Biophysical Journal —
physical / Biophysical Society

Subdiffusive Dynamics Lead to Depleted Particle
Densities near Cellular Borders

William R. Holmes 2"

"Department of Pysics and Astronomy, 2Department of Mathematics, and *Quantitative Systems Biology Center, Vanderbilt University,
Nashville, Tennessee

ABSTRACT It has long been known that the complex cellular environment leads to anomalous motion of intracellular particles.
At a gross level, this is characterized by mean-squared displacements that deviate from the standard linear profile. Statistical
analysis of particle trajectories has helped further elucidate how different characteristics of the cellular environment can intro-
duce different types of anomalousness. A significant majority of this literature has, however, focused on characterizing the prop-
erties of trajectories that do not interact with cell borders (e.g., cell membrane or nucleus). Numerous biological processes
ranging from protein activation to exocytosis, however, require particles to be near a membrane. This study investigates the con-
sequences of a canonical type of subdiffusive motion, fractional Brownian motion, and its physical analog, generalized Langevin
equation dynamics, on the spatial localization of particles near reflecting boundaries. Results show that this type of subdiffusive
motion leads to the formation of significant zones of depleted particle density near boundaries and that this effect is independent
of the specific model details encoding those dynamics. Rather, these depletion layers are a natural and robust consequence of
the anticorrelated nature of motion increments that is at the core of fractional Brownian motion (or alternatively generalized
Langevin equation) dynamics. If such depletion zones are present, it would be of profound importance given the wide array
of signaling and transport processes that occur near membranes. If not, that would suggest our understanding of this type of
anomalous motion may be flawed. Either way, this result points to the need to further investigate the consequences of anom-

alous particle motions near cell borders from both theoretical and experimental perspectives.

INTRODUCTION

Molecular diffusion is a fundamental process impacting
almost every area of cell biology, from transport to gene
regulation (as well as fields ranging from superconductor
physics to finance (1-3)). But the cellular environment
(cytoplasm, membrane, etc.) is a complicated and crowded
place. A consequence of these environmental complexities
is that proteins, messenger RNA, vesicles, and other
diffusing entities exhibit a range of different exotic and
anomalous types of random motion (see (4) for an extensive
review). But how do these interactions between particles
and their environment influence spatial densities? This
article discusses a surprising and potentially important
consequence of one particular form of subdiffusion, frac-
tional Brownian motion (FBM), and its physical analog,
generalized Langevin equation (GLE) dynamics, on the
spatial distribution of particles near cellular boundaries.
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Normal diffusion, one of the most basic nonequilibrium
phenomena in nature, is well characterized by a linear
mean-squared displacement relationship (x?) = kt (where
k depends on the particle and environment). It is well
known, however, that in the complex, crowded, colloidal
environment of the cytoplasm (or the cell membrane),
motions of particles instead exhibit subdiffusion' where
(x?) = kr* with « < 1. This raises the well-studied ques-
tions 1) what features of the cellular environment give rise
to this anomalousness, 2) how can it be accounted for in
stochastic models of particle motions, and 3) what are its
consequences? Here, I focus on the latter question and
consider the consequences of FBM or GLE dynamics in
cellular domains.

Although macromolecular crowding has been proposed
as one possible mechanism of anomalous motion (5,6),
alternative evidence has suggested simple crowding effects
would reduce the speed of normal diffusion rather than
introduce anomalousness (7). Instead, some additional
environmental factor is likely responsible. From a theoret-
ical perspective, there are a number of possible sources of
subdiffusion. The theory of continuous-time random walks
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(CTRWs) (8), which is typically associated with the tran-
sient caging or trapping of particles (by microtubules, for
example) in the filamentous cellular environment, hypothe-
sizes that random steps are broadly distributed in time.
Alternatively, FBM (9), which is usually associated with
the crowded or viscoelastic nature of the cellular environ-
ment, assumes the incremental steps taken by a particle
are negatively correlated because of the viscoelastic envi-
ronment. Diffusion on fractals (10) also exhibits subdiffu-
sive characteristics, which could be particularly relevant to
transport on actin or microtubule polymer networks.

Fortunately, these types of motion can be distinguished
from each other statistically. Motions of chromosome loci
(11) and messenger RNA (12) were found to obey an
FBM-type dynamic as opposed to CTRW. Similarly, mo-
tions of tracer particles in an in vitro dextran solution
were found to exhibit an FBM-type dynamic (13). Motions
of tracer particles in an actin network, on the other hand,
exhibit CTRW characteristics (14). Although these types
of motions are distinct and distinguishable, they are not
mutually exclusive of each other (15,16). Insulin granules,
for example, were found to exhibit characteristics of both
(17). This article will focus on the impact of FBM-type
motion on spatial densities near cellular boundaries (mem-
brane, nucleus, etc.).

Although there is a vast amount of literature on this topic,
the majority of it has sought to infer the source of anomalous
motions by analyzing the statistical properties (time-aver-
aged mean-squared displacement, p-variation (18,19),
turning angle distributions, moments (20), or mean first pas-
sage time (10,21)) of particle paths. Furthermore, most
experimental studies have been limited to observing parti-
cles distant from cellular boundaries, and most theoretical
studies have followed suit. Some studies (22-24) have
investigated the influence of confinement on anomalous mo-
tions. They have again, however, focused primarily on the
statistical analysis of particle paths to investigate, for
example, the effects of confinement on ergodicity. A more
recent investigation (25) has shown confinement of particles
undergoing FBM can have significant consequences on their
spatial distribution. This study, however, focused on tran-
sient rather than steady-state dynamics and studied those
dynamics on an unbounded domain (half line).

This article investigates the influence of anomalous mo-
tions on steady-state particle distributions in bounded,
confined domains (e.g., cells). Results show that 1) FBM
or GLE dynamics lead to a significant depletion of particles
near cellular boundaries; 2) these depletion effects are likely
significant enough in both magnitude and spatial extent to
be observed experimentally (if, in fact, this theory is an
appropriate description of subdiffusive dynamics); and 3)
the inherent memory dependence (i.e., increment correla-
tions) of particle motions that are intrinsic to the basic
physical hypothesis of this type of motion is responsible
for this effect. This raises an important question that could
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be readily investigated with current super-resolution micro-
scopy techniques: do these depletion zones exist near
borders in either cellular or in vitro systems? If so, this
would be of profound importance given the wide range of
biological processes that rely on interactions with a bound-
ary (trafficking and binding, for example). If not, it may
point to a significant flaw in our understanding of this
form of subdiffusive motion, both in cellular environments
and more generally.

RESULTS

The effect of FBM-type dynamics on the spatial localization
of particles near confining borders is investigated here. The
goal, however, is not to investigate FBM itself but rather the
underlying physical assumptions that are typically associ-
ated with it. At the most basic level, FBM is a statistical
model that describes antipersistent particle motions as
resulting from anticorrelated increments of motion. This
inherently introduces a type of history dependence into
motion. Although FBM accurately captures (26—28) many
aspects of particle dynamics, it is not inherently a physics-
based model. More recently, the GLE (29), which is a
well-established generalization of the standard Langevin
equation, has been proposed as a more physically grounded
model with similar properties to FBM.

Both FBM and GLE dynamics will thus be investigated
using simulations. Additionally, a third toy model of anti-
correlated, memory-dependent particle motions will be
considered. This third model is considered primarily to strip
out many of the complexities of the FBM and GLE models
while retaining the inherent assumption of anticorrelated
increments central to these models. Thus, three distinct
but related models encoding the same basic assumptions
are used here. This multipronged approach will be used to
study, in a model-independent way, how the presence of
antipersistent particle motions, and the inherent memory
dependence that comes along with them, influences particle
densities near confining boundaries.

Models

A brief overview of the models used is given here. For addi-
tional details about the models themselves or the numerical
implementation details, see the relevant Materials and
Methods. As a brief note, all simulations of all models
herein are initialized from a uniform initial distribution of
particles on the relevant domain. Also, in all figures pro-
vided, densities are quoted in units of either particles/micron
or particles/micron”.

FBM

FBM is a generalization of Brownian motion in which step
increments are not independent. Let B(#) denote the FBM
with mean-squared displacement characterized (in one
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dimension) by 2Dr*"", where H is the Hurst exponent and
D is the generalized diffusion coefficient (H < 1/2 corre-
sponds to subdiffusion). The FBM process can be generated
by a fractional Gaussian noise process (FGN), given by

dx! -
- = 1
7 £, ey
where x”(1) denotes the trajectory of a particle and &7 are
correlated increments with (£7(¢)) = 0 and covariance

(E"(1)E" (1)) = 2DH(2H — V)|t, — 6™ (2)

Thus, FBM is a statistical model that, for H < 1/2,
encodes the negative correlation between increments of a
particle’s motion. It is this negative correlation that gives
rise to antipersistent, subdiffusive dynamics. This model
of particle dynamics will be simulated using MATLAB’s
(The MathWorks, Natick, MA) wfbm package (part of the
wavelet toolbox) for generating FBM. In a confined domain,
standard reflecting boundary conditions will be used.

GLE motion

The GLE is a generalization of the canonical Langevin
equation that can be derived from basic physical consider-
ations of how a particle interacts with a heat bath (30). It
takes the form

dv

_ H
ma = —F* 4+ n&", where

7 3)
F(T) = y/(T—s)fav(s)ds,

0

and the fluctuation-dissipation theorem (31) dictates that

. kBT’Y
T =\ 2D, HCH - 1) @

Here, F* denotes a history-dependent, generalized drag
term; §H is the FGN defined above; 7 is the magnitude of
that noise; and v is the generalized friction coefficient. In
this case, the asymptotic dynamics obey (x*(¢)) ~ %, pro-
vided the Hurst exponent is H = 1 — «/2. Because the
Reynolds number of a typical 100 kDa diffusing protein is
Re < 0.05 (32), inertial effects will be neglected, and the
m — 0 limit of the GLE will be considered. Simulations
of this model for the range v = 10~'° — 107 will be per-
formed. This yields mean-squared displacements at 60 s in
the range 4-40 um?”. Smaller values become too computa-
tionally cumbersome because of the smaller required time
steps and the large number of particles needed to get
adequate density estimates. For further discussion of the
properties of the GLE, see (28).
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For completeness, two methods of simulating this model
will be used that provide two qualitatively different interpre-
tations of GLE dynamics. The first is a lattice-free predictor
corrector scheme developed in (28) and briefly described in
the Materials and Methods. Alternatively, the method of
(33) will be used, which views GLE dynamics as a biased
random walk in which at each step, a bias due to the
particle’s history is introduced by subjecting it to the force
F® (see Numerical Simulation of the Kinetic Monte Carlo
Interpretation of the GLE and (33) for implementation de-
tails). Standard energetic or Boltzmann statistics arguments
can then be used to prescribe the probability of stepping in
different directions under the influence of this force. As will
be shown, both methods yield similar qualitative conclu-
sions, though they differ in their quantitative predictions
of the magnitude of boundary-induced effects. It is impor-
tant to note here, however, that although the lattice and
lattice-free methods here are related models, they are not
precisely solving the same underlying model. Specifically,
randomness is injected into the lattice method through the
sampling of normal random numbers, whereas the lattice-
free GLE simulations incorporate an FBM noise source.
Although this is a subtle difference, it is an important one
and could be the source of this discrepancy.

Antipersistent lattice random-walk model-toy model

Analysis of the FBM and GLE results indicates that the
history dependence inherent in the two models is vitally
important to the observed results. However, both models
have numerous complexities and assumptions embedded in
them. To assess the influence of this memory dependence
on spatial localization of particles near boundaries, a
simple lattice random-walk model is developed (see Antiper-
sistent Lattice Random-Walk Model-Toy Model: Additional
Details) in which the probability of right or left steps depend
on the number of right or left steps taken over the previous 7,
steps. For example, if most of the walker’s steps were to the
right, a leftward bias is introduced, and vice versa. The param-
eter T, encodes how long into the past this memory process
remembers, and an additional bias parameter is included
that incorporates the strength of the history-dependent bias.
In a sense, this is akin to the kinetic Monte Carlo implemen-
tation of the GLE (33) in which the power-law memory kernel
isreplaced with a uniform kernel with support [ — T, ¢]. This
model will be used to determine the influence of memory, and
the length of that memory, on spatial distributions.

Modeling results

First, simulations of spatial particle densities at steady
state were performed for different values of « for both
FBM and the GLE. They demonstrate a surprising result:
when particle motions are sufficiently anomalous, a substan-
tial depletion zone in the steady-state distribution appears
near the cellular border (Fig. 1, a and b). Snapshots of the
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FIGURE 1 Anomalous motions lead to depletion
of densities near boundaries in a model-independent

fashion. (a) A simulated density profile for the FBM
with 5000 particles and varying values of « at a fixed
value of D = 1 is shown. Densities were calculated
after 7 = 6000 s with a time step of 0.01 s. (b) A
simulated density profile (in one dimension,
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measured in particles per micron) for the GLE with
5000 particles and varying values of « at a fixed
value of vy = 107° is shown. Densities were

100
Lattice Site

calculated after T = 250 s with a time step of 0.01 s. (¢) The spatial profile of the friction force F* for the simulations in () is shown. The force profile
is averaged over all particles and all times in the interval T € [240, 250]. The units fN refer to femto-Newtons. (d) A simulated density profile for the
toy model with different biasing strengths is shown. 20,000 particles were simulated on a lattice with 100 sites for 20,000 time steps. To see this figure

in color, go online.

density distribution at different times (Fig. 2 b) confirm
that an initially uniform distribution evolves to this final
distribution by steadily pushing mass from the peripheral
to the interior regions of the domain. Importantly, this is
observed in both the FBM and the GLE. Furthermore,
the lattice Monte-Carlo-based GLE simulations in both
two dimensions (Fig. 3) and one dimension (Fig. 4 b)
show similar results, and the simple antipersistent lattice
random-walk model also gives rise to depletion zones
(Fig. 1 d). This effect is most prominent when the anoma-
lous exponent («) is well below one as shown in Fig. 5 (or,
in the toy model case, when the bias is sufficiently strong).
In all cases, when the exponent approaches a = 1, these
depletion zones shrink, and the expected uniform densities
appear again. In conclusion, the formation of these zones is
universal among these models incorporating memory-
dependent antipersistence and is not simply a numerical
artifact.

Next, the influence of particle mobility on the presence of
these zones was assessed. For the GLE, the depletion effect
becomes more pronounced for smaller « but appears to be
insensitive to varying vy (Fig. 5 a). For FBM, the spatial
profile appears to be nearly unaffected by four orders of
magnitude variation in D (Fig. 5 b). However, when parti-
cles diffuse very quickly, there is a slight reduction in the

13000 GLE-FBM Comp P Time Progression
FBM GLE 000[ 7=150 =200 T=250
/ \ >
= i
2 &
@ o
(]
/ 0 0=0.7 y=10"°

5 . . 5
Position (microns)

Ei’ -, . 5
osition (microns)

FIGURE 2 (a) Comparison of spatial profiles for the GLE and FBM. The
GLE curve is the red curve from Fig. 1 b. For the GLE, v = 1077 was used,
and for the FBM, D = 0.3 was used. For these values, the MSD curves have
the same scaling, and the MSD was comparable after 60 s in an unconfined
domain. (b) The simulated time progression from an initially homogeneous
density state (dashed line) for the a = 0.7, v = 10~ case from Fig. 1 b is
shown. To see this figure in color, go online.

depletion effect, though it remains significant. In this case,
however, the reduced depletion only occurs when particle
motions are very fast, i.e.,, the D = 10, « = 0.6 case
corresponds to a mean squared displacement (MSD) of
~110-120 microns after 60 s. This reduction thus appears
to occur only for very fast particles. In conclusion, this
depletion effect persists over a range of particle mobilities,
and so increasing particle mobility would not abrogate
the effect, as might be expected given the homogenizing
tendency of diffusion.

Finally, the influence of “memory length” on these
boundary-depletion effects was assessed. Simulations of
the antipersistent lattice random-walk model with different
memory lengths (Fig. 4 d) show that the longer the memory,
the larger the steady-state depletion effect. Note that this
model does not explicitly encode any spatial or temporal
scale, and there is no explicit a encoding the level of
anomalousness. The only aspect of this model capable of
producing heterogeneity is the antipersistent memory
incorporated into it.

There is an important caveat to these results. As shown
in Fig. 2 a, the FBM and GLE predict different steady-state
distributions, even when the two models are calibrated to
have similar MSD scaling. The same « values are used
for the FBM and GLE here, and the values of v and D
were chosen so that the two models have the same MSD
after 60 s. Thus, in the absence of confinement, both sim-
ulations produce the same MSD behavior. However, under
confinement, each produces a different spatial distribution.
It is not clear what is causing this at the moment, and this
discrepancy will be the subject of future investigation.
Despite this discrepancy, both, along with the lattice Monte
Carlo implementation of the GLE and the toy lattice
model, produce the same qualitative pattern of depletion
near reflecting domain boundaries. Furthermore, when the
time step is increased by a factor of two in the GLE
and FBM, the spatial densities and depletion zones are
quantitatively similar (Fig. 6). Thus, although this numeri-
cal discrepancy must be resolved before the quantitative
size of these depletion zones can be predicted, their pres-
ence is robust and independent of the specific model being
used.
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FIGURE 3 Verification of results in two dimen-
sions with a lattice random-walk implementation
of GLE dynamics. (a) Simulated GLE on a two-
dimensional annulus using the lattice-based
method is shown, demonstrating dependence of
depletion layers on «. Plots show density as a func-
tion of radius where r = 1 denotes the nuclear
membrane and r = 5 the cell membrane. Simula-
tions were calibrated to insulin-granule motility
data from (36) so that the MSD after 4 min is
~I1 umz for o = 0.7. 20,000 particles were simu-
lated for 1000 s with dtr = 0.01 s. (b and c¢)
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A two-dimensional spatial density map at the end of these simulations is shown, illustrating depletion near the nuclear and cell border for o = 0.7.
Red and yellow indicate low and high density, respectively. To see this figure in color, go online.

Explanation of boundary-depletion effects in
the GLE

This depletion effect is inherently a result of the anticorre-
lated nature of motion increments built into the FBM,
GLE, and toy models analyzed here. This is most clearly
seen in the toy model. Consider a particle in this simplified
model that is currently observed near the right boundary.
This particle will necessarily have a biased history; it will
have taken more rightward steps then leftward steps. Given
this biased history and the anticorrelated nature of motion
increments that is designed into this toy model, this particle
near the right boundary will be biased to take a leftward step
on the next increment. More generally, this history-depen-
dent anticorrelation will cause particles near boundaries to
be biased to move away from them. Furthermore, the closer
to the boundary a particle is, the stronger that bias will
become.

Although this history-dependent stepping bias was de-
signed into this toy model for illustration purposes, the
same fundamental mechanism generates similar depletion
effects in the FBM and the GLE. Anticorrelation of motion
increments is one of the defining features of subdiffusive
FBM. Although there is no directly prescribed statistical as-
sociation between motion increments in the physics-based
GLE, the generalized friction term F* nonetheless encodes
a history-dependent bias of particle’s motion. That is, a par-
ticle that moves in a particular direction will be subjected to
a restoring friction force pointing in the opposing direction.

A direct prediction of this hypothesis is that near a reflecting
boundary, the generalized friction force will be, on average,
nonzero and point away from that boundary.

To test this, F* was computed and averaged over every
particle over a 10 s timeframe to produce a force map
(Fig. I ¢). This is not the force any particular particle is sub-
ject to, but rather the expected force (averaged over all simu-
lated past histories that reach that point) that a particle at
that location would be expected to feel. The resulting force
profile (Fig. 1 ¢) is heterogeneous (at steady state) as pre-
dicted. Away from the boundaries, there is no net friction
force when averaged over all particles. There is, however,
a net positive (respectively negative) force near the left
(respectively right) boundary. Thus, a particle near the left
boundary experiences (on average) a generalized friction
force pushing it toward the right (and vice versa for the right
boundary). This is consistent with the toy model results,
suggesting that the simple fact that a particle observed
near a boundary necessarily has a biased history will intro-
duce these depletion effects. Furthermore, it suggests that
superdiffusion, in which motion increments are positively
correlated, would be expected to introduce a commensurate
boundary enrichment, as observed in (25) for FBM on the
half line.

In conclusion, the antipersistent “memory” of these pro-
cesses leads to the formation of depleted density zones near
cell boundaries. This effect appears to be relatively insensi-
tive to particle mobility, and its magnitude increases as the
memory length increases. It is also independent of the

FIGURE 4 Increasing particle mobility either en-
hances or has little influence on boundary-depletion

effects. (a) Simulated dependence of depletion layers
on particle mobility for the GLE (in one dimension)
is shown, using the method from (28), and simulation
specifics are the same as in Fig. 1 a. (b) Simulated
dependence of depletion layers on particle mobility
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for the 1D GLE using the lattice-based method is
shown. D is a proxy for the generalized diffusion co-
efficient in this method, and these values produce

Lattice Site 100

MSDs after 1 min that range from 0.04 to 7 um?. 5000 particles were simulated for 500 s with a time step of dr = 0.0025. (¢) Dependence of depletion layers
on mobility for 1D FBM is shown, using « = 0.7 and similar simulation details as Fig. 1 c. (d) Dependence of depletion layers for the toy lattice model on the
length of the memory process (e.g., 7,,) is shown. To see this figure in color, go online.
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FIGURE 5 Quantifying depletion as a function of anomalousness («) and
mobility (D, ). (a) and (b) show the percent depletion at the border relative
to the interior as a function of parameters. This is quantified by running sim-
ulations with N = 5000 particles to steady state and counting the number of
particles in the left half micron [—5, —4.5] and the number in the middle
half micron [—0.25, —0.25]. The percent depletion is then (1 — Left/Mid-
dle) x 100. Thus, a number close to 100 is a large depletion effect, whereas
a number close to 0 represents no significant depletion. To see this figure in
color, go online.

specific model encoding these dynamics or numerical
method used for simulation. Thus, it is not the detailed sta-
tistical or physical assumptions of these models that are
responsible for this observation. Rather, it is the antipersis-
tent memory, which is at the very heart of FBM or GLE-type
subdiffusion, that is responsible.

DISCUSSION

Results here indicate that FBM or GLE dynamics interact
with confining boundaries to produce significant density-
depletion zones near those boundaries. This effect is signif-
icant when the subdiffusive exponent is & < 0.8, which is a
relevant range for the motion of numerous biomolecules («
~ 0.7 has been commonly observed; see (4)). Furthermore,
this effect is present in multiple models that encode the
basic underlying assumptions of FBM (e.g., anticorrelated
increments) and is not simply a simulation artifact.

This is of potentially profound importance. How proteins,
vesicles, and other molecules localize near various bound-
aries in the cell is vital to numerous cellular processes.
Transport of transcription factors across the nuclear mem-
brane is vital to gene regulation (34,35). Localization of ves-
icles near the cell membrane is a precursor to insulin
secretion in @ cells (17,36). Cycling of proteins on and off
of the membrane is critical to numerous regulatory pro-
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cesses (cell polarity and wound healing, for example) (37—
41). Thus, it is of vital importance to understand how mo-
tions of particles in the complex cellular environment influ-
ence localization near these boundaries.

These results raise a number of important questions. Do
these depletion zones exist near borders in either cellular
or in vitro systems? If so, this effect could fundamentally
alter the dynamics of any process that requires the localiza-
tion of substances near such a border. Alternatively, if such
effects are not present, what does that say about our under-
standing of this form of anomalous motion (FBM or GLE-
type subdiffusion)? Is the incorporation of history depen-
dence into particle dynamics fundamentally flawed from a
biophysical perspective? Or is this simply the result of
some unknown technicality associated with boundary con-
ditions? Answering these questions may have wide-ranging
implications to our understanding of the microrheology of
cellular environments (42) and how anomalous particle
motility is influenced by the viscoelastic cellular
environment.

Fortunately, the experimental techniques necessary to
address these questions are readily available. Existing su-
per-resolution microscopy should be adequate to either
measure the spatial densities of tracer particles in confined
domains or alternatively look for deviations in the properties
of paths of particles (motion biases, for example) close to
versus far from confining boundaries. Initially, in vitro sys-
tems such as tracer particles in dextran (e.g., (13) or similar)
may be a more promising starting point because of the
numerous biophysical complexities associated with cellular
membranes.

Additional theoretical and computational work is also
needed. Although all simulation studies shown here demon-
strate this memory-dependent depletion effect, different
models and numerical methods predict different sizes of
this depletion effect. Given that the magnitude of this poten-
tial effect may influence how one looks for it experimen-
tally, it is necessary to resolve this numerical discrepancy
to more accurately predict the depth and breadth of the
depletion zones in these models. Alternatively, it would be
useful to analyze the GLE in scenarios in which inertia is
non-negligible. A complementary approach to study this
issue is using the continuum fractional Fokker-Planck
(43,44) framework rather than stochastic simulation.
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FIGURE 6 \Verifying depletion effects with
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strate consistency of results with a larger value of the
‘ time step dt for both the GLE and FBM. Throughout
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Alternatively, recent theories that supersede FBM or GLE,
such as diffusing diffusivity (45) or the linear Langevin
model with time-varying parameters (46), have been devel-
oped. What are the predictions of these models or other
models in which increments are non-Gaussian in confined,
cellular domains?

In conclusion, this article demonstrates a significant ef-
fect of reflecting boundaries (e.g., cellular membranes) on
the steady-state spatial distribution of subdiffusive particles
obeying FBM or GLE dynamics. This depletion effect is a
theoretically robust and experimentally testable prediction
that is an intrinsic feature of the underlying FBM or GLE
theory. The questions that remain are how significant is
this effect, and, more importantly, is it truly present in rele-
vant systems? Regardless of the answer to these questions,
this robust consequence of FBM or GLE dynamics may
provide an alternative, nonstatistical means of testing the
biological validity of the fundamental assumptions underly-
ing those dynamics.

MATERIALS AND METHODS
Brief overview of simulating the GLE

Here, we give a brief overview of the method (from (28)) used to simulate
the GLE. See (28) for more details. After transforming the GLE into a
Volterra integral and discretizing the resulting integral equation, temporal
updating of stochastic particle location (y,) is performed using a predictor
corrector scheme in which

dt
Ynt1 = Yn + E (VVI + n+l)7 (5)

where dt is the size of the time step, n indicates time increment index, v, is
the velocity at time ¢, and v/ 1 is a prediction of the velocity at time #,, ;.

n

The predicted velocity is then given by
, o 2H(2H + 1)m
U \2H(2H + 1)m + di*Hy
v dle n
2H(2H + 1)m &

N pu
X Vo — Ajn+1Vn +I’}_’IB (trH»l) )

0

(6)

where B is the FBM generated by the FGN £ and the velocity-weighting
kernel is

N

2H+1
Ajny1 =

(}’l _] + 2)2H+1

Given that inertia is typically negligible for diffusing biological particles
(the Reynolds number for a typical 100 kDa protein, for example, is <0.05)
(32), the mass is set to m = 0 (e.g., the overdamped limit). It is simple to
show that in the m — 0 limit, the expression for the predicted velocity
becomes
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—(n—2H)(n+1)*"

+ (n _j)2H+l

- n 2H(2H + 1
Viel = — Zajnﬂvn +; %BH(%H). ®)
Jj=0

For this study, we simulate the GLE on a fixed, bounded domain y €
[—L, L], where L = 5 microns. To account for boundaries, this scheme is
augmented with a standard reflecting boundary so that y, — y, — 2|y, —
sgn(y,)L| if |y,] > L, where sgn(y,) indicates the sign of the particle’s
position.

Numerical simulation of the kinetic Monte Carlo
interpretation of the GLE

Here, we follow the approach of (33). This is a lattice-based approach to
simulating subdiffusive dynamics governed by the GLE. The key to this
approach is to treat subdiffusion motion as a biased lattice random walk
in which the bias at any point in time is determined by the particle’s trajec-
tory history. Full details can be found in (33), but I briefly describe the
approach.

Consider a one-dimensional (1D) scenario in which 4x represents the
spacing of the lattice grid points. Suppose at time t,, the particle is at loca-
tion y, with a past trajectory history {y,-}i:lwn. Given this trajectory, the
particle will be subjected to the viscoelastic restoring force F* (Eq. 3).
Define P, + to be the probabilities of taking a step to the right (4) or left
(—) on this lattice. Then, Boltzmann statistics dictate that

1 AxF*

- whereg, = (9
1 +exp(Fe,)’ where € kgT ©)

n, +

and F“ is suitably evaluated over the particle’s history. In this way, the force
F“ is creating an effective force that the particle must fight, and the P, .
utilizes Boltzmann statistics and the work required to move against that
force to calculate dynamically changing stepping probabilities. For full im-
plementation details, see (33).

Once again, particle trajectories are simulated on a fixed, bounded
domain y € [—L, L], where L = 5 microns. Standard reflecting boundary
conditions are once again implemented so that any step that attempts to
take a particle onto the domain’s border is aborted, and the particle is
replaced at its original location for that time step. This method can easily
be extended to two spatial dimensions as well. At each time step, a random
number is drawn to determine which spatial dimension a step will be
attempted in (each dimension has equal probability). The 1D method
previously described is then used to determine the direction of the step in
that dimension.

I will make one brief note regarding the use of this scheme to generate the
simulations in Fig. 3. There, a value of D was used that is based on the
observed diffusivity of insulin granules in § cells (36). Insulin granules
are very slow-diffusing, and thus it is likely that that these particular simu-
lations have not reached steady state. Given the quadratic dependence on
computational time on simulated time and the necessity of storing the

ifj =0,

: 7
—2(n—j+ 1" if1<i<n @

full history of many particle trajectories, 1000 s was the longest possible.
Because of this, the enriched densities 0.75 microns from domain borders
for the red curves in Fig. 3 a are likely transients. Results in Fig. 2 b
show a similar result for early times that later resolves as that enriched
region of density moves toward the center of the domain over time.



Antipersistent lattice random-walk model-toy
model: Additional details

Here, a highly simplified toy model of viscoelastic subdiffusive motion is
constructed that incorporates the characteristics of the GLE without the
complexities of the fluctuation-dissipation theorem or Boltzmann statistics
that are necessary for a more physically grounded model.

The most basic assumption embedded into the viscoelastic theory of sub-
diffusive motion is that a particle’s environment endows it with a kind of
antipersistent memory. That is, the longer a particle moves in a particular
direction, the less likely it is to continue moving in that direction in the
near future. Here, a toy model of a lattice random walk is constructed
with this, and only this, feature.

Consider a 1D lattice random walk on a lattice with sites i = 1..N
(N = 100 for specific simulations). Define the position of the random
walker to be y, and define the sign of each step to be s, =y, — ¥, _ 1.
That is, s, = = 1 depending on whether the previous step was to the right
or left. Now, define the probability of taking a step in the positive direction
at time n + 1 to be

1 1 &
Pl —-—B— . (10
"2 Tmin(n,n —T,,) Z S (10)

i=max(1,n—T),)

where T, denotes the memory length of the process and B > 0 is the
strength of the memory-induced bias. Note that when B = 0, this prescribes
a pure diffusion process. The probability of stepping to the left will be
P,,, =1— P/} ,. Thus, if T,, = 100, this summation will average s; over
the previous 100 steps. This function averages over the previous T, steps
to produce a history-dependent probability of stepping to the right.
Consider the three following possible particle histories in the simple case
in which B = 0.5. If all possible steps were to the right, then P, = 0.
If all possible steps were to the left, then P;H = 1. If half of all steps
were to the right or left, then P}, = 0.5. This is a simple way to incorpo-
rate the antipersistence inherent in the GLE without its additional compli-
cations. A standard reflecting boundary condition is once again used. Any
attempt to step off of the bounded lattice is aborted, and the particle is re-
placed at its original position.

This is not intended to be a replacement model of viscoelastic subdiffu-
sion. Rather, it is a toy model that will be used to assess the influence of
antipersistent particle memory and the length of that memory.
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