorsal pathways, and morphological changes affecting the motor and 

auditory cortical areas that are interconnected by these tracts. AF/SLF: arcuate fasciculus/

superior longitudinal fasciculus; BA: Brodmann area; EFCS: extreme fiber capsule system; 

FOP: frontal operculum; UF: uncinate fasciculus. Figure reprinted and modified with 

permission from The American Physiological Society and Copyright Clearance Center. The 
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Brain Basis of Language Processing: From Structure to Function. Friederici AD. 

Physiological Reviews. 2011.
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Figure 2. 
Convergent findings from past diffusion tensor imaging (DTI) studies of stuttering focus on 

deficits in sections along the left superior longitudinal fasciculus. Reprinted and adapted by 

permission from Springer Customer Service Centre GmbH: Springer Nature. The 

Neurobiological Grounding of Persistent Stuttering: from Structure to Function. Neef NE, 

Anwander A, Friederici AD. Current Neurology and Neuroscience Reports. 2015.
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Figure 3. 
Major neural structures supporting estimation of time. The core structures include the basal 

ganglia and supplementary motor area (SMA). These structures interface with a distributed 

network of areas in a context specific manner. Reprinted and modified with permission from 

Annual Reviews, Inc: Annual Review of Neuroscience. Neural Basis of the Perception and 

Estimation of Time. Merchant H, Harrington DL, Meck WH. 2013.
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Figure 4. 
While age-related increases in white matter integrity was observed in areas (left 

temporoparietal junction, posterior STG) along the left arcuate fasciculus in normally fluent 

children as well as children who recover from stuttering, the developmental trajectories in 

the same regions lacked age-related increases in children with persistent stuttering. Arc-fp: 

arcuate fasciculus-frontoparietal; arc-t: arcuate fasciculus-temporal; ilf: inferior longitudinal 

fasciculus; Slf: superior longitudinal fasciculus. Figure reprinted and modified with 

permission from John Wiley and Sons and Copyright Clearance Center. White matter 

developmental trajectories associated with persistence and recovery of childhood stuttering. 

Chow HM, Chang S-E. Human Brain Mapping, 2017.
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Figure 5. 
Morphometric differences in speech motor control regions differentiated children with 

persistent stuttering from those who recover. A compensatory mechanism involving left 

medial premotor cortex may contribute to recovery. From “Anomalous morphology in left 

hemisphere motor and premotor cortex of children who stutter,” by Garnett et al., 2018, 

Brain, in press, Copyright 2018 by the Oxford University Press. Reprinted with permission.
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Figure 6. 
A plausible neural framework relevant to stuttering risk, persistence, and recovery. Neural 

structures critical for sensorimotor integration for speech planning and production interface 

with subcortical structures that provide temporal structure and enable internal timing of 

speech sound production. Colors and thickness of lines are hypothetical, based on previous 

reported findings in the literature. Modified based on a subcortical-cortical model proposed 

by Kotz and colleagues, this model provides a useful framework that incorporates most 

convergent empirical findings to date on neural deficits linked to stuttering. Elucidating the 

functional and structural connectivity among component areas and causal relationships 

represented here could lead to novel insights into possible neural mechanisms linked to 

stuttering. BG: basal ganglia; caud: caudate; CE: cerebellum; IFG: inferior frontal gyrus; 

M1: primary motor cortex; PMC: premotor cortex; put: putamen; PWS: people who stutter; 

SMA: supplementary motor area; SMG/IPL: supramarginal gyrus/inferior parietal lobe; 

STG: superior temporal gyrus; vPMC: ventral premotor cortex.
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Figure 7. 
Relationship between gene expression of two stuttering-linked genes (GNPTG and NAGPA) 
and absolute regional gray matter volume differences observed in persistent children who 

stutter. Dots represent brain regions in the left hemisphere defined by the AAL atlas. The 

brain regions with relatively high expression of GNPTG and NAGPA and between-group 

differences in GMV were primarily in the sensorimotor, parietal, the cingulate cortex, and 

the middle frontal gyrus. The Spearman’s rank correlation coefficients for gene expression-

brain volume group difference were ρ = 0.57 for GNPTG, and ρ = 0.42 for NAGPA. Chow 

et al., 2018.
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