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Beyond Cartilage Repair:
The Role of the Osteochondral Unit in Joint
Health and Disease
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Once believed to be limited to articular cartilage, osteoarthritis is now considered to be an organ disease of the
‘‘whole joint.’’ Damage to the articular surface can lead to, be caused by, or occur in parallel with, damage to
other tissues in the joint. The relationship between cartilage and the underlying subchondral bone has particular
importance when assessing joint health and determining treatment strategies. The articular cartilage is anchored
to the subchondral bone through an interface of calcified cartilage, which as a whole makes up the osteochondral
unit. This unit functions primarily by transferring load-bearing weight over the joint to allow for normal joint
articulation and movement. Unfortunately, irreversible damage and degeneration of the osteochondral unit can
severely limit joint function. Our understanding of joint pain, the primary complaint of patients, is poorly
understood and past efforts toward structural cartilage restoration have often not been associated with a re-
duction in pain. Continued research focusing on the contribution of subchondral bone and restoration of the
entire osteochondral unit are therefore needed, with the hope that this will lead to curative, and not merely
palliative, treatment options. The purpose of this narrative review is to investigate the role of the osteochondral
unit in joint health and disease. Topics of discussion include the crosstalk between cartilage and bone, the
efficacy of diagnostic procedures, the origins of joint pain, current and emerging treatment paradigms, and
suitable preclinical animal models for safety and efficacy assessment of novel osteochondral therapies. The goal
of the review is to facilitate an appreciation of the important role played by the subchondral bone in joint pain
and why the osteochondral unit as a whole should be considered in many cases of joint restoration strategies.
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Impact Statement

In this comprehensive review, we are providing a holistic overview of osteochondral tissue development, disease, pain
localization, as well as structural evaluation and current repair strategies. This review is intended to serve as a broad
introduction to this multidisciplinary research area. It is a thorough examination of the biological aspects of the os-
teochondral unit from a tissue engineering perspective, highlighting the importance of the subchondral bone in chondral and
osteochondral lesion repair and pain relief.

Introduction

The homeostasis between joint tissues, particularly
between cartilage and the underlying subchondral bone,

is fundamentally important to understand when determining
treatment strategies for chondral, osteochondral, and sub-
chondral bone lesions. If left untreated, these lesions can
progress to osteoarthritis (OA), as the damage advances to
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widespread tissue degeneration along with severe joint pain
and stiffness.1

Previous treatment strategies have had a strong focus on
structural repair of the articular cartilage only, but in many
cases, bone lesions cause the associated pain, and not ar-
ticular cartilage damage.2 As nociceptors are present within
the subchondral bone and not the cartilage,3 it would
therefore seem prudent to consider the cartilage and sub-
chondral bone as one entity to be successful in ameliorating
joint pain while restoring the load-bearing and frictionless
movement capacity of the healthy joint.

Recently improved imaging techniques have contributed to
our understanding of the importance of bone pathologies and
their contribution to OA progression and pain. For instance,
posttraumatic bone bruising or bone marrow lesions (which
can be visualized with magnetic resonance imaging [MRI])
can cause sustained bone remodeling that can lead to a loss of
subchondral bone support for the cartilage. Moderate-to-severe
bone marrow lesions that do not resolve over time are linked to
ongoing symptoms and future cartilage degradation.4–6

In this review, we will focus on literature describing the
crosstalk between cartilage, calcified cartilage and bone
tissues, their response to injury, repertoire of repair re-
sponses, and their relationship to pain. This enables con-
sideration of current and emerging treatment modalities for
osteochondral defects as well as new tissue engineering
tactics and animal models. We will link these broad topics in
an effort to shed light on the limitations of today’s treatment
techniques and propose directions of future research to ad-
dress the complexities of the development, regeneration, and
repair of the osteochondral unit.

Methods

A variety of databases were used to collect and review
all referenced material, including University of Guelph
Primo, PubMed through NCBI, Medline, ProQuest Biolo-

gical Sciences, the Cochrane Database, and Google Scho-
lar. The keywords used in the search of the databases were
cartilage, bone, osteochondral unit, endochondral ossifica-
tion, osteochondral crosstalk, interzone, joint biomechanics,
joint pain, joint nociceptors, evaluation, MRI, arthroscopy,
radiography, clinical trials, microfracture, autologous chond-
rocyte implantation (ACI), BioCartilage, particulate cartilage,
cartilage autologous implantation system (CAIS), dual-tissue
transplantation, osteochondral autograft transfer (OAT), mo-
saicplasty, tissue engineering, animal models, synovium, T2
mapping, and chondrocytes. References listed were identified
through primary searches, articles known to the authors, or
from reference lists from other review articles.

Synovial joints and the osteochondral unit

Synovial joints are complex structures that permit near
frictionless motion between bones to facilitate human
ambulation. Hyaline cartilage, lining the bone ends in these
joints, has the unique ability to withstand high loads and
while maintaining a near-frictionless and compliant ar-
ticulating interface between the bones. Load dispersal is
shared with the subchondral bone plate and it is believed
that the morphology of the subchondral bone is a direct
expression and adaptation of past loading history in adults.7

This dynamic relationship between cartilage and bone (the
osteochondral unit) is crucial to maintaining overall joint
health and integrity. The osteochondral unit is composed of
hyaline cartilage connected through a zone of calcified car-
tilage to the subchondral cortical bone known as the sub-
chondral plate, which gives way to metaphyseal trabecular
bone. The distinct histological boundary between hyaline and
calcified cartilage is known as the tidemark (Fig. 1, inset).

The osteochondral unit arises as the final product of
endochondral ossification, where the fetal cartilage ‘‘an-
lagen’’ is diminished by endochondral ossification after
birth, leaving permanent articular cartilage at the ends of

FIG. 1. Diagram of endochondral ossification and the formation of the osteochondral unit. Inset: Histological view of the
osteochondral unit (stained with Toluidine Blue and von Kossa).
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fully developed long bones. Upon initiation of ossification in
the cartilage anlagen, bone tissue development occurs first in
the diaphysis (primary ossification center) and then in the
epiphyses (secondary ossification centers). Differentiating
chondrocytes undergo hypertrophy and express collagen
type X, which aids in promoting calcification of the sur-
rounding matrix.8,9 Blood vessels invade the developing
tissue, infiltrating it with osteoblasts and driving the ex-
pression of osteogenic factors such as Runx2, eventually
replacing the transient cartilage with bone.10,11 A thin layer
of calcified cartilage matrix remains at the distal ends of the
long bones after ossification, anchoring the newly developed
bone to the stable articular cartilage (Fig. 1).

Stable articular cartilage arises from the interzone in the
developing limb, which separates epiphyseal ossification
centers and serves as the eventual location of the joint. As
chondrification proceeds toward the ends of the developing
long bone, the interzone arises from the remaining con-
densed mesenchymal cells, forming a tightly packed cellular
region between the ossification centers.12 Cells in this region
form three distinct layers: two outer chondrogenic layers
that become the lining of the epiphyses of long bones, and a
middle layer that undergoes cavitation.13 It is speculated
that the two outer layers mark the transition zone between
calcified cartilage and the newly formed subchondral bone,
while the middle layer forms the mature articular carti-
lage.14 The resulting articular cartilage and underlying
subchondral bone form the components of the mature os-
teochondral unit.

Damage to or dysregulation of the osteochondral unit is
often traumatic in nature, resulting in cartilage and/or sub-
chondral bone lesions that, if unable to heal, most frequently
results in OA, possibly the most chronic, debilitating disease
among adults worldwide.15 Osteochondral defects typically
arise in adults as a result of acute trauma to the cartilage and
underlying bone or in association with meniscal/ligament
tears. In young, active children and adults, osteochondral
defects may form as a result of osteochondritis dissecans
(OCD), a painful condition characterized by bone sclerosis
that can lead to cartilage fragmentation. OCD likely de-
velops through improper development, repetitive trauma,
inflammation, and/or a decrease in blood supply, rather than
an acute osteochondral fracture.16

Whatever the cause, focal damage to the osteochondral
unit initiates a cascade of repair and remodeling attempts
that often have detrimental effects on the long-term health
and function of the joint that can lead to OA.17

Crosstalk within the osteochondral unit

The onset of disease or degeneration of one component of
the osteochondral unit can impact the functions of other
components. Biomechanically, subchondral bone normally
supports the articular cartilage in distributing joint forces
over the joint. However, damage to the subchondral bone
can alter its elastic modulus and thus its force distribution
properties, which can lead to cartilage degeneration through
abnormal loading on the tissue.18,19 Conversely, damage to
the cartilage articular surface may occur before or concur-
rent with bone changes and remodeling.20 This biome-
chanical relationship is a well-established paradigm for OA
progression; however, several studies have also evaluated

the concept of a biochemical crosstalk between cartilage and
bone tissues.

The proximity of the subchondral bone vasculature sug-
gests that small molecules can perfuse into the cartilage in
healthy osteochondral tissue. Key studies performed by
Arkill and Winlove and Pan et al. demonstrated the trans-
portation of fluorescent dyes from the subchondral circula-
tion to deep zone cartilage.21,22 This diffusion has been
shown to be elevated in OA.23 In addition, transport of
larger molecules may occur through the osteocyte canalic-
ular/lacunar network,24 which may be affected by the pro-
gression of OA with increasing subchondral bone porosity.25

OA progression can also introduce fissures, microcracks,
and new blood vessels that penetrate the calcified cartilage
and may increase exchange of signaling molecules between
the cartilage and bone.26 It has been suggested that cyto-
kines and prostaglandins involved in bone tissue remodeling
can reach the overlying cartilage through these new chan-
nels, further resulting in its catabolism. Conversely, in-
flammatory and osteoclast stimulation factors released by
the synovial membrane and/or the articular cartilage could
affect the subchondral bone27 (Fig. 2). This crosstalk be-
tween bone and cartilage may be partially responsible for
the etiology and progression of OA, and is an important
consideration when exploring new treatment modalities to
heal osteochondral defects.

Pain and the osteochondral unit

The relationship between cartilage and bone in the con-
text of osteochondral unit degeneration is very important
when assessing the cause of joint pain, the primary symptom
of osteochondral lesions, and OA. As healthy hyaline car-
tilage does not contain nociceptors (pain receptors),3 joint
pain originates from the underlying subchondral bone or
other soft tissue components of the joint capsule, such as the
synovium. Synovitis and its associated pain can occur
concurrently with OA and subchondral bone lesions,28–30

but this is thought to be distinct from processes that regulate
subchondral bone pain.31

In addition, subchondral bone lesions have been shown to
be more highly correlated with pain than synovitis or joint
effusion.32,33 Subchondral bone angiogenesis during early OA
progression may facilitate not only the increased crosstalk
leading to cartilage degradation, but also the innervation of
the overlying cartilage.34 Walsh et al. examined the link be-
tween new microvasculature and nerve growth in osteo-
chondral tissue and found increased vascular endothelial
growth factor (VEGF) and nerve growth factor (NGF) in the
subchondral bone space, breaching into the noncalcified car-
tilage.31 They postulated that the increase in VEGF (a pro-
angiogenesis factor) contributed to the growth of new blood
vessels in articular cartilage, which was accompanied by
nociceptor growth through NGF (a neurotrophic factor).

Nerve growth was further confirmed in a rat model, where
upregulation of calcitonin gene-related peptide and tyrosine
receptor kinase A (both nociceptive markers) concurrent
with increased size of neurons was found in the subchondral
bone of OA knee joints (Fig. 3).35 NGF and its effects are
important mediators of pain,36 thus increases in NGF and
nerve growth associated with angiogenesis in osteochondral
tissue are likely causes of joint pain.
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It remains unclear at what point subchondral bone
damage and/or focal lesions present as pain, making it
difficult to diagnose and treat before further tissue de-
generation and OA progression. However, the presence of
asymptomatic bone marrow lesions can predict cartilage
loss and subsequent OA symptoms.37 Cartilage loss leads
to subchondral bone exposure within the osteochondral
unit, which may also be associated with pain. Moisio et al.
conducted cross-sectional analyses of patients with OA to
determine the association of subchondral bone exposure
(as evidenced by MRI) with knee pain, and found that
moderate-to-severe knee pain was associated with the
percentage of denuded bone, suggesting a relationship
between the extent of subchondral bone exposure and in-
creased pain.38

These results suggest that exposure of the bone can result
in contact with the synovial fluid or rubbing with other
structural components of the joint, leading to biochemical
and/or mechanical stimulation of subchondral bone noci-
ceptors, which may partly explain the pain associated with
damage to the osteochondral unit. Lastly, subchondral bone
sclerosis may contribute to increased vascular pressure in
the marrow cavity and subchondral bone plate. This is ex-
acerbated by inactivity, and may be a contributing factor for

night pain in OA.39,40 All of this evidence points to the
important role of the subchondral bone in the progression of
joint pain and cartilage damage, making it a crucial thera-
peutic target for both pain relief and structural restoration of
the osteochondral unit.

Evaluation of the osteochondral unit

Once patients are experiencing symptoms of joint pain and
limited mobility, evaluation of the affected joint is necessary
to determine the extent of damage (if any) to the osteochon-
dral unit and its associated tissues. Generally, radiography
with the patient weightbearing is the most commonly used
initial imaging technique for the diagnosis of OA.41 OA
severity is often graded using the Kellgren and Lawrence
system, which scores the presence and severity of osteophytes,
joint space narrowing, sclerosis, and other bone changes.42

However, radiography cannot detect early pathological
bony changes and does not depict soft tissues such as car-
tilage. Radiographs therefore do not provide a complete
evaluation of osteochondral lesions preceding or accompa-
nying OA, and are not a sufficient imaging modality to
determine the appropriate treatment of the damaged os-
teochondral unit.

FIG. 2. Proposed mechanism of crosstalk within the osteochondral unit. Small molecules can diffuse through blood
vessels and the canalicular network in healthy synovial joints (A). In osteoarthritic joints, in addition to the formation of
osteophytes, subchondral bone cysts, and cartilage degeneration, angiogenesis and the formation of fissures may cause an
increase in transport of inflammatory, osteoclast, and cartilage degradation factors (B).
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The gold standard for noninvasive imaging of the joint is
MRI. MRI can supply a whole organ assessment of both
hard and soft tissues in the joint, and it eliminates patient
exposure to radiation. Many studies have determined that
high-field MRI (with a greater signal-to-noise ratio) provi-
des a more sensitive and reliable image that can more easily
detect small, early stage lesions in the chondral phase.43–46

To further quantify cartilage composition, advanced MRI
techniques, such as T2 mapping can be used. T2 mapping is
a relaxometry measurement that reflects the water content,
collagen content, and fiber orientation in articular cartilage.
More specifically, it can be used to detect early tissue de-
generation, as increases in T2 relaxation times have been
correlated with improper collagen stratification.47 While still
mostly only utilized in a research setting, T2 mapping has
shown promising results in predicting the development of
macroscopic changes visible with conventional MRI. One
prospective study found that T2 mapping significantly im-
proved detection of cartilage lesions over routine MRI, in-
dicating its potential for use in diagnosing and monitoring
early cartilage degeneration.48

Arthroscopy has an advantage over other imaging tech-
niques in that it allows for direct observation of the pa-
thology of the affected joint. However, it does not allow
assessment beyond the cartilage surface layer, except for

determining tissue integrity. Therefore, this minimally in-
vasive procedure is usually performed if the MRI results on
soft tissue are inconclusive,49 as it can be difficult to eval-
uate early cartilage damage on MRI because of the tissue’s
thinness, even with advances such as T2 mapping. For the
diagnosis of osteochondral lesions of the talus, MRI and
arthroscopic evaluation results were well correlated,50,51

however, the diagnosis for large chondral defects should be
confirmed with arthroscopy, as MRI alone can provide false-
positive or false-negative findings.52,53

Arthroscopy can also serve as a one-time surgery for both
diagnosis and treatment, and thus is indicated when noninva-
sive imaging techniques suggest that surgical intervention may
be necessary to debride or repair cartilage. It is important to
consider that there may be incomplete or no correlation be-
tween clinical symptoms, such as pain and diagnostic imag-
ing,2 which complicates the therapeutic approach taken when
aiming to alleviate symptoms and/or repair an asymptomatic
lesion. An invasive treatment may actually worsen pain.54

Surgical treatment of osteochondral unit
damage/disease

At present, there are no pharmaceutical drugs to treat
chondral, subchondral, or osteochondral lesions. In the case

FIG. 3. Innervation of the
osteochondral unit. In syno-
vial joints, sensory neurons
innervate the healthy sub-
chondral bone and show a
normal expression of TrkA
and CGRP (A), which are
important effectors in the
transmission of nociception.
In osteoarthritic joints, neu-
rons increase in number and
size, and TrkA and CGRP
are upregulated (B). TrkA,
tropomyosin receptor kinase
A; CGRP, calcitonin gene-
related peptide.
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of focal osteochondral injuries or severe joint disease, sur-
gical intervention is the only treatment option for structural
restoration and possible reduction of pain. Surgical resto-
ration is an extremely complex process, largely due to the
unique structure, mechanical strength, and crosstalk within
the osteochondral unit and also with adjacent tissues.

Currently, microfracture, ACI, or variations of ACI, such
as matrix-associated or gel-associated chondrocyte implan-
tation are used to treat focal chondral lesions. In humans,
microfracture has shown success in improving pain and
function outcomes in the majority of patients treated, al-
though the majority of the repair tissue was fibrocartilagin-
ous.55 However, upon short- (1 year) and long-term (4–6
years) follow-up, patients treated with microfracture for ta-
lar osteochondral lesions showed deteriorating subchondral
bone health, with the development of cysts and subchondral
bone plate thickening long term.56,57

Even though the technique of ACI does not involve direct
intervention into the bone, it has also been associated with
complications in the subchondral bone. Subchondral bone
plate advancement, intralesional osteophytes, and sub-
chondral bone cysts were found in 30–60% of human
patients treated with ACI after mid- to long-term follow-
up.58–60 The upward migration of the subchondral bone
due to the renewal of endochondral ossification at the
tidemark has been shown to be associated with the deg-
radation of the repaired articular surface.61

Particulate, chip, or minced tissue has been explored for
cartilage resurfacing and repair of the osteochondral unit in
a number of studies. For example, BioCartilage� is a
relatively new procedure, whereby minced cadaveric al-
logeneic cartilage (sourced from adult donors) is implanted
into a microfracture site along with platelet-rich plasma for
its perceived anti-inflammatory and anticatabolic effects.62

Early results in horses suggest that BioCartilage-treated
full-thickness defects have greater collagen type II content
and better repair/host integration than traditional micro-
fracture, although both groups had subchondral bone voids
at the defect site.63

A similar technique, DeNovo� NT, involves implanting
particulate cartilage from juvenile donors (typically younger
than 2 years) delivered in fibrin glue. This method relies on
the observation that juvenile chondrocytes induce matrix
formation in adult cartilage.64 Although subjectively as-
sessed, this allogeneic technique has shown good clinical
outcomes in the treatment of osteochondral lesions in the
knee65 and ankle66 in small retrospective studies. However,
MRI and histological results demonstrated an uneven car-
tilage surface, subchondral bone edema, and heterogeneous
repair tissue despite improved patient scores. A recent study
comparing DeNovo NT and microfracture in talar os-
teochondral defects found no differences in patient-reported
outcomes or repair tissue quality.67

A new autologous strategy has shown some success as
well. CAIS involves isolating cartilage tissue from a healthy
nonweight-bearing area, mincing the cartilage, then im-
planting it into the defect site in a one-step procedure. CAIS
was compared with ACI in horses to treat large defects
(15 mm in diameter). Both techniques resulted in superior
tissue regeneration compared with empty defects, with
CAIS having the higher score.68 In humans, CAIS out-
performed microfracture in a randomized controlled trial in

knee function, reduced pain and stiffness, sports and recre-
ational activities, and knee-related quality of life.69

In addition to morselizing autologous or allogeneic car-
tilage, a recent report has described the efficacy of im-
planting both fragmented bone and cartilage into
osteochondral defects. Christensen et al.70 utilized autolo-
gous bone fragments press-fitted into defect beds with car-
tilage chips embedded in fibrin glue seeded on top. After 12
months, all eight patients had improved Magnetic Re-
sonance Observation of Cartilage Repair scores in defect fill
and cartilage tissue surface, as well as good patient-reported
outcomes, although subchondral bone-specific scores (ede-
ma, bone interface) were not significantly improved.70

The authors further elucidated the role of the cartilage
chips in the quality of the repair tissue. In a minipig model,
defects treated with autologous bone fragments and cartilage
chips had significantly more hyaline and fibrocartilage than
defects treated with bone fragments alone, although no
difference was noted in the bone defect volume between the
groups at 6 or 12 months.71

OAT and mosaic arthroplasty have a distinct advantage
over the aforementioned techniques in that they aim to repair
both the cartilage and the bone phase with healthy, intact
osteochondral grafts. Both techniques involve harvesting one
(OAT) or more (mosaic arthroplasty/mosaicplasty) osteo-
chondral plugs from a healthy, nonweight-bearing area of the
joint and implanting it into the lesion. OAT is often indicated
when a medium (*2–3 cm2) full-thickness defect or multiple
lesions are diagnosed through MRI or arthroscopy.72,73

This technique was pioneered in horses by Bodo et al. to
treat subchondral bone cysts, and has shown promise in
the treatment of focal cartilage defects in dogs, pigs, and
sheep.73–77 In a recent systematic review, 72% of human pa-
tients who underwent OAT in the knee joint (10 studies, 610
patients) had successful clinical outcomes after an average of
10 years (based on Lysholm/International Knee Documenta-
tion Committee [IKDC] scoring), although activity scores did
not improve significantly from preoperative to final follow-
up.78 While the average return-to-sport rate was reported to be
85% in the studies that assessed this, highly active patients
reported lowering their activity level, while sedentary patients
did not change their activity level.78,79 Mean failure rate
among the studies reviewed was 28%. Failure rates are influ-
enced by age, lesion size, and/or localization, and concomitant
surgeries,80 which also act as compounding variables when
evaluating OAT as an effective treatment protocol for OCLs.

To date, seven randomized studies (evidence level: I or
II) have compared OAT with microfracture in pediatric and
adult patients.81–87 Out of these studies, five demonstrated
that OAT produced better clinical outcomes and a higher
return-to-sport rate than microfracture at mid- (3–5 years)
to long-term (‡10 years) follow-up.81–84,87 Two studies did
not find significant differences in clinical outcomes be-
tween OAT and microfracture at mid- (5 years) and long-
term (10 years) follow-up, however, they were both level II
randomized studies with a small number of patients in each
group.85,86

There have been even fewer studies published on OAT
versus ACI. To the best of our knowledge, only four ran-
domized trials have been conducted to date, with mixed
outcomes.85,88–90 After 1 year, Bentley et al. found that
ACI-treated patients had better clinical results than
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mosaicplasty-treated patients,88 while Horas et al. deter-
mined that OAT was superior to ACI, delivering higher
Lysholm scores after a 2-year follow-up.89 Dozin et al.
could not conclude any significant differences between
mosaicplasty and ACI, although they reported a higher
Lysholm score for mosaicplasty patients after 2 years (88%
vs. 68% for ACI patients).90 Lim et al. compared OAT
versus ACI versus microfracture in 70 knees, and did not
observe any significant differences in clinical outcomes
between the three treatments after 5 years.85 To date, there
have been no published Level I clinical trials comparing the
long-term outcomes of OAT versus ACI.

Major concerns with OAT with respect to donor-site
morbidity and critical lesion size can be addressed by using
allografts harvested by cadaver limbs. Osteochondral allo-
grafts have increased in popularity as long-term storage
protocols have been optimized and immune rejection rates
remain low.91,92 A single-center, randomized, prospective
trial comparing the efficiency of autografts versus allografts
to heal large and/or recurrent osteochondral lesions of the
talus found similar healing rates.93 However, as for all hu-
man donor-sourced material, adequate supply of allografts is
a concern for widespread adaptation and rollout.

Osteochondral unit tissue engineering

Sourcing appropriate healthy allograft tissue remains a
key limitation to osteochondral allograft transfer.94 For-
tunately, much progress has been made in the realm of tissue
engineering of osteochondral constructs. The majority of
these constructs contain cells and one or more types of scaf-
folds for the cartilage and/or bone phase. Various studies have
investigated methods for generating biphasic, multiphasic,
and/or gradient tissues (reviewed in refs.95–99), different bio-
materials/scaffolds (reviewed in refs.100,101), as well as the
controlled release of growth factors for in vivo tissue regen-
eration (reviewed in refs.102,103). While these in vitro studies
show promise, relatively few in vivo studies have been con-
ducted to show how engineered osteochondral constructs
function long-term in the joint.104–109

Questions remain concerning methods to reproducibly
generate stable, mechanically competent, metabolically
equivalent, and functionally relevant osteochondral units.
Generally speaking, most publications report that the com-
pressive and/or shear modulus of tissue-engineered cartilage
is inferior to that of native cartilage. While biomechanical
competency of cartilage is important in the creation of
implant-grade tissue, the integration to and vascularization
of the new subchondral bone is imperative in recapitulating
the health and function of the native osteochondral unit. By
focusing on building the unit as a whole, we can eventually
overcome some of the limitations observed by attempting to
regenerate only the chondral phase.

Animal models, human trials, and the case for health
technology value in osteochondral unit repair

Research into pathologies and treatment of human carti-
lage disease conditions often utilizes animal models as a
transition phase between in vitro studies and human clinical
practice. Small animal models such as mice and rats are
most commonly used as they are inexpensive and can be
generated as transgenic or gene knockout animals, which

allow for the exploration of direct or indirect genetic causes
of cartilage-associated pathologies.110 However, while they
are suitable models for hypothesis-generating studies of OA
pathology and development, their small joint size and rela-
tively thin articular cartilage means it is difficult to study
clinically relevant-sized defects. Larger animals, such as
rabbits, goats, pigs, sheep, dogs, and horses have also been
studied extensively as models for cartilage repair (reviewed
in Chu et al.111).

When choosing a large animal model for the treatment of
osteochondral defects, several factors must be taken into
consideration. Joint anatomy, cartilage thickness, subchondral
bone properties, and biomechanical loading environment
should be as close as possible to humans. Goat and sheep
stifles are very similar in anatomy to the human knee, however
some differences (mainly the femoral intercondylar notch
width as well as trochlear groove length) limit very precise
modeling of the human joint.112 In terms of cartilage thick-
ness, horses are most similar to humans with a thickness of
1.75–2 mm113; human cartilage thickness ranges from 2.4 to
2.6 mm.114 Unlike normal human subchondral bone, horses
and goats have higher bone mineral density, bone volume
fraction, and thicker trabeculae.115

However, as these are features of OA,116 they may in fact
pose an advantage to developing osteochondral defect
treatments, where the subchondral bone environment is al-
tered. Goats have similar joint biomechanics to humans,
whereas horse joints are subjected to increased loads as a
result of the animal’s size and activity level,117 making
defect repair particularly challenging yet perhaps excellent
for modeling repair.

In addition to their similar joint characteristics to humans,
horses have been deemed the superior preclinical animal
model due to analog developmental disorders of the os-
teochondral unit and their propensity to acquire joint injuries
through athletic activities.118,119 In addition, arthroscopic
techniques to treat and evaluate lesions in the horse are
similar to human surgical instrumentation, aiding in tech-
nology transfer between horses and humans.120 Horses are
also amenable to controlled rehabilitation protocols, an inte-
gral postoperative part of many surgical treatment approaches.

Veterinary patients also suffer from natural spontaneous
disease, which has significant value in preclinical modeling
for assessing the true clinical importance of new therapies.
Assessing new cartilage and osteochondral defect treatments
in these patients is beneficial because they can be compared
with current best clinical practices. In addition, disease con-
ditions are associated with all of the complexities of human
patients, such as chronicity, comorbidities, polypharmaceu-
tical use, epigenetic factors, genetic heterogeneity, and post-
surgical compliance issues, as reviewed elsewhere.121

Recently, it has been highlighted that human research
studies and clinical trials are often conducted in younger
people, whereas the majority of patients for these proce-
dures are older.122 Only 4% of patients in a clinical practice
fulfill inclusion criteria of clinical trials on focal cartilage
repair.123 This likely reflects bias toward early commercial
or research successes, but is ultimately failing development
of effective treatments.122

Of note, some now argue that cartilage repair should be
exempt from the rigor of randomized clinical trials (RCTs).124

Complete replacement of all animal studies with microdosing
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strategies in humans has also been advocated recently.125

However, this argument seems more relevant to traditional
drug testing than cell and tissue-engineering strategies.

Instead of abandoning the rigor of RCTs and arguing for
regulatory lenience in approving new cartilage repair
methods, better strategies to determine safety and efficacy of
new treatments in a cost-effective manner should be ex-
plored. In addition to enhancing the welfare of our veteri-
nary patients, such an approach may also allow for separate
veterinary revenue streams that could be used to support
clinical trials in humans.

Conclusion

When pathologies arise in one component of the os-
teochondral unit, reducing its function, it is often only a
matter of time before the other components are affected and
OA occurs. Early detection and diagnosis of osteochondral
lesions is important for the appropriate treatment of the dis-
ease. Unfortunately, current nonsurgical treatments are only
capable of temporarily relieving symptoms and perhaps
slowing down joint disease progression, whereas surgical
treatments come with a plethora of complex difficulties,
limitations, risks, and expenses. By using treatment tech-
niques that focus solely on repairing the cartilage surface and
do not address existing or future changes to the subchondral
bone, pain can persist and cartilage damage may reoccur. The
possible result is a joint that looks normal when observed
arthroscopically, yet the patient still complains of joint pain.32

Further development of diagnostic tools, disease-modifying
drugs, and surgical alternatives is necessary for a more ef-
fective, targeted therapeutic approach that can reverse disease
progression and restore joint function long term, without the
need for life-long treatment or revision surgeries. Basic re-
search into the complexities of cartilage/bone crosstalk and the
in vivo development of the osteochondral unit is fundamental
to the improvement of joint therapies and tissue restoration.
From a clinical and translational perspective, naturally occur-
ring disease in companion animals, such as horses and dogs,
provides unique opportunities for developing and assessing the
long-term safety and efficacy of new osteochondral treatments
to the benefit of animals themselves as well as humans. Rarely
is osteochondral pathology a fatal condition and new therapies
should therefore be thoroughly evaluated for safety and effi-
cacy before implementation in human medicine.
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lage defect patients enrolled in randomized controlled
trials are not representative of patients in orthopedic
practice. Cartilage 1, 312, 2010.

124. Lyman, S., Nakamura, N., Cole, B.J., Erggelet, C., Go-
moll, A.H., and Farr, J. Cartilage-repair innovation at a
standstill: methodologic and regulatory pathways to
breaking free. J Bone Joint Surg Am 98, e63, 2016.

125. Kramer, L.A., and Greek, R. Human stakeholders and the use
of animals in drug development. Bus Soc Rev 123, 3, 2018.

Address correspondence to:
Thomas G. Koch, DVM, PhD

Department of Biomedical Sciences
Ontario Veterinary College

University of Guelph
50 Stone Road

Guelph, ON N1G 2W1
Canada

E-mail: tkoch@uoguelph.ca

Received: May 3, 2018
Accepted: September 19, 2018

Online Publication Date: April 5, 2019

OSTEOCHONDRAL UNIT IN JOINT HEALTH AND DISEASE 125


