
ARTICLE

Laguerre-Gaussian mode sorter
Nicolas K. Fontaine1,3, Roland Ryf1, Haoshuo Chen1, David T. Neilson1, Kwangwoong Kim1 & Joel Carpenter 2,3

Exploiting a particular wave property for a particular application necessitates components

capable of discriminating in the basis of that property. While spectral or polarisation

decomposition can be straightforward, spatial decomposition is inherently more difficult and

few options exist regardless of wave type. Fourier decomposition by a lens is a rare simple

example of a spatial decomposition of great practical importance and practical simplicity; a

two-dimensional decomposition of a beam into its linear momentum components. Yet this is

often not the most appropriate spatial basis. Previously, no device existed capable of a two-

dimensional decomposition into orbital angular momentum components, or indeed any

discrete basis, despite it being a fundamental property in many wave phenomena. We

demonstrate an optical device capable of decomposing a beam into a Cartesian grid of

identical Gaussian spots each containing a single Laguerre-Gaussian component, using just a

spatial light modulator and mirror.
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Arguably the next most widely used spatial basis after
Fourier are Hermite–Gaussian (HG) and
Laguerre–Gaussian (LG). Both are eigenfunctions of the

Fourier transform, solutions of the paraxial wave equation, and
eigenmodes of parabolic refractive index waveguides and quan-
tum harmonic oscillators. LG modes are also circularly symmetric
and directly related to the quantised orbital angular momentum
(OAM) of photons1–3 and electrons4. For these reasons, the LG
modes play an important role in many disparate areas of physics.
Applications can relate directly to OAM transfer, for example,
light–matter interaction inducing mechanical torque5, atomic
transitions6, rotational Doppler shift7 or OAM imparted by
astronomical objects such as black holes8. In other applications,
LG modes are used less for their relationship to OAM, and more
for their self-similar propagation properties and/or as an infinite
state space for packing as much information as possible into a
finite aperture or single particle, for example, quantum optics9–11,
telecommunications12–15, quantum memories16 or incoherent
beam combining17. Other applications such as imaging2 use the
LG basis for spatial filtering, from microscopy18,19 to
astronomy20.

Historically, the technology associated with the generation and
detection of LG modes has a tendency to grow out of the field of
optics1,2,21,22, before being extended into lower frequencies from
radio to terahertz23,24, high frequencies such as x-rays25, and
other wave phenomena entirely such as acoustics26, electrons4,27

and neutrons28. The first demonstrations, regardless of the wave
type, are the ability to generate/detect LG modes one-at-a-time
using a spatial filtering approach, such as a spiral phase plates or
fork holograms4,21,23,25,26,28. In the wavelength domain, these are
analogous to bandpass filters, which allow transmission of only a
single band of wavelengths. Similarly in the polarisation domain,
these are analogous to polarisers, allowing transmission of only a
single polarisation component. As these types of filters discard all
components of the wave not in a particular state, they are
inherently lossy and inappropriate for many applications. Alter-
natively, lossless components such as dispersive gratings or
polarising beam splitters spatially separate or combine the com-
ponents of the beam. For example, imagine if in the spectral
domain, no such lossless combination and decomposition com-
ponents existed. In this scenario, components can only be split/
combined with large loss, or measured one-by-one. Many appli-
cations from spectroscopy to wavelength division multiplexing
would be greatly hindered or entirely unfeasible. Yet that has
effectively been the scenario in much of the spatial domain.

Lossless spatial decomposition is possible in the Fourier basis
using lenses, however no device previously existed capable of a

full two-dimensional low loss decomposition in the LG basis for
any large number of spatial components. This is despite its fun-
damental importance to so many disciplines, its direct relation-
ship with OAM and approximately 25 years of research on the
generation and detection of such beams. As a 2D orthogonal set,
each mode in the LG basis is denoted by two indices, the radial
index29–31, ρ, and the azimuthal index1,3, l, representing the
topological charge and the OAM per photon. To describe an
arbitrary 2D beam, both indices are required. Various mode (de)
multiplexers, also called ‘mode sorters’, have been developed over
the years which have implemented some limited ability to
decompose a beam into its orthogonal LG components. Most
approaches are able to decompose in only one-dimension, typi-
cally the azimuthal32–34 component, or in the past year, the
‘forgotten’ radial component35,36, but not simultaneous sorting of
both, or in a non-orthogonal fashion37. These one-dimensional
devices can be thought of as analogous to cylindrical lenses for
Fourier decomposition in that they perform the decomposition
along only a single-axis of a 2D space.

Approaches based on sorting N modes through a cascade of N
−1 interferometers32,35,36 are inherently difficult to scale to large
mode counts. A significant advance was the log-polar-based
azimuthal mode-sorters24,27,33,34,37. Importantly, these require
only a constant number of two planes of phase manipulation
regardless of the number of spatial components being sorted. The
device in its simplest form has some non-ideal theoretical and
practical properties such as large required phase contrast per
plane, and non-Gaussian mode dependent output spots. However
the simplicity of the device, and the lack of alternatives, has seen
it become widely used in optics, as well as other bands of the
electromagnetic spectrum24,38 and recently for electron beams27.

In this work, as illustrated in Fig. 1, we have discovered that an
important special class of transformation, Cartesian points (x,y) to
the Cartesian indices (m,n) of HG modes, can be performed using
remarkably few planes of equally space phase manipulation. The
HG basis can in turn easily be transformed to LG through two
cylindrical lenses1. Over 210 modes are demonstrated using a multi-
plane light conversion (MPLC) device39,40 consisting of just 7 planes
of phase manipulation (Fig. 2a) separated by free-space. Supple-
mentary Figures 12–15 also demonstrate another example of 325
modes. Previously an MPLC device supporting 210 modes would
have been expected to require a completely impractical 300–400
planes. Not only would so many planes be difficult to physically
implement, but the cascading of even small losses per plane would
easily render the approach more lossy than simply beam combining
with beamsplitters or multiplexed correlation filters22. This device is
capable of performing a two-dimensional decomposition in the HG
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Fig. 1 Laguerre–Gaussian mode sorter based on multi-plane light conversion. Cartesian grid of Gaussian spots (MFD= 60 μm) at positions (x,y) pass
through the MPLC system, consisting of 7 phase plates separated by ~25mm of free-space propagation, implemented using a spatial light modulator and a
mirror. Through these 7 planes each input spot at position x,y is mapped to a corresponding Hermite–Gaussian mode (m,n) (MFD= 400 μm), which is in
turn transformed into the Laguerre–Gaussian basis through use of two cylindrical lenses
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and LG bases, as well as being the highest dimensionality mode
sorter of any kind. It can be thought of as the discrete spatial
analogue of a spectrometer, or the LG (OAM to real-space) ana-
logue of a Fourier (linear momentum to real-space) lens. As was the
case for the log-polar azimuthal-only mode sorter24,27,33,34,37, the
same design can be implemented in reflection or transmission, as
well as diffractively or refractively across much of the electro-
magnetic spectrum and more recently in electron beams, using
existing technology.

Results
Phase mask inverse design algorithm. The masks are calculated
using an inverse design process40, known as wavefront match-
ing41, which is similar to adjoint optimisation42, or back-
propagation in artificial neural networks43. The algorithm is
surprisingly simple and effective, and the optimisation process
has been visualised as a video available online at the address of
Supplementary Note 1, and is also archived44. The algorithm is
also provided as commented Matlab code44. In short, the algo-
rithm40 attempts to match the phases of each pair of input and
output modes at all points in space using the discrete phase
planes. The masks for each of the seven planes are calculated
numerically by propagating the desired basis (Cartesian grid of
Gaussian spots) at one end through the optical system, and the
corresponding desired output basis (HG modes) in the backwards
direction. The phase masks are then updated iteratively until
convergence by numerically propagating from plane-to-plane,
backwards and forwards through the device. At each step, the
phase mask is updated to become the phase of the superposition
of the overlaps between each pair of input (A) and output modes
(B). That is, the phase masks at each step become the average
phase error between the modes propagating forward (A) and the
modes propagating backwards (B). Specifically, the phase (ϕ) at
each plane at each step is given by, ϕ ¼ arg

PN
i¼1 AiB

�
i

� �
, where N

is the total number of modes (210 in this case), and Ai and Bi are
the ith modes in the forward and backward direction, respec-
tively. In a similar fashion to a Gerchberg–Saxton45 type
approach, the algorithm implements a steepest-descent search,
but it is not guided by any error function. Rather it reaches
convergence by continually enforcing phase matching at each
iteration step. The transformation is an approximation and is not
strictly unique, although all low-loss solutions have similar fea-
tures. The transformation is based largely on cubic phase
manipulations, which generate Airy-like beams that are super-
imposed together to approximate HGs. Some illustrative exam-
ples are detailed in Supplementary Note 5.

Experimental results for 210 mode device. The schematic of the
MPLC device itself is shown in Figs. 1 and 2, with the entire
characterisation apparatus shown in Fig. 3a. The device imple-
mented here consists of an input array of Gaussian beams with
mode-field diameter (MFD) of 60 μm, and a square array pitch of
127/

ffiffiffi
2

p
= 89.8 μm. These spots propagate 20 mm before the first

reflection off the SLM, a Holoeye PLUTO-II with a dielectric
backplane for high reflectivity (>95%). Light is then reflected back
and forth between the SLM and a silver mirror parallel to the
SLM 12.5 mm away (~25 mm propagation between planes),
undergoing seven reflections off the SLM, before exiting the
device as HG modes with MFD of 400 μm. From there, a Fourier
lens, f= 160 mm is used to focus the beam onto an InGaAs
camera for characterisation in the HG basis, or through an
additional pair of f= 200 mm cylindrical lenses to transform into
the LG basis. Off-axis digital holography46 is performed to
reconstruct the amplitude and phase of the output beam for each
input spot in the array, for all modes over a wavelength range of
1510–1620 nm. As illustrated on the right of Fig. 2a, digital
holography simply measures the intensity of the interference
between the mode being measured, S, and a tilted reference quasi-
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Fig. 2 Cartesian to Hermite–Gaussian transformation using multi-plane light conversion. a 7 phase planes used to perform the transformation. b Total
intensity of the first 210 modes in each plane. c Example of the evolution of the complex amplitude of the HG16,3 mode through the device. The physical
width of these 7 masks is 15.344mm (7 planes × 8 μm pixel pitch × 274 pixels). Although the same design can be scaled to other dimensions as discussed
in Supplementary Note 8
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plane wave, R. This intensity, |S+ R|2, is then numerically Fourier
transformed, the desired term selected, inverse Fourier trans-
formed back into the plane of the original image, and the original
tilt of the reference wave R removed; yielding the recovered
optical field, S. Although performed digitally, this is analogous to
physically focusing the intensity pattern |S+ R|2 with a positive
lens and picking off the desired part of the Fourier-transformed
field containing information about S, with a pinhole aperture. The
recovered field, S, can then be numerically overlapped with all

Laguerre–Gaussian modes yielding the complex amplitude of
each mode contained in that field. The advantage of digital
holography in this context is not only that it captures full
amplitude and phase information regarding all modes, but that it
does so by adding only minimal additional optics, minimising the
effect of the measurement apparatus itself on the finally measured
result. Once the field is recovered digitally, all optical alignment
and mode generation on the LG/HG side of the MPLC device
can be essentially perfect, as this is done numerically in

=FT{|S|²+|R|²}+FT{SR*}+FT{S*R} =FT{|S|²+|R|²}+FT{SR*}+FT{S*R}
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post-processing from theoretical ideals. Rather than having to
physically implement a separate device for these operations which
ultimately becomes part of the device-under-test being char-
acterised33–37.

With the full output optical field recovered for every input
mode, the complete linear behaviour of the device is acquired.
The MPLC device is now described by an N ×N complex matrix
which contains the amplitude and phase of the coupling between
all pairs of input/outputs modes, as a function of wavelength47–50.
From these matrices any linear property of the device can be
extracted. The matrices for both the simulated and measured
device are publicly available44, from which the reader can
calculate any linear parameter of interest. Additional detail on
the experimental apparatus and procedure is available in
Supplementary Note 3 and in online video51.

A composite image of the full set of measured optical fields at
the centre wavelength for all 210 modes (20 mode groups) is
illustrated in Fig. 3a. Figure 3b provides examples of various
higher-order and lower-order modes of various radial and
azimuthal indices and degenerate mode-group order. All modes
have the correct number of rings (ρ) and helical phase (l) profiles.
The full 210 mode set in full resolution is provided online, as are a
HG example and a 325 mode example44. The results are
quantified in two different bases; using the singular value
decomposition (SVD) of the transfer matrix, as well as in the
device’s native Laguerre–Gaussian basis. The SVD takes the
transfer matrix of the device T and expresses it as the product of

three matrices, T=UΣV*. Where U and V are unitary
transformations of the input basis (Gaussian spots) and output
basis (HG/LG modes) such that Σ is a real diagonal matrix
containing the singular values. That is, the SVD finds the input
and output basis through the device such that there is no crosstalk
between input and output channels, only loss. The metrics the
SVD yields are independent of the basis the device was originally
characterised in. The singular values are especially relevant to
coherent communications employing multiple-input, multiple-
output processing (MIMO) as they are related to the channel
capacity. The highest and lowest singular values represent the
lowest and highest loss mode superposition through the device
respectively. The ratio between these two extreme singular values
is the condition number of the transfer matrix, and its square is
the mode-dependent loss (MDL), a measure of how ‘invertible’
the matrix is. An in-depth discussion of insertion loss (IL), MDL
and the SVD is provided in Supplementary Note 2 and as an
online video51.

The theoretical performance of the transformation is shown in
Fig. 4a. IL is defined as the average loss over all possible modal
superpositions through the device (average squared singular
value), and MDL is the largest possible difference in loss between
any two modal superpositions through the device (ratio between
the largest and smallest singular value squared). Theoretically, for
a lossless SLM and mirror, the transformation has an insertion
loss of 2.5 dB at the centre wavelength, increasing to 3.2 dB at
1510 and 1620 nm. As all components are lossless, loss is only
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incurred when light is scattered into higher-order modes not
supported by the system. MDL is theoretically 3.3 dB at the centre
wavelength, 6.8 dB at 1510 nm and 6.5 dB at 1620 nm. Experi-
mentally, the observed IL is between 5.8 and 6.3 dB, which for the
centre wavelength corresponds with approximately 0.82 dB of
total loss, or 0.49 dB of excess loss per reflection from the SLM.
MDL was measured to be between 8.7 dB at the centre
wavelength, 12.5 dB at 1510 nm and 13.3 dB at 1620 nm. Again,
it should be noted that MDL is not the difference in loss between
the maximum and minimum loss LG mode of the device. Those
losses, the diagonal elements of the transfer matrix (Fig. 4c) are
illustrated in Fig. 4d. The maximum variation in loss between any
two LG modes is 1.7 dB at the centre wavelength. Loss and
crosstalk at the centre wavelength does not strongly depend on
the order of the mode group, but the overall loss and crosstalk
levels do depend on the total number of modes supported.
Wavelength dependence does tend to get worse for higher-order
modes as these modes contain higher spatial frequencies and
must diffract over a larger path length from the edges of the
Cartesian array. Similar principles apply when transformations
are calculated to support increasing number of modes. As mode
count increases, the performance of all modes tends to degrade
together as a whole, but there is more degradation in bandwidth
than there is in overall performance at the centre wavelength.
Discussion and examples on this topic available in Supplementary
Note 5 and as an online video51. Experimentally, inter-pixel
crosstalk52 on the SLM that induces blurring particularly during
phase wraps is the dominant contributing factor to MDL.
Example simulation results that convolve the phase level of each
SLM pixel with a Gaussian of width 12 μm are illustrated in
Fig. 4a for reference.

The measured transfer matrix of Fig. 4c, yields a channel
capacity, shown in Fig. 4b of 6.25 bits/photon compared to the
simulated ideal device of 7.15 bits/photon, or absolute theoretical
maximum of log2(210)= 7.71 bits/photon. The worst LG mode at
the centre wavelength has a total crosstalk of −5.5 dB, defined as
the power in the desired mode relative to the total power in all
other modes. Average total crosstalk over all 210 modes is −7.2
dB. Crosstalk per mode is the above values divided by 210,
yielding −28.7 and −30.4 dB for the worst-case and average,
respectively.

We have demonstrated an MPLC-based mode-sorter support-
ing the first 210 modes in the LG basis using just an SLM and a
mirror. This device can be easily implemented using common
optical components and allows the spatial properties of light to be
decomposed in 2D and with high dimensionality, enabling
functionality in the spatial domain, which is already common in
the spectral and polarisation domains. This device could also be
translated to other wave phenomena such as electrons where it
could be used as a ‘spatial spectrometer’ to analyse the quantised
OAM spectrum and spatial state of a particle in two-dimensions.

Data availability
Simulated and measured wavelength-dependent transfer matrices are publicly available
as Matlab files for both 210 and 325 mode devices. As are pre-calculated phase mask sets
which can be used as-is, for several common SLM models currently on the market. These
pre-calculated masks can be easily scaled to other dimensions and wavelengths without
recalculation as discussed in Supplementary Note 8. Full resolution images
corresponding to Fig. 3b and Supplementary Figures 9, 10 and 12 are provided44 (https://
doi.org/10.14264/uql.2019.81).

Code availability
Example commented Matlab code is included to demonstrate the wavefront matching
procedure. Matlab code is provided to resize pre-calculated masks for different
dimensions and/or wavelengths. An Excel spreadsheet is also included to assist in
translating existing pre-calculated designs to other dimensions and wavelengths44

(https://doi.org/10.14264/uql.2019.81).
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