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Effect of photobiomodulation therapy 
on neuronal injuries by ouabain: the regulation 
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Abstract 

Background:  To determine whether photobiomodulation (PBM) rescued the disruption of Na+/Ca2+ homeostasis 
and mitochondrial membrane potential by ouabain; the Na, K-ATPase inhibitor. For PBM in this study, a 660 nm LED 
array was used at energy densities of 0.78, 1.56, 3.12, 6.24, and 9.36 J/cm2.

Results:  HCN-2 neuronal cells treated with ouabain showed loss of cell polarity, disrupted cell morphology, and 
decreased cell viability, which were improved after PBM treatment. We found that ouabain-induced Na, K-ATPase inhi‑
bition promoted activation of downstream signaling through Src, Ras, and mitogen-activated protein kinase (MAPK), 
which were suppressed after PBM treatment. This provided evidence of Na, K-ATPase α-subunit inactivation and intra‑
cellular Ca2+ increase. In response to ouabain, we observed activation of Src and MAPK by Na, K-ATPase, decreased 
mitochondrial membrane potential, and Na+-dependent Ca2+ increases, which were restored by PBM treatment.

Conclusions:  This study demonstrated that Na+/K+ imbalance could be regulated by PBM treatment in neuronal 
cells, and we suggest that PBM is a potential therapeutic tool for Na, K-ATPase targeted neuronal diseases.
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Background
Neuronal activity can be manipulated through molecular 
mechanisms at several levels: (1) ion channels, (2) neu-
rotransmitters and their receptors, (3) auxiliary intram-
embranous or cytoplasmic signal transducing molecules, 
and (4) neurotransmitter transporters. These molecular 
mechanisms facilitate their conservation through reac-
cumulation in the terminal and then synaptic vesicles of 
these molecular entities such as neurotransmitters and 
neurotransmitter transporters to regulate three major 
cations; Na+, K+, and Ca2+ [1–3]. The balance of these 
major cations has a crucial role in neuronal activity and 

is maintained by Na, K-ATPase. The Na, K-ATPase is a 
plasma membrane protein complex which activates the 
ion transport system to generate Na+ and K+ gradients 
across the cell plasma membrane [2, 4], and mediate the 
effects of endogenous digitalis-like compounds such as 
ouabain in the cell [5]. The Na, K-ATPase is composed 
of catalytic α and glycosylated β subunit [6]. Especially, 
the activity of α subunit in Na, K-ATPase is inhibited by 
ouabain binding [7]. Ouabain is well-known to prolong 
depolarization of neurons leading to osmolysis or cal-
cium necrosis in brain tissues [8]. Upon ouabain bind-
ing, the Na, K-ATPase initiates a series of reactions that 
include interaction with neighboring proteins in what has 
been described as the Na, K-ATPase signal [9, 10]. In our 
previous study, we suggested that photobiomodulation 
(PBM) by low-level laser therapy had the potential to res-
cue auditory neuropathy induced by ouabain [11]. PBM 
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has been used in a variety of applications, such as wound 
healing [12], inflammation [13], pain relief [14], and tis-
sue regeneration [15]. Although physiological improve-
ment following PBM therapy has been reported, studies 
investigating the molecular mechanism remain few. In 
the present study, we provide the evidence that protective 
effect of PBM on ouabin-induced Na, K-ATPase disrup-
tion through Src/Ras/MAPK in neuronal cells.

Methods
Cells
The human brain cortical neuron cell line HCN-2 (ATCC 
CRL-10742) was purchased from ATCC (Manassas, VA, 
USA) and was maintained in Dulbecco’s Modified Eagle 
Media (DMEM) supplemented with 4 mM l-glutamine, 
4.5 g/L glucose, and 10% fetal bovine serum, which were 
purchased from Life Technologies (Grand Island, NY, 
USA).

Chemicals and antibodies
Ouabain, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetra-
zolium (MTT), tetramethylrhodamine ester (TMRE), and 
β-actin were purchased from Sigma Aldrich (St. Louis, 
MO, USA). Phospho-Na, K-ATPase α; Na, K-ATPase α; 
phospho-SRC; and RAS were purchased from Abcam 
(Cambridge, MA, USA). Phospho-ERK, ERK, phospho-
JNK, JNK, phospho-p38, and p38 were purchased from 
Cell Signaling (Beverly, MA, USA). Anti-mouse or anti-
rabbit HRP-conjugated IgG antibodies were purchased 
from Santa Cruz (Santa Cruz, CA, USA) (Additional files 
1, 2).

PBM conditions by low‑level light
The light source was a continuous wave (CW) type of 
660  nm light emitting diode, which was manufactured 
by WON Technology Co., Ltd., Korea. Total energy was 
modulated with different time intervals, and the power 
input was fixed at 50 mW. The irradiance at the surface 
of the cell monolayer was measured with a power meter 
(Orion, Ophir Optronics Ltd., UT, USA). The LED panel 
and wavelength are shown in Fig. 1a, and the condition of 
PBM treatment is described in Fig. 1b.

Cell viability assay
Cells were cultured at a density of 5000 cells/well in 
96-well plates at 5% CO2 and 37 °C. After 24 h, cells were 
exposed to various concentrations of ouabain and were 
irradiated by 660  nm LED at 50  mW 30  min later. The 
irradiated cells were incubated for 2 or 24  h, and then 
MTT was added at a final concentration of 0.5  mg/mL. 
After 2 h of incubation, the reaction was stopped by add-
ing a lysis solution (20% SDS, 50% dimethylformamide). 
The relative optical density for each well was determined 

at 450 nm by a microplate spectrophotometer (Bio-Tek, 
Winooski, VT, USA). Cell viability was calculated as 
a percentage of the ouabain-treated group versus the 
untreated control group.

Cell morphological observation
We modulated the ouabain exposure time for the optimal 
time point of cell survival by PBM. Cells were exposed to 
5 mM ouabain and PBM treatment followed after 30 min. 
Cells were incubated for 2, 4, 8, or 24  h with ouabain, 
and cell morphological changes were observed using 
an inverted microscope (Olympus CKX53, Miami, FL, 
USA).

Na/K‑ATPase activity assay
Cells were treated with ouabain at the same concentra-
tion (0, 3, 5, 10, 30  mM) and exposure conditions as in 
cell viability assay and Na/K-ATPase activity with or 
without PBM was measured using the Na/K-ATPase 
activity assay kit according to manufacturer (Mybiosci-
ence, SanDiego, CA, USA). Briefly, cells were lysed with 
rapid freezing and thawing with dry ice and acetone, and 
assayed for Na/K-ATPase activity. The Na+/K+-ATPase 
activity was measured using an end-point phosphate ATP 
hydrolysis protocol performed. The inorganic phosphate 
released from the cells was measured using colourimetric 
assays and expressed in μmol per mg protein.

Intracellular ADP/ATP ratio assay
ADP/ATP ratio with or without PBM under same con-
dition of ouabain was also measured using the ADP/
ATP ratio assay kit according to manufacturer (Abcam, 
Cambridge, MA, USA). Briefly, cells were incubated 
with nucleotide releasing buffer for 5  min after vari-
ous concentrations of ouabain exposure. 100 μL ATP 
monitoring enzyme and nucleotide releasing mix was 
added onto lunimoscence plate, and background values 
(A) were measured using luminometer (Synergy/MTX, 
BioTek Instruments, Winoosk, VT, USA). 50 μL of sam-
ples were added onto ATP monitoring enzyme contained 
plate, then the values (B) were measured after 2  min. 
The ADP level was also measured before (C) and after 
(D) of adding ADP converting enzyme as same method 
as described previously. The ADP/ATP ration was calcu-
lated as follows: ADP/ATP ratio = (B − A)/(D − C).

Western blotting analysis
Cells were lysed in protein lysis buffer (25 mM Tris–HCl 
(pH 7.4), 150 mM NaCl, 5 mM EDTA, 0.1% SDS) contain-
ing protease and phosphatase inhibitors (Sigma Aldrich). 
Protein concentration was determined using the BCA 
assay (Bio-Rad Laboratories, Hercules, CA, USA). Protein 
samples (30 μg) were separated by SDS–polyacrylamide 
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gel electrophoresis (SDS-PAGE) and transferred onto 
a PVDF membrane (Bio-Rad Laboratories). The blot-
ting membrane was incubated with primary antibod-
ies overnight: phospho-Na, K-ATPase α; phospho-SRC; 
phospho-ERK; phospho-JNK; phospho-p38 (1:500); Na, 
K-ATPase α; RAS; ERK; JNK; p38 (1:1000); and β-actin 
(1:5000). The blots were incubated for 2 h at room tem-
perature with secondary HRP-conjugated antibodies 
(1:2000). The signals were quantified and analyzed using 
the NIH imaging software, Image J (NIH, Bethesda, MD, 
USA). The level of protein expression was normalized to 
β-actin. The value of protein levels was designated as one 
in the control group. The results were expressed as the 
mean proportion of the control group values.

Cellular calcium ion measurements
Intracellular free Ca2+ was measured using the Fluo-
8-no wash calcium assay kit (Abcam). Fluo-8 epifluores-
cence was excited at 490 nm and images were obtained 

at 520 nm. The imaging data were collected with a fluo-
rescence microscopy system (Olympus BX51), and the 
intensity of fluorescence was determined with a fluorom-
eter (Bio-Tek Instruments).

Mitochondrial membrane potential measurements
Cells were treated with ouabain and then loaded imme-
diately with 200  nM TMRE (Invitrogen, Eugene, OR, 
USA) for 30 min in the dark. Cells were subjected to the 
same treatment as described above prior to imaging. 
The observation and intensity measurement was per-
formed with a confocal microscope (LSM510, Carl Zeiss, 
Switzerland).

Statistical analysis
The results are expressed as the mean ± SD. The values of 
cell viability, western blot anaylsis, calcium ion measure-
ment, mitochondrial membrane potential measurement 
were compared using one-way ANOVA (Tukey test). The 
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Fig. 1  The figure of light emitting diode. The light source was a continuous wave (CW) type 660 mM emitting diode, which was manufactured by 
WON Technology (a). Total energy was modulated with different time intervals (b)
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cell viability, Na,K-ATPase activity, and ADP/ATP ratio 
analysis were compared using two-way ANOVA (Bonfer-
roni post-test). All data were analyzed using Graph Pad, 
Prism® (La Jolla, CA, USA). Statistical significance shows 
*p < 0.1, **p < 0.05, and ***p < 0.001.

Results
Ouabain‑induced cytotoxicity in HCN‑2 cells
To determine the optimal concentration and exposure 
time of ouabain to HCN-2 neuronal cells, the 3-(4,5-dime-
thyl-thiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay 
was performed with various treatment schemes. Cells 
were treated with ouabain at a concentration of 3, 5, 10, or 
30 mM and were then subjected to incubation for 2, 4, 8, 

or 24 h. Fresh normal media was changed at the end of the 
exposure time. The MTT assay was performed 24 h after 
exchanging the media. Ouabain decreased cell viability in 
both a time- and dose-dependent manner. Increasing the 
ouabain concentration from 3 to 30 mM significantly aug-
mented the cytotoxic effect at all time points. As shown in 
Fig. 2a, cells were floating or exhibited altered morphol-
ogy after 8  h with 5  mM of ouabain, and cell apoptosis 
occurred within 4 h with 10 mM of ouabain. The survival 
rate according to the concentration of ouabain and expo-
sure time is depicted in Fig.  2b. Through the analysis of 
survival rates following ouabain treatment, we deter-
mined the ideal toxic condition for HCN-2 cells to be a 
4 h exposure to 5 mM ouabain.

a 

b 
150

100

50

0 

C
el

l v
ia

bi
lit

y 
(%

)

Control
3 mM OBN
5 mM OBN

10 mM OBN
30 mM OBN

IC50

2 4 8 24 

Exposure time (h)

2 

4 

8 

24 

E
xp

os
ur

e 
tim

e 
(h

)

OBN (mM) 
0 3 5 10 30 

X  400

* 

R
el

at
iv

e 
A

D
P

/A
TP

 ra
tio

Control
3 mM OBN
5 mM OBN

10 mM OBN
30 mM OBN

2 4 8 24 

Exposure time (h)

1.5

1.0

0.5

0 

* 

** 

*** 

* 

*** 

*** 

** 
** 

*** 
*** *** 

c 

Fig. 2  Cells were exposed to various concentrations of ouabain and incubated for 2, 4, 8, or 24 h. The morphological changes of HCN-2 cells 
were observed using an inverted microscope and photographed at 200 × magnification (a). The viability of HCN-2 cells treated with ouabain was 
measured by MTT assay. Survival rate analysis from the various concentrations (3, 5, 10, and 30 mM) and exposure times (2, 4, 8, and 24 h) of ouabain 
revealed the ideal toxic conditions for HCN-2 cells to be a 4 h exposure with 5 mM ouabain. Every assay was performed three times, and the results 
are expressed as the mean ± SD (b)
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PBM effect on cell viability
To address whether PBM could promote cell survival 
under cytotoxic conditions in HCN-2 cells, we treated 
cells with low-level light irradiation (LLLI). Ouabain-
treated HCN-2 cells were exposed to LLLI with vari-
ous energy densities ranging from 0.78 to 9.36  J/cm2. 
The power of the LLLI was fixed at 50 mW and total 
energy density was modulated by time of irradiation. 
We subscribed to the total energy density and duration 
time presented in Fig. 1b.

Cell viability and shape were then observed from 
24 to 72  h. As shown in Fig.  3, ouabain exposed cells 
were deformed and the survival rate was decreased 
to less than 30% at 72 h. However, the survival rate of 
ouabain exposed cells was significantly elevated after 
LLLI. Cell survival with 5  mM ouabain was 45.1% 
before PBM, however it was increased to 68.59 ± 2.88% 
with 0.78  J/cm2 irradiation (p < 0.001, t = 9.304), 
72.39 ± 5.46% with 1.56  J/cm2 irradiation (p < 0.001, 
t = 12.33), 81.81 ± 3.39% with 3.12  J/cm2 irradiation 
(p < 0.001, t = 16.12), 75.94 ± 3.41% with 6.24  J/cm2 
irradiation (p < 0.001, t = 15.29), and 59.67 ± 4.13% 
with 9.36 J/cm2 irradiation (p < 0.001, t = 8.652). How-
ever, there was a decrease in cell viability in the 9.36 J/
cm2 irradiation group (q = 2.88). When comparing 
only ouabain with PBM treated group, cell survival was 
significantly increased 1.56 J/cm2 (q = 4.76), 3.12 J/cm2 
(q = 7.84), and 6.24  J/cm2 (q = 4.82) irradiation group. 
These results suggest that PBM was effective against 
cell damage at a specific energy dose, not energy 
does-dependent.

The effect of PBM on ouabain‑induced Na, K‑ATPase 
activity
Ouabain is known to induce Na +/K + imbalance 
through Na, K-ATPase inhibition [16]. We evalu-
ated the Na, K-ATPase activity using inorganic phos-
phate colorimeric assay. Figure  4a showed the Na, 
K-ATPase activity of HCN-2 cells according to con-
centration of ouabain. 3  mM ouabain treatment had 
no effect to Na/K-ATPase activity. After 5  mM oua-
bain treatment, Na, K-ATPase activity was decreased 
to 9.81 ± 1.19  μmol/mg (p < 0.05, t = 2.646) at 4  h, 
7.13 ± 1.16  μmol/mg (p < 0.001, t = 6.921) at 8  h, and 
6.1 ± 0.95 μmol/mg (p < 0.001, t = 7.368) at 24 h. From 
10 mM or more, Na/K-ATPase activity was decreased 
as the blank control. However, Na/K-ATPase activ-
ity was recovered from 9.5 ± 1.34  μmol/mg (p < 0.001, 
q = 7.67) to 12.18 ± 0.78  μmol/mg with 3.12  J/cm2 
irradiation (p < 0.05, q = 5.971). There were no sig-
nificances differentiation other irradiation groups 
(Fig. 4b).

The effect of PBM on ouabain‑induced intracellular ATP/
ADP ratio
Ouabain is also known to induce Na +/K + imbalance 
and result in the accumulation of Na+ ions in the cells, 
which induce intracellular stress. ATP is an energy source 
of NA+/K+ transport activation which is inhibited spe-
cifically by ouabain. In order to determine the extent of 
ATP, we assessed intracellular ADP/ATP ratio using lumi-
nescence assay. Figure  4c showed the ADP/ATP ratio of 
HCN-2 cells according to concentration and time after 
ouabain treatment. The ADP/ATP ratio was decreased 
to 0.81 ± 0.12 (p < 0.05, t = 3.106) at 8 h and to 0.62 ± 0.14 
(p < 0.001, t = 6.262) at 24  h after 3  mM ouabain treat-
ment. After 5  mM ouabain treatment, the ADP/ATP 
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Fig. 3  Irradiation was performed 30 min after 5 mM ouabain 
treatment. Cells were incubated for 24, 48, or 72 h with ouabain, 
and cell morphological changes were observed using an inverted 
microscope and photographed at 200 × magnification (a). The 
viability of HCN-2 cells with ouabain after irradiation with various 
energy doses was measured by MTT assay. Cell survival increased 
from 64.7 to 81.8% at 3.12 J/cm2 irradiation. However, there was 
a decrease in cell viability at 9.36 J/cm2 irradiation (b). Every assay 
was performed three times, and the results are expressed as the 
mean ± SD. *p < 0.1 and ***p < 0.001
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ratio decreased to 0.53 ± 0.09 (p < 0.001, t = 7.126) at 4 h, 
0.53 ± 0.06 (p < 0.001, t = 8.255) at 8  h, and 0.30 ± 0.09 
(p < 0.001, t = 11.56) at 24  h. From 10  mM or more, it 
decreased to less than 50% after 2  h, and no measured 
value was observed. To determine whether PBM restores 
the accumulation of ATP by ouabain, we evaluated the 
ADP/ATP ratio after LLLI. The ratio of ADP/ATP was ele-
vated from 0.47 ± 0.08 (p < 0.001, q = 18.82) to 0.54 ± 0.08 
with 1.56 J/cm2 irradiation (p < 0.05, q = 5.63), 0.70 ± 0.03 
with 3.12 J/cm2 irradiation (p < 0.001, q = 8.25), 0.59 ± 0.07 
with 6.24 J/cm2 irradiation (p < 0.1, q = 4.67). There was no 
significance differentiation both 0.78 J/cm2 and 9.36 J/cm2 
irradiation group (Fig. 4d). These results also support that 
PBM was effective against cell damage at a specific energy 
dose, not energy does-dependent.

The effect of PBM on ouabain‑induced Na, K‑ATPase 
cascade in HCN‑2 cells
It was suggested that Na, K-ATPase inhibition by oua-
bain had been linked to the Src-Ras-p42/44 MAPK cas-
cade [17]. Especially, Na, K-ATPase phosphorylation by 

ouabain was involved with the activity of Src [16]. We 
determined whether PBM reduced the intracellular stress 
by ouabain through Na, K-ATPase-Src-Ras pathway using 
western blot analysis. Figure 5a showed the expression of 
phospho-Na, K-ATPase; phospho-Src; and Ras, Ouabain 
increased the phosphorylation of Na, K-ATPase up to 2.2 
folds at 24 h maintained to 72 h. Ouabain also increased 
the phosphorylation of Src up to 2.89 folds at 48  h. The 
expression of Ras was increased up to 4.26 folds at 48 h 
by ouabain. However, PBM reduced the expression of Src 
and Ras as well as Na, K-ATPase. The phosphorylation of 
Na, K-ATPase by ouabain was decreased more than 50% 
after PBM (p < 0.001, F = 19.62). The level of p-Src and Ras 
was also decreased more than 25% (p < 0.001, F = 4.54) 
and 50% (p < 0.001, F = 2.35) after PBM (Additional file 3).

The effect of PBM on ouabain‑induced MAPK signaling 
in HCN‑2 cells
Next, we measured the level of phosphorylation of 
MAPK by ouabain with or without PBM. As shown in 
Fig. 5c, the phosphorylation of ERK began to increase 
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at 24  h (1.89 folds), reached a maximum at 48  h (2.5 
folds), and decreased at 72  h (0.9 folds) by ouabain. 
The phosphorylation of p38 and JNK also began to 

increase at 24 h (3.2 and 1.8 folds) and maintained to 
72 h (3.8 and 1.7 folds) by ouabain. These increase of 
MAPK by ouabain was significantly inhibited by PBM 
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treatment (p < 0.001, FERK = 3.56, Fp38 = 11.05) except 
JNK (Additional file 4).

The effect of PBM on ouabain‑induced intracellular Ca2+ 
levels in HCN‑2 cells
It has been known that cell necrosis is induced by accu-
mulation of intracellular Na+ by blocking the Na+/K+ 
pump and Ca2+ [2, 9]. Thus, we measured intracellular 
Ca2+ using the cell permeable indicator Fluo-8-AM. As 
shown in Fig.  6a, ouabain increased intracellular Ca+ 
as early as 15  min after addition, and the effect lasted 
for up to 60 min, which was regulated by PBM. We also 

measured the intracellular Ca2+ concentration. The val-
ues of intracellular Ca2+ were 3881 ± 261.5 at 15  min, 
4869 ± 288.1 at 30 min, and 1969 ± 186.4 at 60 min, and 
which were reduced to 2649 ± 216.3 at 15 min (p < 0.001, 
t = 10.42), 2849 ± 322.1 at 30  min (p < 0.001, t = 17.09), 
and 1260 ± 217.5 at 60  min (p < 0.05, t = 5.15). This 
result suggested that PBM effectively prevented the Ca2+ 
increase during ouabain-induced cytotoxicity.
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by PBM (a). Ouabain caused a marked decrease in orange to red fluorescence of TMRE, indicating a significant loss of mitochondrial membrane 
potential and damage to the cells (b). The results are expressed as the mean ± SD. *p < 0.1, **p < 0.05, ***p < 0.001
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The effect of PBM on ouabain‑induced mitochondrial 
membrane potential in HCN‑2 cells
The mitochondrial membrane potential seems to be 
very important to forms the transmembrane potential of 
hydrogen ions [18]. Whether PBM could restore the dis-
rupted mitochondrial membrane potential by ouabain, 
we determined changes in mitochondrial membrane 
potential [19, 20]. Figure  6b showed that ouabain cause 
marked decrease in red fluorescence of TMRE, which 
indicating a significant loss of mitochondrial membrane 
potential of cells (p < 0.001, q = 11.43). The reduced 
mitochondrial membrane potential was reversed after 
PBM treatment (p < 0.1, q = 5.29) which suggested that 
PBM effectively protected the mitochondrial membrane 
potential disruption by ouabain.

Discussion
The mechanisms of cell recovery induced by PBM in 
injured cells are not well defined. All photobiological 
responses are determined by the absorption of energy by 
photoacceptor molecules during light irradiation. Photon 
absorption converts light into signals that can stimulate 
biological processes. The near-infrared (NIR) light could 
modulate signaling pathways and regulate reactive oxy-
gen species (ROS), adenosine tri-phosphate (ATP), Ca2+, 
and NO, which affect cell homeostasis, cytoskeleton reor-
ganization, and cell proliferation/differentiation [21–24]. 
Although the biochemical and pharmacological proper-
ties of the Na, K-ATPase have been studied in various cell 
lines, the study of PBM effect on Na, K-ATPase has not 
been reported. In previous study, we observed that PBM 
rescued auditory neuropathy induced by ouabain in vivo, 
and these results led us to explore the further study [11]. 
Thus in this study, we investigated the signaling path-
ways responsible for mediating the effects of PBM using 
HCN-2 human cortical neuronal cell line which was well 
defined in terms of neurotoxicity and a model for Alzhei-
mer’s disease [25]. As an initial test for ouabain-induced 
cytotoxicity in human neuronal cells, we exposed HCN-2 
cells to various concentrations of ouabain and observed 
the cell morphological changes with or without PBM. 
It is important to observe cell morphological changes 
because the ouabain-induced inhibition of Na, K-ATPase 
reduces cellular polarization (depolarizing effect). We 
elucidated that a sub-lethal dose of ouabain for HCN-2 
cells was defined as 5 mM for 4 h through morphologi-
cal observation and Na, K-ATPase activity analysis. To 
determine ATP accumulation by NA, K-ATPase inhibi-
tion by ouabain in HCN-2 cells, the ADP/ATP ratio assay 
was performed. We observed that ATP accumulation 
began at 3 mM of ouabain for 8 h and 5 mM of ouabain 
for 4 h, which were the same as the cell viability analysis 
and morphology observation. As previously described, 

we have also observed degeneration of sparing the sen-
sory neural cells that were exposed to 3 mM ouabain for 
1 h in animal study [11]. Importantly, PBM increased the 
cell viability and the ADP/ATP ratio with energy density 
except at the highest density of 9.36  J/cm2 (Figs.  3, 4). 
Consistent with these results, transcranial LLLI for trau-
matic brain injury in mice showed biphasic neurological 
effects and energy density for treatment was varied [26]. 
These results suggested that PBM had an effective energy 
dose against cell damage (Additional file 5).

Na, K-ATPase is composed of three subunits: 
α-subunit, β-subunit, and γ-subunit, and functions in 
cellular electrochemical gradient maintenance, osmotic 
balance, cell adhesion and motility, and initiation of intra-
cellular signaling [27–29]. We focused on the α-subunit 
because the binding sites for ATP, Mg2+, and cardiac 
glycoside, as well as Na+ and K+ ions, are all located in 
the α-subunit [2, 9, 10]. Na, K-ATPase induced energy 
deficiency and dysfunction are common consequences 
of many pathological insults [2, 29, 30], and multiple cell 
signaling pathways response to digitalis drugs such as 
ouabain [31, 32]. Moreover, it is known that Src bind to 
α-subunit of Na, K-ATPase in an inactivated state and 
that is activated with disruption of α-subunit by ouabain 
[31, 33]. It has been also reported that Na, K-ATPase 
phosphorylation by ouabain activated the kinase Src 
and downstream members of the MAPK pathway [34]. 
To determine whether PBM regulates the Na, K-ATPase 
phosphorylation and downstream members such as 
Src, Ras and MAPK, we performed western blot analy-
sis. Western blot analysis revealed that Na, K-ATPase 
activity was inhibited by ouabain; however, which was 
restored by PBM. In addition, PBM regulated the acti-
vation of Src, Ras and MAPK except JNK (Fig.  5). Src 
activation is dependent on concentrations of other spe-
cific ligands of Na, K-ATPase: Na+, K+, vanadate, ATP, 
and ADP [35]. Although Src activation has known to be 
involved in many signaling cascade, the result of intracel-
lular ADP/ATP ratio with ouabain (Fig. 4) revealed that 
Src activation was related to the up regulation of ATP 
by NA, K-ATPase inhibition, and this process could be 
controlled by PBM. Our results showed that for the first 
time PBM modulated the activation of Src and MAPK by 
restoring the NA, K-ATPase and intracellular ADP/ATP 
ratio (Additional file 6).

Meanwhile, blocking Na, K-ATPase has two direct and 
marked impacts on cellular ionic homeostasis: increased 
intracellular Na+ concentration and decreased intracel-
lular K+ concentration [36]. PBM is known to regulate 
ATP and Ca2+ release, which could contribute to the 
regulation of Na, K-ATPase and its downstream path-
way. Inhibition of Na, K-ATPase raises the intracellular 
Na+ concentration and increases the intracellular Ca2+ 



Page 10 of 11Rhee et al. BMC Neurosci           (2019) 20:19 

concentration via the sodium-calcium exchanger [1, 5, 
37]. Thus, we investigated the level of intracellular Ca+ 
using the Fluo-8-AM indicator. We observed that Ca+ 
was increased within 15  min of ouabain treatment and 
was maintained to 30  min. However, PBM treatment 
suppressed the accumulation of intracellular Ca+ levels, 
and several additional reports support this finding. Sas-
soli et al. [38] reported that low intensity 635 nm diode 
laser irradiation inhibited fibroblast transition through 
transient receptor potential channel expression, and de 
Freitas and Hamblin proposed a mechanism of PBM 
that activated ROS, cyclic adenosine monophosphate 
(cAMP), NO, and Ca2+, leading to activation of tran-
scription factors [22].

The inhibition of Na, K-ATPase by ouabain is also 
well-known to be cytotoxic to a variety of normal cells 
through decreased mitochondrial membrane potential 
and caspase activation [39]. We observed mitochondrial 
membrane potential using TMRE staining and found 
that PBM treatment could rescue the mitochondrial 
membrane potential degeneration by ouabain. Apoptotic 
features has been known to include phosphatidylser-
ine translocation, caspase activation, Ca2+ increase, and 
the disruption of the plasma membrane which were due 
to MAPK activation through a Na, K-ATPase/Src/Ras 
signaling [2, 37]. Our present study suggested that PBM 
blocked the elevation of Na, K-ATPase/Src/Ras signaling 
and the decrease of mitochondrial membrane potential.

Conclusion
PBM inhibited the decline of ouabain-induced cell viabil-
ity, and this result was due to modulate of Na, K-ATPase 
α-subunit and intracellular Ca2+ increase. The activa-
tion of Na, K-ATPase, Src, and MAPK and the decrease 
of mitochondrial membrane potential by ouabain were 
restored by PBM. In conclusion, we suggest that neu-
ronal cell recovery by PBM through Na, K-ATPase/Src/
MAPK regulation is a potential therapeutic tool for Na, 
K-ATPase targeted neuronal diseases.

Additional files

Additional file 1. The raw data of western blot. NaK-ATPase, ERK, and JNK 
in Fig. 5a, c.

Additional file 2. The raw data of western blot. p-NaK-ATPase and p-p38 
in Fig. 5a, c.

Additional file 3. The raw data of western blot. p-SRC and β-actin in 
Fig. 5a, c.

Additional file 4. The raw data of western blot. Ras, ERK, and p38 in 
Fig. 5a, c.

Additional file 5. The raw data of Na, K-ATPase activity analysis in Fig. 4a, b.

Additional file 6. The raw data of ADP/ATP ratio analysis in Fig. 4c, d.
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