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Summary

Conventionally, evaluation of a new drug, A, is done in three phases. Phase I is based on toxicity 

to determine a “maximum tolerable dose” (MTD) of A, phase II is conducted to decide whether A 
at the MTD is promising in terms of response probability, and if so a large randomized phase III 

trial is conducted to compare A to a control treatment, C, usually based on survival time or 

progression free survival time. It is widely recognized that this paradigm has many flaws. A recent 

approach combines the first two phases by conducting a phase I-II trial, which chooses an optimal 

dose based on both efficacy and toxicity, and evaluation of A at the selected optimal phase I-II 

dose then is done in a phase III trial. This paper proposes a new design paradigm, motivated by the 

possibility that the optimal phase I-II dose may not maximize mean survival time with A. We 

propose a hybridized design, which we call phase I-II/III, that combines phase I-II and phase III by 

allowing the chosen optimal phase I-II dose of A to be re-optimized based on survival time data 

from phase I-II patients and the first portion of phase III. The phase I-II/III design uses adaptive 

randomization in phase I-II, and relies on a mixture model for the survival time distribution as a 

function of efficacy, toxicity, and dose. A simulation study is presented to evaluate the phase I-

II/III design and compare it to the usual approach that does not re-optimize the dose of A in phase 

III.
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1. Introduction

After a new treatment agent, A, is identified in pre-clinical studies, conventional clinical 

drug development and evaluation is carried out in three phases (Cancer.org, 2018). In phase 

I, the aim is to identify a dose, called the “maximum tolerable dose” (MTD), having 

acceptable toxicity probability. Phase I trials typically are small, with a wide variety of 
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designs, including the 3+3 algorithm (Storer, 1989), continual reassessment method 

(O’Quigley et al., 1990), and escalation with overdose control (Babb et al., 1998). Efficacy 

of A at the MTD then is evaluated in phase II using the estimated probability πE of a short-

term event (“response”), such as 50% solid tumor shrinkage or complete remission of 

leukemia. Most phase II designs compare πE(A) with A at the MTD to an assumed πE(C) of 

a conventional therapy, C. Phase II trials often are small, and may include an early stopping 

rule if πE(A) is poor compared to πE(C). If A is found to be promising in phase II, this may 

motivate a randomized phase III trial of A versus C based on a long term outcome, such as 

survival time.

Many phase II designs have been published. Simon et al. (1985) proposed a randomized 

selection design for two or more experimental treatments. For single-arm phase II trials, 

two-stage designs were proposed by Simon (1989) based on response, and by Bryant and 

Day (1995) based on response and toxicity. Bayesian sequential designs were proposed by 

Thall and Simon (1994) for a binary response, and by Thall et al. (1995) for monitoring 

multiple outcomes. Lee and Liu (2005) used predictive probabilities for futility rules, and 

Yin et al., (2012) used adaptive randomization to favor empirically better treatment arms.

It now is recognized widely that the conventional phase I → phase II → phase III paradigm 

has many flaws, and has led to many negative phase III trials. Two studies (Bio, 2016; 

Arrowsmith, 2011) showed that only about 50% of phase III trials yield an improvement 

over standard therapy. Seruga, et al. (2015) discussed causes of failure in phase III, including 

insufficient evidence of anti-disease activity in early phase trials, disagreements about how 

phase II trials should be designed, and reliance on phase II efficacy events or other 

surrogates not associated with longer survival. Yuan, Nguyen, and Thall (2016, Chapter 1) 

discuss problems with the conventional phase I → phase II paradigm, mainly due to limited 

sample sizes and ignoring efficacy when determining an MTD in phase I.

Many alternatives have been proposed that create hybrid designs by combining conventional 

phases, most commonly phase I-II or phase II-III. Thall (2008) reviewed phase II-III designs 

and discussed problems with the conventional phase II → phase III paradigm. “Select-and-

test” phase II-III designs, where two or more experimental agents are chosen in phase II and 

randomized against C in phase III while maintaining desired overall type I and type II error 

rates, are given by Thall et al. (1988), Schaid et al. (1990), Stallard and Todd (2003), and 

many others. A phase II-III design proposed by Inoue, Thall and Berry (2004) uses both an 

early efficacy (response) indicator, YE, and survival time, YS. Denote πE = Pr(YE = 1), the 

probability density function (pdf) of YS by fS(t), and the conditional pdf of [YS | YE] by fS(t 
| YE = y) for y = 0, 1. Their approach relies on a mixture model of the general form

f S(t) = f S(t |YE = 1)πE + f S(t |YE = 0)(1 − πE) . (1)

Denote the indicator of early toxicity by YT and πT = Pr(YT = 1). Because phase I designs 

use YT but ignore YE when choosing a MTD, they are likely to choose a dose having 

reasonable πT but ineffectively low πE. For example, consider a dose-finding scenario with 

five doses, true toxicity probabilities (.05, .10, .20, .30, .35), and true efficacy probabilities (.
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05, .10, .20, .30, .60). If the CRM is used with target toxicity probability .30, this most likely 

will select dose 4 as optimal. By ignoring YE, however, dose 5 is chosen less frequently, 

despite the fact that it has only a .05 higher πT than dose 4 but doubles πE from .30 to .60. 

Phase I-II designs are motivated, in part, by the desire to overcome this sort of problem. 

Examples include the two-stage design of Hoering et al. (2011), studying combination 

therapies (Huang et al., 2006), using the odds ratio between πE and πT (Yin et al, 2006), and 

basing decisions on elicited numerical utilities of the possible elementary events determined 

by efficacy and toxicity (Thall and Nguyen, 2012). Thall and Cook (2004) proposed, and 

Thall et al. (2014) refined, the so-called “Eff-Tox” phase I-II design based on maximizing an 

estimate of an efficacy-toxicity trade-off function, ϕ(πE, πT). The function ϕ(πE, πT) 

increases in πE, decreases in πT, and quantifies the desirability of each probability pair (πE, 

πT).

This article presents a new Bayesian hybrid design that combines a phase I-II design 

followed by a modified phase III design, based on both early and late outcomes. We will call 

this a phase I-II/III trial design. For simplicity, we will use survival time, YS, as the long 

term outcome, although progression-free survival (PFS) time will work in precisely the same 

way. Our approach relies on a mixture model for the distribution of YS that generalizes the 

model (1) by including both efficacy and toxicity indicators, (YE, YT), to characterize early 

outcome. After phase I-II and an initial stage of phase III have been completed, the phase I-

II/III design may re-optimize the dose of the experimental agent A based on mean survival 

time, μS. This approach hybridizes the phase I-II → phase III paradigm, in which dose-

finding for A is done using (YE, YT) in phase I-II, rather than using only YT for dose-finding 

as in the more conventional phase I → phase II → phase III paradigm.

Our proposed phase I-II/III design has K ⩾ 3 stages. In stage 1, a phase I-II trial is 

conducted based on the short term binary indicators (YE, YT), including adaptive 

randomization (AR) among doses of A based on the dose desirability criterion ϕ. The use of 

AR reduces the risk of getting stuck at a suboptimal dose in phase I-II. It addresses the 

“exploration versus exploitation” or “stickiness” problem, which is well known in sequential 

analysis (Sutton and Barto, 1998; Azriel, et al., 2010). AR improves the reliability of our 

proposed phase I-II/III design because it obtains more data on doses that may be sub-optimal 

in terms of the phase I-II criterion ϕ based on (YE, YT) but optimal in terms of μS.

Denote A given at x by A(x). At the end of phase I-II (stage 1), an optimal dose xET
opt of A 

based on ϕ is determined. In stage 2, phase III begins with patients randomized fairly to C 

and A xET
opt  Phase I-II patients are followed to observe their times of death or follow up. 

After a pre-specified number of deaths, n2
∗, have been observed from patients receiving C or 

A xET
opt  in stage 2, all (YE,YT) and survival data of patients treated with A in stages 1 and 2 

are used to determine an optimal dose xS
opt such that A xS

opt  maximizes μS, for use in the rest 

of phase III. The re-optimized dose xS
opt may or may not be the same as xET

opt. Stages 3, …, K 

are a randomized group sequential trial with up to K − 2 tests comparing the mean survival 
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times of A xS
opt  versus C. To provide a concrete illustration, for stage 1 we use the Eff-Tox 

phase I-II design of Thall et al. (2014), extended to include AR.

The rest of the paper is organized as follows. In Section 2, the data structure, models, and 

decision criteria are presented. Section 3 presents details of trial conduct. Section 4 describes 

possible decisions, outcomes, and potential consequences of re-optimizing dose versus the 

conventional approach of using xET
opt in phase III. Section 5 presents results of simulation 

study to compare the phase I-II/III design to the phase I-II → phase III paradigm. Section 6 

concludes with a discussion. A computer program to implement the phase I-II/III design is 

available on CRAN in the package Phase123.

2. Data Structure, Models, and Decision Criteria

Given raw doses d = (d1, ⋯, dj) of the experimental agent A, denote the standardized doses 

by x j = d j − d /sd d  for j = 1, …J. Let YS
o denote the observed time to death or 

administrative censoring and δ = I YS = YS
o . Denote the parameters for the distribution of 

[YE, YT|x] by θET, and the parameters for the distribution of [YS|YE, YT, x] by θS.

The Eff-Tox design is reviewed in Web Appendix Section A. Briefly, for each m = E,T, and 

xj, it is assumed that πm(xj, θET) = P(Ym = 1| xj, θET) = logit−1 {ηm(xj, θET)}, with ηT (xj, 

θET) = τT,1 + τT,2xj and ηE x j, θET = τE, 1 + τE, 2x j + τE, 3x j
2, with τT,2 > 0, so that πT(xj, 

θET) increases with xj, but πE(xj, θET) may be non-monotone. An association parameter ψ 
determines the joint distribution of (YE, YT) from their marginals using a copula, so θET = 

(τT,1, τT,2, τE,1, τE,2, τE,3, ψ). These parameters are assumed to be independent with priors 

ψ ~ N(0, 1), τE,2 ~ N(0, .20), and τm, r N μ∼m, r, σ∼m, r
2  for m = E,T and r = 1, 2. Numerical 

values of μ∼m, r, σ∼m, r  for m = E, T, r = 1, 2 are determined from elicited means of πm(xj, 

θET), for j = 1, ⋯, J, m = E, T, and a desired prior effective sample size. Adaptive dose-

finding decisions are based on a trade-off function ϕ(πE, πT) for π ∈ [0, 1]2.

Denote ϕj = ϕ[E{πE(xj, θET), πT(xj, θET)}|data] for each dose xj at any point during phase I-

II based on the current data. The estimated optimal dose in an Eff-Tox trial is 

xET
opt = max j ϕ j . To extend this design to include AR, rather than choosing xET

opt for each 

cohort during phase I-II, we adaptively randomize the next cohort to dose xj with probability

exp (ϕ j − Q)/sd(Q)

∑
r:ϕr ∈ Q

exp (ϕr − Q)/sd(Q)
,

where Q is the current set of posterior mean desirabilities, ϕj, of doses that are acceptably 

safe and efficacious. This shrinks the selection probability of less desirable doses toward 0 

while allowing selection of doses that are suboptimal in terms of ϕ. After the (YE,YT) 
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outcomes of all NET patients in phase I-II have been evaluated, A xET
opt  based on the final 

phase I-II data is moved forward to stage 2, which is the first portion of phase III.

In the phase I-II/III design, we define two different types of truly optimal doses of A. Let 

θm
true denote an assumed true value of θm for m = ET or S. The truly optimal dose that 

maximizes ϕ πE x, θET
true , πT x, θET

true  is xET
opt. The truly optimal dose that maximizes the mean 

survival time μS x, θS
true  is xS

opt. Let k =1, …., K index the stages of the phase I-II/III trial. 

Thus, k = 1 indexes the phase I-II trial, k = 2 indexes the first portion of phase III at the end 

of which the dose of A may be re-optimized based on μS, and k = 3, …, K index the 

subsequent group sequential stages in phase III for comparing A xS
opt  to C. Thus, there are 

up to K − 2 group sequential comparisons in phase III. Let 𝒟I − II, k and 𝒟III, k denote the 

data for patients at the end of stage k, from the phase I-II and phase III portions of the trial, 

respectively. Therefore, 𝒟I − II, 1 consists only of the (x, YE, YT) data from phase I-II 

patients, while 𝒟I − II, 2 also includes these patients’ survival time data YS
o, δ , up to the time 

at which the decision of whether to switch the dose based on mean survival time is made. 

𝒟III, 1 does not exist because phase III has not begun in stage 1. The re-optimized dose xS
opt

is chosen based on 𝒟I − II, 2 ∪ 𝒟III, 2, which includes all (x, YE, YT) and YS
0, δ  data at the 

end of stage 2.

Since the phase I-II → phase III paradigm uses xET
opt throughout phase III, the primary 

motivation for our design is the possibility that xET
opt ≠ xS

opt, and that re-optimizing the dose of 

A may produce larger μS by comparing C to A xS
opt  rather than A xET

opt  in the group 

sequential trial. To evaluate the effects of re-optimizing the dose of A based on μS during the 

first part of phase III, we require models for [YE, YT|x] and [YS|YE, YT, x], in order to 

formulate a mixture model for [YS|x]. This will include the effects of x on the indicators 

(YE, YT), and the effects of (YE, YT) and x on the hazard function of YS. Let π(yE, yT|x, 

θET) denote the probability distribution of (YE, YT) at dose x, where (yE, yT) ∈ {0, 1}. Let 

fS|E,T(yS | yE, yT, x, θS) denote the conditional pdf of YS given the early binary outcomes 

and dose x of A. The mixture pdf of YS for patients treated with A(x) is

f S(yS | x, θS, θET) ∑
yE = 0

1
∑

yT = 0

1
f S |E, T(yS | yE, yT, x, θS)π(yE, yT | x, θET) . (2)

The conditional mean survival time given (yE, yT) of a patient treated with A(x) is

μS, A(x)(yE, yT, θS) = ∫
0

∞
yS f S |E, T(yS | yE, yT, x, θS)dyS . (3)
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At the end of stage 2 of phase I-II/III, we choose xS
opt based on all observed data, where xS

opt

maximizes the posterior mean of the parametric mean survival time

μS, A(x)(θS, θET) = ∑
yE = 0

1
∑

yT = 0

1
μS, A(x)(yE, yT, θS)π(yE, yT | x, θET) (4)

at A(x). Conventionally (YE, YT) are used as surrogates for YS in choosing a dose xET
opt in 

phase I-II, but (YE, YT) are ignored when modeling survival in phase III.

We assume that the distribution of [YS | YE, YT, x] has the Cox type hazard function

h(t |YE, YT, x, θS) = h0(t)exp β1x + β2x2 − e
βEYE + e

βTYT , t > 0. (5)

We assume that β1, β2, βE, and βT are independent with identical non-informative N(0, 100) 

priors. For robustness, we assume that the baseline hazard is piecewise exponential with 

h0(t) = exp(λl) for t ∈ (tl, tl+1] under the partition t0 = 0 < t1 < …. < tL+1 = max(Ys
o). We 

allow the dimension L of the baseline hazard to vary, with prior L ~ Poi(ζS) and assume that 

the locations of the split points t vary according to the even order statistics with a uniform 

distribution of size 2L, as in Lee et al. (2015) and Chapple et al. (2017). This prevents 

obtaining intervals in h0(t) having few events for estimating λl. We suggest values of ζS ∈ 
{3, 4, 5, 6, 7}, since most hazard shapes can be approximated very accurately with 1 to 5 

pieces. The resulting posterior distribution is not sensitive to the choice of ζS in this range 

for sample sizes greater than 50. We assume a normal prior with mean 0 and variance 25 for 

λ1, denoted λ1 ~ N(0, 25), and borrow strength when L > 1 for adjacent intervals via the 

prior λl N λ1 − 1, σλ
2 , with the prior of σλ proportional to 1/σλ. The variance of λ1 ensures 

posterior hazard values seen in practice, while maintaining prior non-informativeness.

Denote μS, A x = E YS | x, 𝒟I − II, 2 ∪ 𝒟III, 2 , the posterior mean survival time for A(x) given 

the data from phases I-II and III at the end of stage 2. We compute this quantity under the 

mixture model (2) by estimating the posterior mean survival time

μ̂S, A(x)(yE, yT |𝒟I − II, 2 ∪ 𝒟III, 2) = E μS, A(x)(yE, yT , θS) |𝒟I − II, 2 ∪ 𝒟III, 2

for each pair (yE, yT) ∈ {0, 1}, under the formula (3), and computing the posterior mean

π̂(yE, yT | x, 𝒟I − II, 2 ∪ 𝒟III, 2) = E (yE, yT | x, θET) |𝒟I − II, 2 ∪ 𝒟III, 2

of each bivariate probability under the Eff-Tox model given in Web Appendix A.
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Since there will be limited survival time follow up information after n2
∗ events, the design 

only evaluates the means until the maximum observed patient follow up time. The trial is 

continued after n2
∗ patient events using the dose xS

opt of A having the highest posterior mean 

μS
opt = maxx j

μ
S, A x j

. After making this decision, the design does not use data from 

patients who were treated at doses x j ≠ xS
opt. After obtaining values of n3

∗, …, nK
∗  from East 6 

statistical software (2016), n2
∗ is chosen such that the design can switch doses with high 

accuracy, but can still yield high power for phase III trials, given the truly optimal dose xS
opt

has been selected. Suitable values of n2
∗ can be determined using the function SimPhase123 

in the package Phase123. This approach will result in a larger sample size of patients in the 

C arm being compared to A xS
opt  if xET

opt ≠ xS
opt We use Markov chain Monte Carlo to obtain 

posterior distributions for θET and θS, using 2000 iterations and 1000 discarded as burnim 

This gives good convergence of the parameters, shown by the posterior of L settling on one 

or two values as well as traceplots for the parameters λ|L, s|L, and the coefficients in the 

linear terms of the Eff-Tox and survival hazard models. A detailed account of computational 

algorithms used to simulate posterior samples is given in Web Appendix B.

3. Trial Conduct

In this section, we give specific rules for conducting a phase I-II/III clinical trial. Each of the 

computer functions described below is contained in the R package Phase123, available on 

CRAN, including documentation of inputs and examples. Additional information on the trial 

parameters is given in Web Appendix C and a tutorial on several of the functions is given in 

Web Appendix D. When designing a phase I-II/III trial, the statistician should consult with 

the physician to establish design parameters, such as ϕ, maximum sample sizes NET and NS, 

and the number of comparative tests K − 2 following dose re-optimization. The group 

sequential boundaries for stopping the trial due to futility uk or superiority uk may be 

obtained using East 6 statistical software (2016), specifying a null value of μC, desired 

improvement Δ, type I error, power under the alternative, maximum sample size NS, and 

information proportions for determining nk
∗ for k = 3, …, K. If no futility decision is desired 

at look k then uk = 0. The information proportions used to determine nk
∗ should be large 

enough (> 30%) to avoid making unreliable decisions based on a small amount of patient 

data if a dose is re-optimized for A.

The phase I-II/III design parameters must be calibrated to obtain good operating 

characteristics (OCs) under a reasonable array of possible scenarios. A smaller value of n2
∗ (≤ 

20% of the total information proportion) may be obtained by simulating the phase I-II/III 

trial under sets of different (a) Eff-Tox scenarios quantifying effects of x on (YE,YT), (b) 

effects of (x,YE,YT) on survival, and (c) survival distributions. The stage 2 sample size n2
∗

should be set by examining the design’s OCs for several different values, to find n2
∗ (1) large 
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enough to give a high probability of selecting the optimal dose, but (2) small enough so, 

given that the design switches to a true optimal dose in stage 2, it has good generalized 

power figures. This can be done using the function SimPhase123. Specific rules for 

conducting a phase I-II/III trial are as follows:

1. Enroll the first cohort of patients in the phase I-II portion at the lowest dose. For 

each subsequent cohort until NF patients have been treated, use the function 

AssignEffTox to obtain the next dose to give.

2. Once NF patients have been enrolled in phase I-II, use the function 

RandomEffTox to adaptively randomize the next cohort of patients among 

acceptable doses, which allows doses that are empirically suboptimal in terms of 

ϕ(πE, πT) to be chosen.

3. After NET patients have been enrolled in phase I-II and their efficacy and toxicity 

outcomes have been evaluated, use the function AssignEffTox to obtain the dose 

x̂ET
opt to continue to phase III.

4. Start phase III, randomizing patients equally between C and A x̂ET
opt .

5. After n2
∗ deaths have been observed, use the function Reoptimize to determine 

the dose x̂ET
opt to continue with for the remainder of the trial.

6. Remove any patients treated with x̂ET
opt from consideration if the dose was 

switched and begin randomizing patients between C and A x̂S
opt .

7. For each stage k = 3, …, K, after nk
∗ deaths occur, do two-sided tests for 

superiority or futility using the logrank test in R. Denoting the Z-score 

corresponding to the logrank statistic by Z, for futility bound uk and superiority 

bound uk, stop the trial if

|Z | > uk for superiority or |Z | < uk for futility .

8. Stop accrual after NS patients have been enrolled in the phase III portion, 

including patients treated with a dose that is no longer considered optimal.

4. Possible Trial Outcomes

Before presenting our simulation results, we discuss possible design decisions and comment 

on each under different true states of nature. Because the phase I-II/III design may change 

the phase I-II selected dose of A in phase III before comparing A to C, the sequence of 

decisions that it makes may be correct and optimal, correct but suboptimal, wrong, or 

disastrously wrong, depends on xS
opt and xET

opt, their estimates, and whether μ
A xS

opt = μC or 

μ
A xS

opt ⩾ μC + Δ. Since more than one dose of A may provide the desired improvement in 
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μS of at least Δ over C, we denote the set of all such doses by Xopt = x j: μA(x j)
⩾ μC + Δ . 

We define the generalized power (GP) to be the probability of (1) selecting a dose xj ∈ Xopt 

in stage 2 and (2) declaring A(xj) superior to C in one of stages 3, ⋯, K. The GP is the sum 

over xj ∈ Xopt of the probability of selecting xj and declaring A(xj) superior to C. If Xopt 

contains more than one dose, then the GP is larger than the probability of the best possible 

decision, which is to select the optimal dose xS
opt ∈ Xopt that maximizes μS with A and 

declare A xS
opt  superior to C. We denote the probability of making this best decision by γ1 

and the GP by γ2. Thus, γ1 ≤ γ2, with γ1 = γ2 if Xopt contains exactly one dose, which in 

this case must be xS
opt.

To help sort this out, Table 1 provides explanatory comments on scenarios in stages k = 1 

(phase I-II) and k = 2 (the first portion of phase III) regarding the true relationship between 

the optimal doses xS
opt and xET

opt and their posterior estimates x̂S
opt and x̂ET

opt. If x̂ET
opt = x̂S

opt, then 

the phase I-II/III and phase I-II → phase III designs make equivalent decisions. However, if 

x̂ET
opt ≠ x̂S

opt, then switching provides a potential advantage. In this case survival data from 

patients who were treated with x̂ET
opt during phase III are no longer relevant. Depending on 

the accrual rate, maximum sample size NS, and number of patient events n2
∗ needed to re-

optimize dose, this may result in 30 to 100 patients being treated at doses no longer 

considered a part of the trial as phase III proceeds.

After choosing x̂S
opt, the phase I-II/III design makes group sequential decisions comparing 

A xS
opt  to C, so the decisions in phase III depend on the selected x̂S

opt. But it may not be the 

case that x̂S
opt = xS

opt. That is, the design may not choose the truly optimal dose in terms of 

mean survival time in stage 2. Table 2 lists possible decisions of a phase I-II/III design in 

stages k = 2, …, K and how each decision may be viewed in terms of xS
opt. Table 2 is ordered 

with the best outcomes listed first and the worst listed last, with outcomes 1, 2, and 3 being 

good and outcomes 4 and 5 being bad. In outcome 1, the design declares the dose that 

increases μS the most to be superior to C. In outcome 2, a dose of A is selected that provides 

a clinically meaningful improvement ⩾ Δ in μS compared to C, but the best dose of A is not 

chosen, so the decision is correct but the dose has not been truly optimized. Outcome 3 

represents a correct decision, but it does not improve μS since it declares C superior to or 

equivalent to A x̂S
opt . Outcome 4 gives a false positive result, including cases where the 

design wrongly chooses an inferior dose for which μA(x j)
< μC, which is worse than a 

conventional type I error. Outcome 5 represents the worst possible case, since not only does 

the design wrongly conclude that the chosen dose gives A x̂S
opt  superior to C, but it might 

have obtained a successful trial result if it had correctly selected xS
opt in stage 2.
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These same decisions and interpretations are made in the conventional phase I-II → phase 

III paradigm, with the difference that x̂S
opt is replaced with x̂ET

opt. Compared to this 

conventional design, allowing the optimal dose to be switched in the phase I-II/III design 

makes selecting x̂S
opt = xS

opt more likely, which increases the probabilities of outcomes 1 and 

2 and decreases the probabilities of the disastrous outcome 5. Under outcome 3, the phase I-

II/III design is likely to treat more patients because it is more likely to correctly pick the 

dose x̂S
opt having the largest μS, thus making stopping the trial early for superiority of C or 

futility less likely. It will be more likely to switch to the dose having the longest mean 

survival time for outcome 4, however, which makes a false positive event more likely.

5. Simulation Study

To perform a simulation study comparing the phase I-II/III design to the phase I-II → phase 

III paradigm, we first specify three different Eff-Tox scenarios, consisting of true efficacy 

and toxicity dose-probability vectors. We will use these to specify different relationships 

between (YE, YT) and YS. We evaluate the design with J = 5 doses using raw dose values 

(d1, ⋯, d5) = (1, 2, 3, 3.5, 5). For this study, each patient’s (YE,YT) are evaluated in one 

month, and we assume for simplicity that no patients die before this month long window. For 

a dose xj chosen in phase I-II, we test the null hypothesis H0: μC = μA(x j)
= 24 months versus 

H0: μC ≠ μA(x j)
 with target μ

A(xS
opt)

= 36 months, a Δ = 12 month improvement.

To implement phase I-II using the Eff-Tox design, the three equivalent (πE, πT) pairs used to 

establish the desirability function ϕ were (.35, 0), (.70, .40) and (1, .75). The contour created 

by these three pairs is seen in Web Figure 1. The upper limit on πT was πT = .40and the 

lower limit on πE was πE = .30. The threshold on the posterior probability that πE > .30 and 

πT < .40 was set to be pE = pT = .10 for both acceptability rules. Patients were treated in 

cohorts of size 3, with up to NET = 60 patients enrolled in phase I-II (stage 1). We calibrated 

the phase I-II hyperparameters to have prior effective sample size .90 as suggested by Yuan, 

Nguyen and Thall (2016). We used prior mean toxicity probabilities of (.05, .10, .15, .20, .

30) and mean efficacy probabilities (.20, .40, .60, .65, .70) for the five doses, to produce the 

hyperparameter means (−4.23, 3.1, .02, 3.45, 0, 0) and standard deviations (3.13, 3.12, 2.68, 

2.69, .2, 1) for the prior of θET. The EffTox program is freely available on the MDAnderson 

biostatistics software page.

For the phase I-II portion of the simulated trials, patients were treated in cohorts of size three 

and assigned doses after the previous cohort was fully evaluated, assuming an accrual rate of 

five patients per month with adaptive randomization begun after NF = 15 patients. The three 

simulation scenarios’ assumed true πE(xj) and πT(xj) are given in Table 3, with their 

selection percentages, true ϕ values, and numbers of patients treated, based on 5,000 

simulated trials using the EffTox program.

In the three Eff-Tox scenarios in Table 3, the respective optimal doses in terms of the 

tradeoff contour are doses = 3, 5, and 2. We only consider simulated phase I-II trials that 
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advance to phase III, ignoring simulation replications where the trial stopped early. In 

scenario 1, doses 3 and 4 have nearly equivalent desirability, so we expect most patients in 

the phase I-II portion of the phase I-II/III trial to be treated at these two doses. In scenario 2, 

the highest dose 5 is considered optimal, most patients are treated at this dose, and it is 

selected in 49% of the simulations. In scenario 3, the dose 2 is optimal and doses 4 and 5 

have unacceptably high toxicity probabilities, so we expect to treat fewer patients at these 

doses. The design treats the most patients at dose 2, which is selected with probability .51, 

but substantial numbers of patients are treated at doses 1 and 3. The use of AR assigns more 

patients to doses 1 and 3, which allows the phase I-II /III design to better assess the 

functional relationship between dose and mean survival time. For the control group, we 

assume that the effects of toxicity and efficacy on overall survival are the same as those for 

the experimental group, and set the probabilities of toxicity and efficacy to be (.15, .40), (.

10, .30), and (.35, .20) for the three Eff-Tox scenarios, respectively. For each of these 

simulation scenarios, we assume two different forms for the linear terms of the log hazard of 

YS. For A(x), we assume ηs(x, YE,YT) = β0 + β1x + β2x2 − exp(βE)YE + exp(βT)YT. For the 

simulated data from the control group, we assume ηS(C,YE,YT) = βC − exp(βE)YE + 

exp(βT)YT and calibrate the additional parameter βC so that we obtain the desired null value 

of 24 months for mean survival time. We first consider an exponential distribution with pdf 

f(t|ρ) = (1/ρ) exp(−t/ρ) where ρ = exp{ηS(x, YE,YT)}, since the O’Brien Fleming group 

sequential bounds (O’Brien and Fleming, 1979) for the logrank test are based on this 

assumption. Later, we will consider several other distributions to evaluate the robustness of 

the methodology. Table 4 displays the six scenarios considered, which correspond to the 

different Eff-Tox scenarios listed in Table 3, as well as differing effects of dose, efficacy, and 

toxicity on survival time.

These scenarios encompass several qualitatively and quantitatively different possible cases 

in connecting phase I-II to phase III. In scenario 1, the optimal dose in terms of μS is dose 3, 

which is selected with probability .29. In scenario 2, there is a large efficacy effect, leading 

to dose 5 being optimal in terms of μS, but this dose is only selected with probability .49 in 

phase I-II. Thus, we expect to see a large improvement in this scenario by using a phase I-

II/III design. Similarly, in scenario 3, dose 3 is optimal in terms of μS, but is only selected 

with probability .18 in phase I-II. Scenario 4 represents a case with a large toxicity effect 

and small efficacy effect, making dose 1 optimal in terms of μS, but dose 1 is only chosen in 

26% of the usual phase I-II trials. In scenario 5, dose 3 is the third best dose in terms of ϕ but 

is best in terms of μS, and it is only selected with probability .20. In this scenario, dose 4 also 

gives a significant improvement in μS compared to C, with μA(x4) = 38.6 months. In scenario 

6, there is a large efficacy effect on overall survival, making dose 4 optimal in terms of both 

overall survival and ϕ, but dose 5 also has significantly improved survival compared to C. 

These two scenarios provide a basis for evaluating improvements in both γ1 and the GP, γ2. 

To control the possibility of incorrectly switching due to chance outcomes, we do not allow 

the design to continue with a dose that had less than 6 patients treated. These scenarios also 

have varying effects of toxicity and efficacy on hS, quantified by the coefficients βE and βT. 

This will evaluate the sensitivity of the method to these effects. Since the parameters (β1, β2) 

must be changed substantially to obtain similar μS values for different values of (βE, βT), we 

do not perform a sensitivity analysis to these parameters within each scenario.
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We assume that 10 patients, on average, are accrued each month during phase III, and that 

the phase III trial will begin 1 month after the phase I-II trial concludes. This waiting time 

could be increased to obtain longer survival follow up and thus improve the design’s ability 

to re-optimize doses during stage k = 2. We enroll a maximum of NS = 500 patients in phase 

III, which has up to three interim looks after n3
∗ = 200, n4

∗ = 300 and n5
∗ = 500 deaths, with 

superiority decisions possible at each. We calibrated the stopping boundaries with East 6 

statistical software (2016) using O’Brien-Fleming bounds (O’Brien and Fleming, 1979) with 

power .80 and type I error probability .05. We included a rule to determine if the trial should 

be stopped for futility, i.e. neither C nor A x̂S
opt  is superior, after n4

∗ = 300 deaths. The 

boundaries for declaring superiority of A x̂S
opt  or C based on the standardized logrank 

statistics are (u3, u4, u5) = (2.96, 2.53, 1.99), and the futility bound at the second look is 

u4 = 1.001. At the start of the phase III portion of the trial, we begin randomizing patients 

equally to A x̂ET
opt  and C. After n2

∗ deaths in the trial have occurred, we determine the dose 

x̂S
opt that patients receiving A should receive for the remainder of the trial. This is the re-

optimization step. Survival times for patients in phase I-II and phase III are generated after 

their toxicity and efficacy are scored, which does not allow the possibility that a patient may 

die before their short term indicators are seen.

For each scenario and design, 5,000 simulation replications were performed. The simulation 

results are summarized in Table 5. In each of scenarios 1–4, γ1 = γ2, since there is one dose 

for which A is superior to C. Mean improvement in patient survival time with each design is 

denoted by W, computed by averaging the differences between the true mean survival time 

with the selected dose of A and μC, if A is declared superior to C. In the simulations, W is 

computed as the mean over {Wb, b = 1, ⋯, 5000}, where

Wb = (μ
A(x̂S

opt)
− μC)I[A(x̂S

opt) is declared superior to C in simulated trial b] .

Table 5 shows that, in general, the phase I-II/III design maintained type I error probability 

≤ .05 under H0 and had a uniformly higher γ1 and GP, γ2, compared to the conventional 

phase I-II → phase III approach without dose re-optimization. The values of γ1, γ2, and W
are uniformly larger for the phase I-II/III design than for the conventional phase I-II → 
phase III paradigm. The differences are extremely large in scenario 3, with an improvement 

of .73 in γ1, and a 9.68 month improvement in W. The smallest advantage of the phase I-

II/III design is seen in scenario 2, with an improvement of .09 for γ1 and .90 for W. In 

scenarios 5 and 6, where two doses of A give mean survival time larger than μC + Δ = 36 

months, the phase I-II/III design provides respective improvements in γ2 of .61 and .23, and 

improvements in γ1 of .57 and .25. These scenarios illustrate the potential advantage of the 

phase I-II/III design compared to the conventional phase I-II → phase III approach.

The phase I-II/III design does have the drawback that it requires treating more patients and 

longer trial durations, on average, than the conventional paradigm. Part of this required 
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increase is due to the design correctly switching to the best dose of A in terms of overall 

survival, which decreases the likelihood that a trial will stop early by declaring C to be 

superior or due to futility. This increase in required sample size and trial duration are the 

price paid for the much larger probability of a successful phase III trial in cases where dose 

switching increases mean survival time with A.

Since phase I-II trials may have sample sizes ranging from 24 to 90 in practice, we chose the 

Eff-Tox sample size NET = 60 in the simulations as a practical compromise that obtains a 

reasonable amount of information in stage 1. Web Tables 1 and 2, seen in Web Appendix E, 

summarize additional simulations with NET = 90. Values of γ1, γ2 and W for the phase I-

II/III design all increased substantially with NET for all six scenarios. This is because more 

information at different doses in phase I-II makes switching to the best dose in stage 2 more 

likely.

To assess robustness of the phase I-II/III design to different event time distributions, we 

evaluated its performance for two lognormal distributions, with variances .25 and 1, a 

Weibull distribution with increasing or decreasing hazard, with shape parameters 4 or .5, and 

a gamma distribution with scale parameter 2. The true coefficients of YE and YT in the 

hazard function’s linear term were kept constant for each distribution, and the remaining 

constant parameters β0, βC, β1, β2 were adjusted to obtain similar true means as in the 

exponential distribution simulation study. We exponentiated the linear term for the gamma 

and Weibull distribution rate parameters, but did not do this for the lognormal distribution. 

The means under the null and alternative hypotheses for each distribution are given in Web 

Table 3. Table 6 summarizes the robustness study, showing that under the alternative 

hypothesis, for each distribution, the phase I-II/III design has uniformly higher values of γ1, 

γ2, and W, with substantially higher values for scenarios 1,3 and 5. For the Weibull 

distribution with decreasing hazards in each scenario, the decrease in γ1 and γ2 for both 

designs is due to the assumptions of the logrank test being grossly violated by a high early 

failure rate. Because so many patients have early failures, patients are not followed as long 

before the final group sequential test. For this distribution, however, the phase I-II/III design 

still improved the probability of selecting the optimal dose of A compared to the 

conventional paradigm by .49, .21, .15, .59, .46 and .14 in the six scenarios, respectively. 

Similar improvements are seen under the other distributions. This shows that the logrank test 

is not robust to the Weibull distribution with decreasing hazard. An extension of the phase I-

II/III design might incorporate a robust group sequential test in place of the logrank test, to 

reduce the loss in power under a Weibull with decreasing hazard. The type I error constraints 

are nearly met for each distribution. Some slight inflation in α above .05 may be attributed 

to the proportional hazards assumption being violated. For each distribution, the phase I-

II/III design treats more patients, on average, under both H0 and H1, and has slightly longer 

trial duration, but makes the correct decision much more often.

6. Discussion

We have proposed a new drug development strategy, which we call a phase I-II/III design, 

that re-optimizes the dose of an experimental agent A chosen in phase I-II during phase III 

based on mean survival time. We use information from all patients treated with A, including 

Chapple and Thall Page 13

Biometrics. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their short term efficacy and toxicity indicators, dose assigned, and survival time 

information, in order to more accurately select the dose of A that provides the highest 

posterior mean survival time. The design is based on an assumed a mixture model for the 

survival time distribution that averages over the possible short term phase I-II outcomes. 

While we have used the Eff-Tox trade-off based phase I-II design for stage 1 of the phase I-

II/III design, one could replace the Eff-Tox design with any phase I-II design based on (YE, 

YT) that uses some dose optimality criterion ϕ and includes AR. However, the necessary 

modifications of the design parameters and computer software to accommodate such a 

change would be non-trivial. Similarly, a complicated but straightforward extension of the 

methodology may address the problem of possible deaths before evaluation of (YE, YT).

The simulations shows that, under a range of alternative cases, the generalized power γ2, 

and probability γ1 of the best possible decision, both are greatly increased by the phase I-

II/III design compared to the phase I-II → phase III paradigm. The phase I-II/III design also 

has a much lower probability of making the least desirable decision, where a suboptimal 

dose is chosen and a true treatment advance is missed. A drawback of the phase I-II/III 

design is that it requires more patients and a slightly longer trial duration, on average, 

compared to the phase I-II → phase III paradigm. This seems like a very reasonable price to 

pay for the much larger values of γ1, γ2, and W, in cases where re-optimizing the dose of the 

experimental agent increases its associated mean survival time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Possible relationships between xET
opt, xET

opt, xS
opt, and xS

opt, including comments related to the phase I-II → phase 

III and phase I-II/III designs. xET
opt =? xET

opt refers to whether or not the optimal dose is selected at the end of 

phase I-II based on ϕ, and xET
opt =? xS

opt refers to whether the optimal dose based on μS is the same as that based 

on ϕ

xET
opt =? xET

opt xET
opt =? xS

opt Comments

xET
opt = xET

opt xET
opt = xS

opt The optimal dose in terms of μS was selected in phase I-II, so it is not desirable to switch doses at stage 2. In 
this scenario, the phase I-II/III design cannot provide an improvement over phase I-II → III.

xET
opt = xET

opt xET
opt ≠ xS

opt The dose selected in phase I-II is optimal in terms of ϕ but is not optimal in terms of μS. This illustrates the 
advantage of the phase I-II/III design over phase I-II → III design.

xET
opt ≠ xET

opt xET
opt = xS

opt The dose selected in phase I-II is suboptimal based on ϕ, but the optimal doses in terms of ϕ and μS are 
identical. This scenario illustrates the advantage of the phase I-II/III design over phase I-II → III design.

xET
opt ≠ xET

opt xET
opt ≠ xS

opt The dose selected in phase I-II is suboptimal based on ϕ, but the optimal doses in terms of ϕ and μS are not 
identical. This scenario illustrates the advantage of the phase I-II/III design over phase I-II → III design.
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Table 2

Possible Phase I-II/III Trial Outcomes, O. xS
opt is the truly optimal dose in terms of μA(x) and Δ is the desired 

improvement over μC. Column 2 gives the two trial decisions, the first row for selecting xs
opt and the second 

row for determining superiority, inferiority, or futility, with A xS
opt ≻ C indicating that A xS

opt  is declared 

superior to C, and C ≥ | A xS
opt  indicating that the trial is stopped due to either superiority of C or futility.

O Decision Truth Comments

1
xS

opt = xS
opt

A xS
opt ≻ C

μ
A xS

opt > μC + Δ This is the generalized power event at the optimal dose xS
opt. The design correctly selects xS

opt

as optimal and declares A xS
opt  superior to C.

2
xS

opt ≠ xS
opt

A xS
opt ≻ C

μ
A xS

opt > μC + Δ

μ
A xS

opt > μ
A xS

opt

This is a generalized power event in a case where the design correctly concludes A xS
opt  is 

superior to C but xS
opt is suboptimal, so it could have improved survival more had if it chosen 

the truly optimal dose xS
opt.

3
xS

opt = any x j

C ≥ A xS
opt

μ
A xS

opt ≤ μC This is a correct conclusion, but the phase I-II/III design will require an increased sample size 

compared to the phase I-II → III design due to correctly switching to xS
opt.

4
xS

opt = any x j

A xS
opt ≻ C

μ
A xS

opt ≤ μC
This is a false positive conclusion. While the design may pick the best dose of A, it incorrectly 
concludes that A at that dose is superior to C.

5
xS

opt ≠ xS
opt

A xS
opt ≻ C

μ
A xS

opt ≤ μC

μ
A xS

opt ⩾ μC + Δ

This is a disastrous false negative conclusion. The design chooses a suboptimal dose based on 

μS and incorrectly concludes A xS
opt  is inferior to C; instead of correctly selecting xS

opt and 

declaring A xS
opt  superior to C.
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Table 4

Simulation Parameters. True Eff-Tox parameters βTR corresponding to the phase I-II scenarios in Table 3, and 

true mean survival time of each A(x1), ⋯, A(x5) for each phase I-II/III scenario’s null and alternative 

hypotheses.

Scenario Eff-Tox Scen Hyp (β1, β2, e
βE, e

βT , β0)TR
( μ

A x1
, μ

A x2
, μ

A x3
, μ

A x4
, μ

A x5
)TR

1 1 Null (.1, −.5, .5, .5, 2.9) (8.3, 17.9, 24, 22.5, 9.8)

Alt (.25, −2, .5, .5, 3.4) (1, 14.5, 36.2, 28.3, 1)

2 2 Null (.1, −.1, 1, .5, 2.6) (14.0, 17.8, 21.9, 23, 24)

Alt (.5, 0, 1, .5, 2.3) (7.1, 10.3, 16.0, 19.5, 36)

3 2 Null (.1, −.5, .3, 1, 3.1) (9.5, 18.5, 24, 22.5, 10.4)

Alt (.1, −1, .3, 1, 3.6) (6.9, 24.7, 38, 33.1, 6.3)

4 3 Null (−.3, .3, .3, 1, 2.3) (24,13.6, 8.9, 6.8,7.8)

Alt (−.1, .3, .3, 1, 3.0) (38, 24.6, 18.4, 15.0, 21.1)

5 3 Null (.1, −.5, .3, .1, 3.0) (9.3, 18.7, 24, 22.7, 10.4)

Alt (.1, −1, .3, .1, 3.6) (7.8, 28.8, 44, 38.6, 7.4)

6 1 Null (.75, −.5, .3, .25, 2.8) (3.2, 10.1, 20.4, 24, 20.4)

Alt (1, −.6, .3, .25, 3.3) (3.0, 12.9, 31.8, 40, 36.6)
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