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Summary

Conventionally, evaluation of a new drug, A, is done in three phases. Phase | is based on toxicity
to determine a “maximum tolerable dose” (MTD) of A, phase Il is conducted to decide whether A
at the MTD is promising in terms of response probability, and if so a large randomized phase 11
trial is conducted to compare A to a control treatment, C, usually based on survival time or
progression free survival time. It is widely recognized that this paradigm has many flaws. A recent
approach combines the first two phases by conducting a phase I-11 trial, which chooses an optimal
dose based on both ®fficacy and toxicity, and evaluation of A at the selected optimal phase I-11
dose then is done in a phase Il trial. This paper proposes a new design paradigm, motivated by the
possibility that the optimal phase I-11 dose may not maximize mean survival time with A. We
propose a hybridized design, which we call phase I-11/111, that combines phase I-11 and phase 111 by
allowing the chosen optimal phase I-11 dose of A to be re-optimized based on survival time data
from phase I-11 patients and the first portion of phase I11. The phase I-11/111 design uses adaptive
randomization in phase I-11, and relies on a mixture model for the survival time distribution as a
function of efficacy, toxicity, and dose. A simulation study is presented to evaluate the phase I-
11/111 design and compare it to the usual approach that does not re-optimize the dose of A in phase
Il.
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1. Introduction

After a new treatment agent, A, is identified in pre-clinical studies, conventional clinical
drug development and evaluation is carried out in three phases (Cancer.org, 2018). In phase
I, the aim is to identify a dose, called the “maximum tolerable dose” (MTD), having
acceptable toxicity probability. Phase | trials typically are small, with a wide variety of
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designs, including the 3+3 algorithm (Storer, 1989), continual reassessment method
(O’Quigley et al., 1990), and escalation with overdose control (Babb et al., 1998). Efficacy
of Aat the MTD then is evaluated in phase 1l using the estimated probability rzzof a short-
term event (“response™), such as 50% solid tumor shrinkage or complete remission of
leukemia. Most phase Il designs compare g A) with A at the MTD to an assumed £ C) of
a conventional therapy, C. Phase Il trials often are small, and may include an early stopping
rule if (A) is poor compared to = C). If Ais found to be promising in phase Il, this may
motivate a randomized phase 111 trial of A versus Cbased on a long term outcome, such as
survival time.

Many phase 11 designs have been published. Simon et al. (1985) proposed a randomized
selection design for two or more experimental treatments. For single-arm phase 11 trials,
two-stage designs were proposed by Simon (1989) based on response, and by Bryant and
Day (1995) based on response and toxicity. Bayesian sequential designs were proposed by
Thall and Simon (1994) for a binary response, and by Thall et al. (1995) for monitoring
multiple outcomes. Lee and Liu (2005) used predictive probabilities for futility rules, and
Yin et al., (2012) used adaptive randomization to favor empirically better treatment arms.

It now is recognized widely that the conventional phase | — phase Il — phase Il paradigm
has many flaws, and has led to many negative phase 11 trials. Two studies (Bio, 2016;
Arrowsmith, 2011) showed that only about 50% of phase 111 trials yield an improvement
over standard therapy. Seruga, et al. (2015) discussed causes of failure in phase 11, including
insufficient evidence of anti-disease activity in early phase trials, disagreements about how
phase Il trials should be designed, and reliance on phase Il efficacy events or other
surrogates not associated with longer survival. Yuan, Nguyen, and Thall (2016, Chapter 1)
discuss problems with the conventional phase | — phase Il paradigm, mainly due to limited
sample sizes and ignoring efficacy when determining an MTD in phase I.

Many alternatives have been proposed that create hybrid designs by combining conventional
phases, most commonly phase I-11 or phase II-111. Thall (2008) reviewed phase I1-111 designs
and discussed problems with the conventional phase Il — phase 11l paradigm. “Select-and-
test” phase II-111 designs, where two or more experimental agents are chosen in phase Il and
randomized against Cin phase Il while maintaining desired overall type | and type 1l error
rates, are given by Thall et al. (1988), Schaid et al. (1990), Stallard and Todd (2003), and
many others. A phase II-111 design proposed by Inoue, Thall and Berry (2004) uses both an
early efficacy (response) indicator, Yz and survival time, Ys Denote mz=Pr(Yg= 1), the
probability density function (pdf) of Ysby 79, and the conditional pdf of [ Ys/ YA by f«(¢
/ Ye=y) for y=0, 1. Their approach relies on a mixture model of the general form

f®) =fqtlYp=Drg+ f@lYp=0(1~-7g). (1)
Denote the indicator of early toxicity by Yrand 7= Pr(Y7= 1). Because phase | designs
use Y7butignore Yszwhen choosing a MTD, they are likely to choose a dose having

reasonable r7but ineffectively low s For example, consider a dose-finding scenario with
five doses, true toxicity probabilities (.05, .10, .20, .30, .35), and true efficacy probabilities (.
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05, .10, .20, .30, .60). If the CRM is used with target toxicity probability .30, this most likely
will select dose 4 as optimal. By ignoring Yz however, dose 5 is chosen less frequently,
despite the fact that it has only a .05 higher = than dose 4 but doubles 2 from .30 to .60.
Phase I-11 designs are motivated, in part, by the desire to overcome this sort of problem.
Examples include the two-stage design of Hoering et al. (2011), studying combination
therapies (Huang et al., 2006), using the odds ratio between zand 7 (Yin et al, 2006), and
basing decisions on elicited numerical utilities of the possible elementary events determined
by efficacy and toxicity (Thall and Nguyen, 2012). Thall and Cook (2004) proposed, and
Thall et al. (2014) refined, the so-called “Eff-Tox” phase I-11 design based on maximizing an
estimate of an efficacy-toxicity trade-off function, ¢(r5 m7). The function ¢(rzg r7)
increases in rtz decreases in 7, and quantifies the desirability of each probability pair (rzg,

7).

This article presents a new Bayesian hybrid design that combines a phase I-11 design
followed by a modified phase 111 design, based on both early and late outcomes. We will call
this a phase I-11/111 trial design. For simplicity, we will use survival time, Y&, as the long
term outcome, although progression-free survival (PFS) time will work in precisely the same
way. Our approach relies on a mixture model for the distribution of Ysthat generalizes the
model (1) by including both efficacy and toxicity indicators, ( Yz Y7), to characterize early
outcome. After phase I-1l and an initial stage of phase 11l have been completed, the phase I-
[1/111 design may re-optimize the dose of the experimental agent A based on mean survival
time, . This approach hybridizes the phase I-11 — phase Il11 paradigm, in which dose-
finding for A is done using (Y5 Y7) in phase I-11, rather than using only Y7 for dose-finding
as in the more conventional phase | — phase Il — phase I1l paradigm.

Our proposed phase I-11/111 design has K= 3 stages. In stage 1, a phase I-11 trial is
conducted based on the short term binary indicators ( Yz, Y7), including adaptive
randomization (AR) among doses of A based on the dose desirability criterion ¢. The use of
AR reduces the risk of getting stuck at a suboptimal dose in phase I-I1. It addresses the
“exploration versus exploitation™ or “stickiness” problem, which is well known in sequential
analysis (Sutton and Barto, 1998; Azriel, et al., 2010). AR improves the reliability of our
proposed phase I-11/111 design because it obtains more data on doses that may be sub-optimal
in terms of the phase I-11 criterion ¢ based on (Y5 Y7) but optimal in terms of ys.

Denote A given at xby A(x). At the end of phase I-11 (stage 1), an optimal dose a?"Ef; of A

based on ¢ is determined. In stage 2, phase I1l begins with patients randomized fairly to C

and A()?OEPT‘) Phase I-11 patients are followed to observe their times of death or follow up.

After a pre-specified number of deaths, »3, have been observed from patients receiving Cor

A(xP) in stage 2, all (Y Y7) and survival data of patients treated with A in stages 1 and 2
are used to determine an optimal dose fgpt such that A()?gp‘) maximizes ys, for use in the rest
of phase I11. The re-optimized dose ;?gpt may or may not be the same as #95. Stages 3, ..., K

are a randomized group sequential trial with up to K'— 2 tests comparing the mean survival
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times of A()?gp‘) versus C. To provide a concrete illustration, for stage 1 we use the Eff-Tox

phase I-11 design of Thall et al. (2014), extended to include AR.

The rest of the paper is organized as follows. In Section 2, the data structure, models, and
decision criteria are presented. Section 3 presents details of trial conduct. Section 4 describes
possible decisions, outcomes, and potential consequences of re-optimizing dose versus the

conventional approach of using E%I’T‘ in phase Il1. Section 5 presents results of simulation
study to compare the phase I-11/111 design to the phase I-1l — phase Il paradigm. Section 6

concludes with a discussion. A computer program to implement the phase I-11/111 design is
available on CRAN in the package Phasel23.

2. Data Structure, Models, and Decision Criteria

Given raw doses d = (&, -, @)) of the experimental agent A, denote the standardized doses
by x, = (dj - J)/sd(d) for j=1, ...J Let Y% denote the observed time to death or

administrative censoring and 6 = I(YS = Yg) Denote the parameters for the distribution of

[Ys Y7X] by 67, and the parameters for the distribution of [ Y| Y5 Y7 X] by Bs.

The Eff-Tox design is reviewed in Web Appendix Section A. Briefly, for each m= £, 7, and
Xj, itis assumed that (X}, €7) = ALY =1| X; Oe7) = logitt {nmx;, 67}, with nr(x;
Ber)=tR1 t+ rr,ngand nE(xj’aET) =11 T 0¥t g, 3x3, with z7, > 0, so that 77:7'()(/,
©k7) increases with xj, but (X Be7) may be non-monotone. An association parameter y
determines the joint distribution of (Y5 Y7) from their marginals using a copula, so @g7=
(71, Tr2, T TE2, TE3, ¥). These parameters are assumed to be independent with priors
¥~ MO, 1), 752 ~ MO, .20), and 7, rNN(fN‘m " Ei r) for m= £ Tand r=1, 2. Numerical

values of (ﬁm 0 ) for m=E, T, r=1, 2 are determined from elicited means of 7z, x;,

m,r,
Oc7), for j=1,---, J, m= E, T, and a desired prior effective sample size. Adaptive dose-
finding decisions are based on a trade-off function ¢(rzz, 77) for = € [0, 1]2.

Denote ¢;= ¢[E{ (X}, Oc7), m1(X), Oe7)} datd] for each dose x;jat any point during phase I-
Il based on the current data. The estimated optimal dose in an Eff-Tox trial is

)?OEPTt = max; {(ﬁj}. To extend this design to include AR, rather than choosing ;?OEth for each

cohort during phase I-11, we adaptively randomize the next cohort to dose x;with probability

exp| (¢ - 0)/sd(©@)]

Y exp{@, - 0)sd@}
r:(/)r eQ

where Qis the current set of posterior mean desirabilities, ¢; of doses that are acceptably
safe and efficacious. This shrinks the selection probability of less desirable doses toward 0
while allowing selection of doses that are suboptimal in terms of ¢. After the (Y5 Y7)
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A

outcomes of all Nez7patients in phase I-11 have been evaluated, A(x"EPT‘) based on the final

phase I-11 data is moved forward to stage 2, which is the first portion of phase IlI.

In the phase I-1I/111 design, we define two different types of truly optimal doses of A. Let
aﬁfl”e denote an assumed true value of 8, for m= ET or S. The truly optimal dose that

maximizes ¢{z(x.0%). 2 (x.0%7)} is x$5. The truly optimal dose that maximizes the mean
survival time y¢(x,00") is xg?'. Let k=1, ...., Klindex the stages of the phase I-11/111 trial.
Thus, k=1 indexes the phase I-11 trial, A= 2 indexes the first portion of phase Il at the end

of which the dose of A may be re-optimized based on us, and k=3, ..., Kindex the
subsequent group sequential stages in phase 111 for comparing A()?gpt) to C. Thus, there are

up to K- 2 group sequential comparisons in phase Ill. Let & cand 2 denote the

1-11, 1,k
data for patients at the end of stage 4, from the phase I-11 and phase 111 portions of the trial,
respectively. Therefore, &, _ ;| consists only of the (x, Y5 Y7) data from phase I-11

patients, while & , also includes these patients’ survival time data (Yg 5), up to the time

I1-11,
at which the decision of whether to switch the dose based on mean survival time is made.

;.1 does not exist because phase I11 has not begun in stage 1. The re-optimized dose )?g”’

is chosen based on @, _ ,; , U, ,, which includes all (x, Yz Y7) and (¥3,6) data at the

end of stage 2.

Since the phase I-11 — phase Il paradigm uses )?OEPTt throughout phase 111, the primary
motivation for our design is the possibility that xpb\ # xgpt, and that re-optimizing the dose of
A may produce larger 4sby comparing Cto A(%3™) rather than A(xp%) in the group

sequential trial. To evaluate the effects of re-optimizing the dose of A based on ysduring the
first part of phase 111, we require models for [ Y5 Y7xX] and [ Ys/Ys Y7 A, in order to
formulate a mixture model for [ Y x]. This will include the effects of x on the indicators
(Ys Y7), and the effects of (Y5 Y7) and xon the hazard function of Y Let (Vs VX,
6r7) denote the probability distribution of (Y, Y7) at dose x, where (y5 y7) € {0, 1}. Let
f9&1/s| Y& ¥ X 6s) denote the conditional pdf of Ysgiven the early binary outcomes
and dose x of A. The mixture pdf of Y for patients treated with A(X) is

1 1
Fs0s%000p0) D Y fop 105y X097 y71x.057) . (2)

g = 0 yp=
The conditional mean survival time given ()5 y7) of a patient treated with A(X) is

o0
”S,A(x)(yE’yT’as)zﬂ ySfS|E’T()’g')}E,yT,X,as)dyS‘ ©)
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At the end of stage 2 of phase I-11/111, we choose 3P based on all observed data, where )?gpt

maximizes the posterior mean of the parametric mean survival time

1 1
Hg, A(x)(aS’ oET) = 20 20/45714()()()’@ Vs ag)”()’E» yT|x, 0ET) (4)
YE=YIr=

at A(x). Conventionally (Yg Y7) are used as surrogates for Ysin choosing a dose ;?OEPTt in

phase I-11, but (Y5 Y7) are ignored when modeling survival in phase IlI.

We assume that the distribution of [ Ys| Y& Y7 x] has the Cox type hazard function

p p
h(t\Y 5, Y 7, x,09) = hy(Dexp| fix+ pyx> —e EYp+e 'Yt >0, (5)

We assume that By, B>, Br and Brare independent with identical non-informative A0, 100)
priors. For robustness, we assume that the baseline hazard is piecewise exponential with
ho(D = exp(A) for t€ (¢, tx1] under the partition fH=0< { < .... < t; 4 = max(Ys). We
allow the dimension L of the baseline hazard to vary, with prior L ~ Pof((s) and assume that
the locations of the split points #vary according to the even order statistics with a uniform
distribution of size 2L, as in Lee et al. (2015) and Chapple et al. (2017). This prevents
obtaining intervals in /(2 having few events for estimating A, We suggest values of Cs €
{3, 4,5, 6, 7}, since most hazard shapes can be approximated very accurately with 1 to 5
pieces. The resulting posterior distribution is not sensitive to the choice of {sin this range
for sample sizes greater than 50. We assume a normal prior with mean 0 and variance 25 for
A4, denoted A, ~ MO, 25), and borrow strength when L > 1 for adjacent intervals via the

prior /11~N(/11 _ l,aﬁ), with the prior of o proportional to 1/o;,. The variance of A, ensures

posterior hazard values seen in practice, while maintaining prior non-informativeness.

Denote i A) = E(YSIx, Dy _ VD the posterior mean survival time for A(x) given

1, 2)'
the data from phases I-11 and 11 at the end of stage 2. We compute this quantity under the
mixture model (2) by estimating the posterior mean survival time

12

A
Hs A VEYT' 21— 11,29 21,2 = E{”s, AWVEIT 9L _ 112V Dy, 2}

for each pair (V5 y7) € {0, 1}, under the formula (3), and computing the posterior mean

A
TVp Y% Dy 2V 9y ) = E{(yE’yT'x’oET)@I —11,2Y%111,2

of each bivariate probability under the Eff-Tox model given in Web Appendix A.
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Since there will be limited survival time follow up information after n; events, the design

only evaluates the means until the maximum observed patient follow up time. The trial is

continued after n§ patient events using the dose x‘S’pt of A having the highest posterior mean

ﬁgpt = max, |/ . After making this decision, the design does not use data from

J

.4(x)
patients who were treated at doses X # XP'. After obtaining values of r}, ...,n} from East 6
statistical software (2016), n§ is chosen such that the design can switch doses with high

accuracy, but can still yield high power for phase 11 trials, given the truly optimal dose xgp‘

has been selected. Suitable values of 5 can be determined using the function SimPhase123

in the package Phase123. This approach will result in a larger sample size of patients in the
C arm being compared to A(£g™) if 295 # £P We use Markov chain Monte Carlo to obtain

posterior distributions for @z7and Gs, using 2000 iterations and 1000 discarded as burnim
This gives good convergence of the parameters, shown by the posterior of L settling on one
or two values as well as traceplots for the parameters A|L, 5L, and the coefficients in the
linear terms of the Eff-Tox and survival hazard models. A detailed account of computational
algorithms used to simulate posterior samples is given in Web Appendix B.

3. Trial Conduct

In this section, we give specific rules for conducting a phase I-11/111 clinical trial. Each of the
computer functions described below is contained in the R package Phase123, available on
CRAN, including documentation of inputs and examples. Additional information on the trial
parameters is given in Web Appendix C and a tutorial on several of the functions is given in
Web Appendix D. When designing a phase I-11/111 trial, the statistician should consult with
the physician to establish design parameters, such as ¢, maximum sample sizes Ngrand Ng,
and the number of comparative tests K — 2 following dose re-optimization. The group
sequential boundaries for stopping the trial due to futility «, or superiority #, may be

obtained using East 6 statistical software (2016), specifying a null value of y, desired
improvement A, type | error, power under the alternative, maximum sample size N, and

information proportions for determining n; for k=3, ..., K If no futility decision is desired
at look kthen u, = 0. The information proportions used to determine nz should be large

enough (> 30%) to avoid making unreliable decisions based on a small amount of patient
data if a dose is re-optimized for A.

The phase I-11/111 design parameters must be calibrated to obtain good operating

characteristics (OCs) under a reasonable array of possible scenarios. A smaller value of n§ (2

20% of the total information proportion) may be obtained by simulating the phase I-11/111
trial under sets of different (a) Eff-Tox scenarios quantifying effects of xon (Yz Y7), (b)
effects of (x, Y5 Y7) on survival, and (c) survival distributions. The stage 2 sample size n;

should be set by examining the design’s OCs for several different values, to find n§ (2) large
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enough to give a high probability of selecting the optimal dose, but (2) small enough so,
given that the design switches to a true optimal dose in stage 2, it has good generalized
power figures. This can be done using the function SimPhase123. Specific rules for
conducting a phase I-11/111 trial are as follows:

1 Enroll the first cohort of patients in the phase I-11 portion at the lowest dose. For
each subsequent cohort until A patients have been treated, use the function
AssignEffToxto obtain the next dose to give.

2. Once N patients have been enrolled in phase I-11, use the function
RandomEffTox to adaptively randomize the next cohort of patients among
acceptable doses, which allows doses that are empirically suboptimal in terms of
#(r5 r7) to be chosen.

3. After Nerpatients have been enrolled in phase I-11 and their efficacy and toxicity

outcomes have been evaluated, use the function AssignEffToxto obtain the dose

nopt

X to continue to phase III.

i ; t
4. Start phase 111, randomizing patients equally between Cand A()'c‘OEpT).

S. After n§ deaths have been observed, use the function Regptimizeto determine

Aopt

Xpr to continue with for the remainder of the trial.

the dose

6. Remove any patients treated with Q%F’T‘ from consideration if the dose was

switched and begin randomizing patients between C and A(ng).

7. For each stage k=3, ..., K after nz deaths occur, do two-sided tests for

superiority or futility using the logrank test in R. Denoting the Z-score
corresponding to the logrank statistic by Z for futility bound », and superiority

bound i,, stop the trial if

1Zl > ﬁk for superiority or |Z| < up for futility .

8. Stop accrual after N/gpatients have been enrolled in the phase 111 portion,
including patients treated with a dose that is no longer considered optimal.

4. Possible Trial OQutcomes

Before presenting our simulation results, we discuss possible design decisions and comment
on each under different true states of nature. Because the phase I-11/I11 design may change
the phase I-11 selected dose of A in phase 111 before comparing Ato C, the sequence of
decisions that it makes may be correct and optimal, correct but suboptimal, wrong, or

disastrously wrong, depends on xJP* and xg5, their estimates, and whether "

fgpy e

U > p+ A. Since more than one dose of A may provide the desired improvement in

AP
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s Of at least A over C, we denote the set of all such doses by x°P' = xj:ﬂA(xj) 2 pe+AL

We define the generalized power (GP) to be the probability of (1) selecting a dose x; € XoPt
in stage 2 and (2) declaring A(x)) superior to C'in one of stages 3, ---, K. The GP is the sum
over x; € X% of the probability of selecting x;and declaring A(x;) superior to C. If Xt
contains more than one dose, then the GP is larger than the probability of the best possible

decision, which is to select the optimal dose x‘S’pt e Xx°P that maximizes s with A and

declare A(xgpt) superior to C. We denote the probability of making this best decision by

and the GP by y». Thus, y1 < y», with y; = y» if X°Pt contains exactly one dose, which in
this case must be xP".

To help sort this out, Table 1 provides explanatory comments on scenarios in stages A= 1

(phase I-11) and &= 2 (the first portion of phase I11) regarding the true relationship between

H opt opt H H H Aopt Aopt Aopt _ Aopt
the optimal doses x¢"" and x4 and their posterior estimates x ¢ and x 7. If x 7. = X, then

the phase I-11/111 and phase I-11 — phase 11l designs make equivalent decisions. However, if
Q%F’T‘ # )/c\gpt, then switching provides a potential advantage. In this case survival data from

patients who were treated with Q"E‘;E during phase Il are no longer relevant. Depending on

the accrual rate, maximum sample size N, and number of patient events nﬁ needed to re-

optimize dose, this may result in 30 to 100 patients being treated at doses no longer
considered a part of the trial as phase 111 proceeds.

After choosing )’c‘gpt, the phase I-11/111 design makes group sequential decisions comparing

A(xP) to €, so the decisions in phase 111 depend on the selected £o7'. But it may not be the

case that Qgpt = xgp‘. That is, the design may not choose the truly optimal dose in terms of

mean survival time in stage 2. Table 2 lists possible decisions of a phase I-11/I11 design in
stages k=2, ..., Kand how each decision may be viewed in terms of xgpt. Table 2 is ordered
with the best outcomes listed first and the worst listed last, with outcomes 1, 2, and 3 being
good and outcomes 4 and 5 being bad. In outcome 1, the design declares the dose that
increases 4sthe most to be superior to C. In outcome 2, a dose of A is selected that provides
a clinically meaningful improvement = A in ygcompared to C, but the best dose of A is not
chosen, so the decision is correct but the dose has not been truly optimized. Outcome 3
represents a correct decision, but it does not improve yssince it declares C superior to or

equivalent to A()’c‘gpt). Outcome 4 gives a false positive result, including cases where the

design wrongly chooses an inferior dose for which Bace) <Her which is worse than a
J

conventional type I error. Outcome 5 represents the worst possible case, since not only does
the design wrongly conclude that the chosen dose gives A(%¢) superior to C, but it might

have obtained a successful trial result if it had correctly selected xgp‘ in stage 2.
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These same decisions and interpretations are made in the conventional phase I-Il — phase

111 paradigm, with the difference that £3™" is replaced with £35.. Compared to this

conventional design, allowing the optimal dose to be switched in the phase I-11/111 design
makes selecting Qgpt = xgpt more likely, which increases the probabilities of outcomes 1 and

2 and decreases the probabilities of the disastrous outcome 5. Under outcome 3, the phase I-
[1/111 design is likely to treat more patients because it is more likely to correctly pick the

dose )?gpt having the largest ys, thus making stopping the trial early for superiority of Cor
futility less likely. It will be more likely to switch to the dose having the longest mean

survival time for outcome 4, however, which makes a false positive event more likely.

5. Simulation Study

To perform a simulation study comparing the phase I-11/111 design to the phase I-1l — phase
111 paradigm, we first specify three different Eff-Tox scenarios, consisting of true efficacy
and toxicity dose-probability vectors. We will use these to specify different relationships
between (Y5 Y7) and Ys We evaluate the design with J=5 doses using raw dose values
(a1, -+, @) = (1, 2, 3, 3.5, 5). For this study, each patient’s ( Yz, Y7) are evaluated in one
month, and we assume for simplicity that no patients die before this month long window. For
a dose xjchosen in phase I-11, we test the null hypothesis H: - = ,MA(xj) = 24 months versus

Hype # ”A(xj) with target ﬂA(xopt) = 36 months, a A = 12 month improvement.
s

To implement phase I-11 using the Eff-Tox design, the three equivalent (rz5 m7) pairs used to
establish the desirability function ¢ were (.35, 0), (.70, .40) and (1, .75). The contour created
by these three pairs is seen in Web Figure 1. The upper limit on 7was 7. = .40and the

lower limit on s was z, = .30. The threshold on the posterior probability that > .30 and

< .40 was set to be p= p7r= .10 for both acceptability rules. Patients were treated in
cohorts of size 3, with up to V7= 60 patients enrolled in phase I-11 (stage 1). We calibrated
the phase I-11 hyperparameters to have prior effective sample size .90 as suggested by Yuan,
Nguyen and Thall (2016). We used prior mean toxicity probabilities of (.05, .10, .15, .20, .
30) and mean efficacy probabilities (.20, .40, .60, .65, .70) for the five doses, to produce the
hyperparameter means (-4.23, 3.1, .02, 3.45, 0, 0) and standard deviations (3.13, 3.12, 2.68,
2.69, .2, 1) for the prior of 8¢7. The EffTox program is freely available on the MDAnNderson
biostatistics software page.

For the phase I-11 portion of the simulated trials, patients were treated in cohorts of size three
and assigned doses after the previous cohort was fully evaluated, assuming an accrual rate of
five patients per month with adaptive randomization begun after A = 15 patients. The three
simulation scenarios’ assumed true (X)) and rz7(x)) are given in Table 3, with their
selection percentages, true ¢ values, and numbers of patients treated, based on 5,000
simulated trials using the EffTox program.

In the three Eff-Tox scenarios in Table 3, the respective optimal doses in terms of the
tradeoff contour are doses = 3, 5, and 2. We only consider simulated phase I-I1 trials that
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advance to phase 111, ignoring simulation replications where the trial stopped early. In
scenario 1, doses 3 and 4 have nearly equivalent desirability, so we expect most patients in
the phase I-11 portion of the phase I-11/111 trial to be treated at these two doses. In scenario 2,
the highest dose 5 is considered optimal, most patients are treated at this dose, and it is
selected in 49% of the simulations. In scenario 3, the dose 2 is optimal and doses 4 and 5
have unacceptably high toxicity probabilities, so we expect to treat fewer patients at these
doses. The design treats the most patients at dose 2, which is selected with probability .51,
but substantial numbers of patients are treated at doses 1 and 3. The use of AR assigns more
patients to doses 1 and 3, which allows the phase I-11 /111 design to better assess the
functional relationship between dose and mean survival time. For the control group, we
assume that the effects of toxicity and efficacy on overall survival are the same as those for
the experimental group, and set the probabilities of toxicity and efficacy to be (.15, .40), (.
10, .30), and (.35, .20) for the three Eff-Tox scenarios, respectively. For each of these
simulation scenarios, we assume two different forms for the linear terms of the log hazard of
Ys. For A(X), we assume 75X, Y& Y7 = fo + Bix+ Box — exp(Be) YE+ exp(Br) Y7 For the
simulated data from the control group, we assume 1s(C, Yz Y7) = Bc— exp(Bg) Ye+
exp(By) Yrand calibrate the additional parameter B¢ so that we obtain the desired null value
of 24 months for mean survival time. We first consider an exponential distribution with pdf
(4p) = (1p) exp(-tpp) where p = exp{ns(x, Y5 Y7}, since the O’Brien Fleming group
sequential bounds (O’Brien and Fleming, 1979) for the logrank test are based on this
assumption. Later, we will consider several other distributions to evaluate the robustness of
the methodology. Table 4 displays the six scenarios considered, which correspond to the
different Eff-Tox scenarios listed in Table 3, as well as differing effects of dose, efficacy, and
toxicity on survival time.

These scenarios encompass several qualitatively and quantitatively different possible cases

in connecting phase I-11 to phase I1. In scenario 1, the optimal dose in terms of usis dose 3,
which is selected with probability .29. In scenario 2, there is a large efficacy effect, leading
to dose 5 being optimal in terms of xs, but this dose is only selected with probability .49 in
phase I-11. Thus, we expect to see a large improvement in this scenario by using a phase |-
[1/111 design. Similarly, in scenario 3, dose 3 is optimal in terms of ug, but is only selected
with probability .18 in phase I-11. Scenario 4 represents a case with a large toxicity effect
and small efficacy effect, making dose 1 optimal in terms of s, but dose 1 is only chosen in
26% of the usual phase I-11 trials. In scenario 5, dose 3 is the third best dose in terms of ¢ but
is best in terms of yg, and it is only selected with probability .20. In this scenario, dose 4 also
gives a significant improvement in zscompared to C, with Mgy = 38.6 months. In scenario

6, there is a large efficacy effect on overall survival, making dose 4 optimal in terms of both
overall survival and ¢, but dose 5 also has significantly improved survival compared to C.
These two scenarios provide a basis for evaluating improvements in both y4 and the GP, »».
To control the possibility of incorrectly switching due to chance outcomes, we do not allow
the design to continue with a dose that had less than 6 patients treated. These scenarios also
have varying effects of toxicity and efficacy on /s, quantified by the coefficients Szand Br
This will evaluate the sensitivity of the method to these effects. Since the parameters (51, 5)
must be changed substantially to obtain similar s values for different values of (85 B7), we
do not perform a sensitivity analysis to these parameters within each scenario.
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We assume that 10 patients, on average, are accrued each month during phase 111, and that
the phase 11 trial will begin 1 month after the phase I-11 trial concludes. This waiting time
could be increased to obtain longer survival follow up and thus improve the design’s ability
to re-optimize doses during stage A= 2. We enroll a maximum of A/s=500 patients in phase

111, which has up to three interim looks after n3 = 200, n; = 300 and n5 = 500 deaths, with

superiority decisions possible at each. We calibrated the stopping boundaries with East 6
statistical software (2016) using O’Brien-Fleming bounds (O’Brien and Fleming, 1979) with
power .80 and type | error probability .05. We included a rule to determine if the trial should

be stopped for futility, i.e. neither Cnor A(,/v\gpt) is superior, after »; = 300 deaths. The

boundaries for declaring superiority of A(;’c‘gp‘) or C based on the standardized logrank
statistics are (i, iy, its) = (2.96,2.53,1.99), and the futility bound at the second look is

u, = 1.001. At the start of the phase I11 portion of the trial, we begin randomizing patients
equally to A()/C\%I;E) and C. After n§ deaths in the trial have occurred, we determine the dose

)’c‘gpt that patients receiving A should receive for the remainder of the trial. This is the re-
optimization step. Survival times for patients in phase I-11 and phase |11 are generated after
their toxicity and efficacy are scored, which does not allow the possibility that a patient may

die before their short term indicators are seen.

For each scenario and design, 5,000 simulation replications were performed. The simulation
results are summarized in Table 5. In each of scenarios 1-4, 31 = y», since there is one dose
for which A is superior to C. Mean improvement in patient survival time with each design is
denoted by W, computed by averaging the differences between the true mean survival time
with the selected dose of A and y, if A is declared superior to C. In the simulations, W is
computed as the mean over { W2, b= 1, -+, 5000}, where

b

W” = (u nopt, ~ u C)I [A()’c\gpt) is declared superior to C in simulated trial b] .
Ax )
S

Table 5 shows that, in general, the phase I-11/111 design maintained type | error probability
< .05 under Hp and had a uniformly higher 7 and GP, y», compared to the conventional
phase I-11 — phase 111 approach without dose re-optimization. The values of 71, 7, and W
are uniformly larger for the phase I-11/111 design than for the conventional phase I-1l —
phase Il paradigm. The differences are extremely large in scenario 3, with an improvement
of .73 /in 1, and a 9.68 month improvement in w. The smallest advantage of the phase I-
[1/111 design is seen in scenario 2, with an improvement of .09 for -y, and .90 for W. In
scenarios 5 and 6, where two doses of A give mean survival time larger than g+ A = 36
months, the phase I-11/111 design provides respective improvements in y» of .61 and .23, and
improvements in y4 of .57 and .25. These scenarios illustrate the potential advantage of the
phase I-11/111 design compared to the conventional phase I-11 — phase Il1 approach.

The phase I-11/111 design does have the drawback that it requires treating more patients and
longer trial durations, on average, than the conventional paradigm. Part of this required
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increase is due to the design correctly switching to the best dose of A in terms of overall
survival, which decreases the likelihood that a trial will stop early by declaring Cto be
superior or due to futility. This increase in required sample size and trial duration are the
price paid for the much larger probability of a successful phase I1I trial in cases where dose
switching increases mean survival time with A.

Since phase I-11 trials may have sample sizes ranging from 24 to 90 in practice, we chose the
Eff-Tox sample size Ne7= 60 in the simulations as a practical compromise that obtains a
reasonable amount of information in stage 1. Web Tables 1 and 2, seen in Web Appendix E,
summarize additional simulations with Nz7= 90. Values of 31, y» and W for the phase I-
[1/111 design all increased substantially with A/e7-for all six scenarios. This is because more
information at different doses in phase I-11 makes switching to the best dose in stage 2 more
likely.

To assess robustness of the phase I-11/111 design to different event time distributions, we
evaluated its performance for two lognormal distributions, with variances .25 and 1, a
Weibull distribution with increasing or decreasing hazard, with shape parameters 4 or .5, and
a gamma distribution with scale parameter 2. The true coefficients of Yzand Y7in the
hazard function’s linear term were kept constant for each distribution, and the remaining
constant parameters By, B¢, Bi, B Were adjusted to obtain similar true means as in the
exponential distribution simulation study. We exponentiated the linear term for the gamma
and Weibull distribution rate parameters, but did not do this for the lognormal distribution.
The means under the null and alternative hypotheses for each distribution are given in Web
Table 3. Table 6 summarizes the robustness study, showing that under the alternative
hypothesis, for each distribution, the phase I-11/I11 design has uniformly higher values of 1,
¥2, and W, with substantially higher values for scenarios 1,3 and 5. For the Weibull
distribution with decreasing hazards in each scenario, the decrease in y1 and y» for both
designs is due to the assumptions of the logrank test being grossly violated by a high early
failure rate. Because so many patients have early failures, patients are not followed as long
before the final group sequential test. For this distribution, however, the phase I-11/111 design
still improved the probability of selecting the optimal dose of A compared to the
conventional paradigm by .49, .21, .15, .59, .46 and .14 in the six scenarios, respectively.
Similar improvements are seen under the other distributions. This shows that the logrank test
is not robust to the Weibull distribution with decreasing hazard. An extension of the phase I-
[1/111 design might incorporate a robust group sequential test in place of the logrank test, to
reduce the loss in power under a Weibull with decreasing hazard. The type | error constraints
are nearly met for each distribution. Some slight inflation in a above .05 may be attributed
to the proportional hazards assumption being violated. For each distribution, the phase I-
[1/111 design treats more patients, on average, under both Hp and Ay, and has slightly longer
trial duration, but makes the correct decision much more often.

6. Discussion

We have proposed a new drug development strategy, which we call a phase I-11/111 design,
that re-optimizes the dose of an experimental agent A chosen in phase I-11 during phase 111
based on mean survival time. We use information from all patients treated with A, including
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their short term efficacy and toxicity indicators, dose assigned, and survival time
information, in order to more accurately select the dose of A that provides the highest
posterior mean survival time. The design is based on an assumed a mixture model for the
survival time distribution that averages over the possible short term phase I-11 outcomes.
While we have used the Eff-Tox trade-off based phase I-11 design for stage 1 of the phase I-
[1/111 design, one could replace the Eff-Tox design with any phase I-11 design based on (Y5
Y7) that uses some dose optimality criterion ¢ and includes AR. However, the necessary
modifications of the design parameters and computer software to accommaodate such a
change would be non-trivial. Similarly, a complicated but straightforward extension of the
methodology may address the problem of possible deaths before evaluation of (Y5 Y7).

The simulations shows that, under a range of alternative cases, the generalized power y»,
and probability y, of the best possible decision, both are greatly increased by the phase I-
[1/111 design compared to the phase I-11 — phase 111 paradigm. The phase I-11/111 design also
has a much lower probability of making the least desirable decision, where a suboptimal
dose is chosen and a true treatment advance is missed. A drawback of the phase I-11/111
design is that it requires more patients and a slightly longer trial duration, on average,
compared to the phase I-Il — phase Il paradigm. This seems like a very reasonable price to
pay for the much larger values of 1, y», and W, in cases where re-optimizing the dose of the
experimental agent increases its associated mean survival time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Possible relationships between )?%”T’ x5, )?gl”, and xgp’, including comments related to the phase I-11 — phase

I11 and phase I-11/111 designs. )?Z!’T’ 2 x%th refers to whether or not the optimal dose is selected at the end of
phase I-11 based on ¢, and x/ 2 xgpt refers to whether the optimal dose based on i is the same as that based

on ¢

Comments
<opt ? Lopt  opt ? opt
ET — "ET ET S

The optimal dose in terms of yswas selected in phase I-11, so it is not desirable to switch doses at stage 2. In

ROPt_ opt 0Pt _ \OPt  yhis scenario, the phase I-11/111 design cannot provide an improvement over phase I-11 — IIl.

YETTYET “ET TS
The dose selected in phase I-11 is optimal in terms of ¢ but is not optimal in terms of x5 This illustrates the
;?OEI;E = on%E x%%f # xgpt advantage of the phase I-11/111 design over phase I-1l — 111 design.
The dose selected in phase I-11 is suboptimal based on ¢, but the optimal doses in terms of ¢ and ysare
;?%g + xz%t, x%%f = xgpt identical. This scenario illustrates the advantage of the phase I-11/111 design over phase I-11 — 111 design.
The dose selected in phase I-11 is suboptimal based on ¢, but the optimal doses in terms of ¢ and 45 are not

~opt , opt _opt_ opt . . : L . - TR -
Xpr # Ypr  XpT # xg identical. This scenario illustrates the advantage of the phase I-11/111 design over phase I-11 — 111 design.
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Table 2

Possible Phase I-11/111 Trial Outcomes, O. xgp’ is the truly optimal dose in terms of 114,y and A is the desired

improvement over c. Column 2 gives the two trial decisions, the first row for selecting 2;’1” and the second

row for determining superiority, inferiority, or futility, with A(£"") > € indicating that A(¥¢”") is declared

superior to C, and C > IA()?gp’) indicating that the trial is stopped due to either superiority of C or futility.

O Decision Truth Comments
1
fgpt = x(S)pt H A(xopt) > Het A This is the generalized power event at the optimal dose xgpt. The design correctly selects xgpt
S
A()?gpt) - C as optimal and declares A(xgpt) superior to C.
2
fgpt #* xgpt MA()??”) ZHet A This is a generalized power event in a case where the design correctly concludes A(fgpt) is
A(Egpt) ~C opt > opt superior to Cbut fgpt is suboptimal, so it could have improved survival more had if it chosen
A Alx
(xS ) (XS ) the truly optimal dose xgpt.
zopt _ anyx, M opt Spe This is a correct conclusion, but the phase I-11/111 design will require an increased sample size
S i Al ot

2 A

fopt

=anyx.
S yx]

A(fgpt) > C

~opt _, _opt
Xy F g

AR > ¢

g =

gy e

H Zpc+A

AP

compared to the phase I-11 — 111 design due to correctly switching to xg

This is a false positive conclusion. While the design may pick the best dose of A, it incorrectly
concludes that A at that dose is superior to C.

This is a disastrous false negative conclusion. The design chooses a suboptimal dose based on
HUsand incorrectly concludes A(?cgpt) is inferior to C; instead of correctly selecting xgpt and

declaring A(xgp[) superior to C.
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Table 4

Simulation Parameters. True Eff-Tox parameters TR corresponding to the phase I-11 scenarios in Table 3, and
true mean survival time of each A(xy), -, A(xs) for each phase I-11/111 scenario’s null and alternative

hypotheses.

( , , ' , )
Scenario Eff-ToxScen  Hyp  (Bu B eﬂE, eﬁT, BT Fa(ey) " Alry) Fa(eg) Ay) Fa(x)

1 1 Null (1,-5,5,.529) (8.3,17.9, 24, 22.5,9.8)
Alt (25,-2, 5, .5,3.4) (1,145,362, 28.3, 1)
2 2 Null (1,-.1,1,.5,26) (14.0,17.8, 21.9, 23, 24)
Alt (5,0,1,.5,23) (7.1,10.3, 16.0, 19.5, 36)
3 2 Null (1,-5,31,3.1) (9.5,18.5, 24, 22.5, 10.4)
Alt (1,-1,.3,1,36) (6.9,24.7, 38, 33.1, 6.3)
4 3 Null (-3,.3,3,1,23) (24,13.6,8.9,6.8,7.8)
Alt (-1,3,3,1,30) (38, 24.6,18.4,15.0, 21.1)
5 3 Null (1,-5,.3,.1,30) (9.3,18.7, 24, 22.7, 10.4)
Alt (1,-1,3,.1,36) (7.8,28.8, 44, 38.6, 7.4)
6 1 Null  (75,-5,.3,.25,2.8) (3.2,10.1, 20.4, 24, 20.4)
Alt (1,-.6, 3,.25,3.3) (3.0, 12.9, 31.8, 40, 36.6)
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