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Using satellite data on deforestation and weather in Malawi and
linking those datasets with household survey datasets, we esti-
mate the causal effect of deforestation on access to clean drinking
water. In the existing literature on forest science and hydrol-
ogy, the consensus is that deforestation increases water yield.
In this study, we directly examine the causal effect of deforesta-
tion on households’ access to clean drinking water. Results of the
two-stage least-squares (2SLS) with cluster and time fixed-effect
estimations illustrate strong empirical evidence that deforesta-
tion decreases access to clean drinking water. Falsification tests
show that the possibility of our instrumental variable picking
up an unobserved time trend is very unlikely. We find that a
1.0-percentage-point increase in deforestation decreases access to
clean drinking water by 0.93 percentage points. With this esti-
mated impact, deforestation in the last decade in Malawi (14%)
has had the same magnitude of effect on access to clean drinking
water as that of a 9% decrease in rainfall.

deforestation | water access | clean drinking water | Malawi | Africa

Sub-Saharan Africa has experienced rapid deforestation of
about 3.4 million ha/y between 2000 and 2010 (1). Malawi

has the highest deforestation rate in sub-Saharan Africa. In 2016,
the Malawian government started to deploy military soldiers to
combat illegal tree cutting. The government of Malawi estimated
that the annual rate of deforestation in Malawi is 1.0–2.8% (2),
and our estimation shows that from 1990 to 2010, the ratio of
forest area decreased from 51% to 33% (Fig. 1 and SI Appendix,
Table S3).

Such deforestation can affect the welfare of people in several
dimensions. Recently, there has been increasing international
interest in the concept that deforestation has a direct negative
impact on access to clean drinking water. In the 2030 Agenda
of Sustainable Development Goals (SDGs), the topic “forests
and water” gained more prominence in the political agenda
(3). Protection and restoration of forests were included among
the targets required to achieve the United Nations Sustainable
Development Goals (SDG 6: Clean Water and Sanitation). SDG
15 explicitly indicates the value of forests with reference to the
attainment of clean drinking water. In rural areas of Malawi,
where 85% of the households are located, only 11% had access
to community- or individual-level piped water, and 35% used
unprotected wells or stream water as a source of drinking water.
Thus, the SDGs’ agenda of protection and reforestation of for-
est area for access to clean drinking water has an important
implication for policymakers.

On the other hand, literature on the effect of deforesta-
tion on water in forest science and hydrology is contrary to
the general perception (4). Reviewing 94 studies, Bosch and
Hewlett (5) summarize that an increase in forest area decreases
the quantity of water in the streamflow. Reviewing 137 cases,
Andréassian (6) summarizes that deforestation results in an
increase in water yield, and reforestation results in a decrease.
Reviewing 308 study cases, Filoso et al. (7) summarize that refor-
estation decreases the total annual water yield in 80% of the
cases. These counterintuitive results of deforestation increasing

the annual water yield are explained in the literature by the fact
that trees themselves consume water, which is evaporated in the
air, resulting in a decrease in the streamflow.

However, an increase in the quantity of water in the stream-
flow is not equal to the increased availability of water for human
consumption. Deforestation decreases soil infiltration of water
(7) and increases soil erosion (8, 9). A lower level of soil infil-
tration and a higher level of soil erosion cause higher flux of
sediment and a higher level of turbidity. This results in lower
water quality (10–14) and an increase in the cost of drinking-
water treatment (15–17), which imposes a serious constraint on
the installation and maintenance of a water system for local com-
munities in low-income countries such as Malawi. Thus, whether
or not deforestation decreases access to clean drinking water is
an open question.

Given the potential importance of the effect of deforestation
on access to clean drinking water as well as the lack of studies
on this topic, in this study, we directly examine the causal effect
of deforestation on access to clean drinking water (such as water
from piped water) in lieu of less clean water (such as water from
unprotected wells and unprotected streams) in the rural areas of
Malawi from 2000 to 2010, using satellite images, microsurvey
data, population data, and weather data.

We believe that we contribute to the previous literature in two
aspects. First, this study directly examines the effect of deforesta-
tion on households’ access to clean drinking water in lieu of less
clean water. Given the importance of access to clean drinking

Significance

In the existing literature on forest science and hydrology, the
consensus is that deforestation increases water yield. In this
study, instead of focusing on water yield, we directly exam-
ine the effect of deforestation on households’ access to clean
drinking water in Malawi while controlling various other fac-
tors. Our empirical results show that a 1.0-percentage-point
increase in deforestation decreases access to clean drinking
water by 0.93 percentage points. With this estimated impact,
deforestation in the last decade in Malawi (14%) has had the
same magnitude of effect on access to clean drinking water
as that of a 9% decrease in rainfall. This suggests that the
effect of deforestation on access to clean drinking water is
not trivial.
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Fig. 1. Deforestation of Malawi based on satellite images during 1990–
2010.

water in improving living standards in developing countries,
our study has first-order policy importance. Second, our study
analyzes the causal effect of deforestation on access to clean
drinking water.

Our paper is related to several other studies. First, a large
body of literature documents several potential sources of defor-
estation in developing countries, including Malawi, such as the
expansion of cropland; food and land shortages, which are highly
associated with a high population growth rate; fuelwood depen-
dency; and weak tenure security of forestland (18–22). Second,
a growing body of recent economics literature has started to
analyze the environment’s effect on health in developing coun-
tries (23–26). Our study indicates a possible pathway from
deforestation to health outcomes.

Results
Main Results. Table 1 describes various sources of drinking water
in Malawi’s rural areas where 85% of the population lives. SI
Appendix, Background explains how the water system is main-
tained in these areas. In our satellite dataset, the ratio of forest
area decreased from 39% to 33.4% or by 14.3% (= 5.6/39) at the
national level (SI Appendix, Table S3).

SI Appendix, Table S4 shows the summary statistics of the main
variables used in our analysis. The dataset indicates that 38% of
households used unsafe water as their source of drinking water
in 2000. In 2010, this percentage decreased to 17%. At clusters
that are used for the analysis, the ratio of forest area decreased
from 27.7% in 2000 to 22.2% in 2010. SI Appendix, Fig. S2 shows
a histogram of changes in the ratio of forest area from 2000 to
2010. Although the mean of changes in the ratio of forest area is
just 5.5 percentage points, there is a huge variation in the changes
in this ratio.

Table 2 presents the results of our two-stage least-squares
(2SLS) estimation with the cluster and time fixed effects. Top
and middle sections in Table 2 show the first- and second-stage
estimation results, respectively. Our instrumental variable is the
latitude × time dummy. Bottom section lists the control vari-
ables that apply to both the first- and second-stage estimations.
All columns include the cluster fixed effect, time fixed effect, log
of rainfall, (cluster-level) ratio of forest area in the 1990 × time
dummy, and cluster-level average of the floor material dummy
in the 2000 × time dummy as control variables. Bottom section
lists other control variables that apply to both first- and second-
stage estimations. Temperature is the temperature in July and
November. Demographic characteristics include the size of each
household, year of schooling, and gender of the head of the
household. Household wealth includes information on the floor
material and bicycle and radio ownership.

The Kleibergen–Paap rank in Table 2 indicates the
Kleibergen–Paap rank Wald statistics, and it examines whether
our instrumental variable is weak. The Kleibergen–Paap rank

Wald statistics show that our instrumental variable is not
weak even after the inclusion of many covariates as well as
cluster-level initial values × time dummy as control variables.
Note that our instrumental variable is the latitude × time
dummy, and a cluster in the northern region has lower latitude
than a cluster in the southern region because Malawi is in
the southern hemisphere. Top section of Table 2 shows that a
cluster with higher latitude (southern region) has a time trend
of reforestation. Thus, a cluster with lower latitude (northern
region) has a time trend of deforestation, which is consistent
with the past pattern of deforestation (SI Appendix, Tables S1
and S3) and our prediction. In Table 2, top section, column 1
shows that if a cluster’s location is 1◦ more north, the forest
area decreases further by 3 percentage points over time than
other clusters. In Table 2, columns 2–4 show that the inclusion
of other control variables does not affect the first-stage results.

Table 2, middle section shows our main results regarding the
causal effect of the ratio of forest area on access to clean drink-
ing water. Column 1 shows that a 1-percentage-point increase in
the forest ratio increases the probability of access to clean drink-
ing water by 1.06 percentage points, and a 1% increase in the
amount of rainfall increases the probability of access to clean
drinking water by 0.61 percentage points. Columns 2–4 show that
the estimated coefficients of the ratio of forest area are quite
stable with the inclusion of these control variables. Including
all control variables, Table 2, middle section, column 4 shows
that a 1-percentage-point increase in the forest ratio increases
the probability of access to clean drinking water by about 0.93
percentage points, and a 1% increase in rainfall increases the
probability of access to clean drinking water by 0.57 percent-
age points. The estimated coefficient of log of rainfall measures
the total effect of log of rainfall on access to clean drinking
water, including the effect of a change of the quality of water at
watersheds. A statistically and economically significant estimated
coefficient of log of rainfall suggests that local weather conditions
matter for access to clean drinking water.

SI Appendix, Table S6 shows the results of the reduced-
form estimation, which displays the estimated coefficient of our
instrumental variable (latitude × time dummy). The estimated
coefficients are stable with different specifications. SI Appendix,
Table S6 shows that a cluster located 1◦ south has a 2.8 per-
centage points higher time trend on the probability of accessing
clean drinking water than other clusters. On the other hand,
the first-stage regression shows that such a cluster has a 3 per-
centage points higher time trend of the forest area ratio. Thus,
a 1-percentage-point higher forest area ratio leads to about
0.93 (= 2.8/3) percentage points higher probability of accessing
clean drinking water.

Table 1. Share of each rural population’s source of drinking
water in Malawi

Water source 1998, % 2008, %

Clean drinking water
Piped inside dwelling unit 0.62 0.67
Piped outside dwelling unit 2.91 1.54
Communal stand pipe 8.08 6.69
Protected well 11.89 6.39
Borehole 29.71 53.94
Spring 1.29 0.59

Unsafe drinking water
Unprotected well 28.69 20.21
Stream/river 14.86 7.85
Pond/lake/dam 1.70 0.79
Others 0.24 1.32

Total 100.00 100.00

Data from refs. 34 and 35; calculated by the authors.

8250 | www.pnas.org/cgi/doi/10.1073/pnas.1814970116 Mapulanga and Naito

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814970116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1814970116


EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S

SU
ST

A
IN

A
BI

LI
TY

SC
IE

N
CE

Table 2. Effect of the ratio of forest area (7.5-km radius) on access to clean drinking water (two-stage least-square
estimation)

Regression stage 1 2 3 4

First-stage regression
Dependent variable Ratio of forest area

Latitude × time dummy 0.0297*** (0.00441) 0.0305*** (0.00445) 0.0305*** (0.00444) 0.0305*** (0.00444)
Log of rainfall −0.0987** (0.0421) −0.0919** (0.0419) −0.0922** (0.0419) −0.0925** (0.0418)
Kleibergen–Paap 45.45 46.95 47.16 47.23
R2 0.948 0.949 0.949 0.949

Second-stage regression
Dependent variable Clean drinking water dummy

Ratio of forest area 1.063** (0.494) 0.959** (0.465) 0.922** (0.455) 0.932** (0.453)
Log of rainfall 0.610*** (0.169) 0.569*** (0.163) 0.577*** (0.160) 0.566*** (0.159)
R2 0.252 0.256 0.263 0.266

Control variables
Log of population Yes Yes Yes
Temperature Yes Yes Yes
Demographic characteristics Yes Yes
Household wealth Yes
N 9,682 9,682 9,682 9,682

The clustering robust standard errors are in parentheses, assuming that the error terms are correlated within each cluster × year
cell. The endogenous variable is the ratio of forest area and is instrumented by the latitude × time dummy. Top and middle sections
display the results of the first- and second-stage regressions, respectively. All columns in top and middle sections include the cluster
fixed effect, time fixed effect, log of rainfall, and cluster-level initial values× time dummy as control variables. Bottom section displays
the specification of additional control variables. * indicates significant at 10%; ** indicates significant at 5%; *** indicates significant
at 1%.

Fig. 2 shows the graphical relationship between the first-stage
estimation (Fig. 2A) and the reduced-form estimation (Fig. 2B).
In Fig. 2A, the vertical axis measures the adjusted difference of
the ratio of forest area, and the horizontal axis is the adjusted lat-
itude. In Fig. 2B, the vertical axis is the adjusted difference of the
average of the clean drinking-water access dummy between 2000
and 2010. The adjusted latitude is the residual from the regres-
sion of the latitude on the difference of the log of the amount of
rainfall. The vertical axes are measured in a similar way.

SI Appendix, Table S5 shows the estimation results of the ordi-
nary least-squares estimation. The estimated coefficients in SI
Appendix, Table S5 are 1/10th of the estimated coefficients of
Table 2, and they are statistically insignificant. The exogeneity
test rejects the null hypothesis that the ratio of forest is exoge-
nous. Thus, SI Appendix, Table S5 shows the importance of
controlling the endogeneity of the ratio of forest area.

SI Appendix, Tables S7 and S8 examine the sensitivity of our
results by controlling the ratio of cropland, cropland intensity,
and the ratio of the wetland. SI Appendix, Tables S7 and S8

show that the estimated coefficients of the ratio of forest area
increase slightly, and the results of Table 2 are strengthened.
SI Appendix, Table S9 examines whether our results are sensi-
tive to the exclusion of the initial cluster-level characteristics. SI
Appendix, Table S9 shows that our results are not sensitive to
the initial cluster-level characteristics. In SI Appendix, Table S10,
we make a circle with a radius of 12.5 km, instead of 7.5 km,
at each cluster; calculate the forest area ratio; and conduct a
2SLS estimation. SI Appendix, Table S10 shows that the esti-
mated coefficients are quite similar to the estimated coefficients
in Table 2, which demonstrates the robustness of the results
in Table 2.

Mechanism. In this study, as we discussed in the Introduction, we
hypothesize that deforestation decreases the capacity of soil infil-
tration of water, increases soil erosion, and decreases the quality
of water at the source. We justify this hypothesis based on the fact
that most water systems in rural areas of Malawi are developed
and maintained by local communities. Thus, we should expect
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Fig. 2. (A and B) Graphical presentation of the (A) first-stage regression and (B) reduced-form regression, after controlling for the effect of control variables.
A and B show positive relationships between the adjusted latitude and adjusted difference of the forest area during the period 2000–2010 and the adjusted
latitude and adjusted difference of the cluster-level average access to clean drinking water during the period 2000–2010. Note that slopes of the two fitted
lines (0.03 and 0.028) are quite similar, although they look different due to the difference in the range of the vertical axes in A and B. In A and B, the axes
range from −0.4 to 0.2 and from −1 to 1, respectively. Also note that higher variance of B is due to the nature of the reduced form. The error term of the
reduced form includes the error term of the first-stage equation.
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Table 3. Effect of the ratio of forest area on access to each
source of drinking water

Dependent variable Estimate (SE) R2 N

Clean water
Piped water into dwelling 0.0313 (0.0329) 0.114 9,682
Piped water into yard −0.131 (0.0828) 0.156 9,682
Piped water at public tap 0.934*** (0.300) 0.321 9,682
Protected well/tube 0.101 (0.431) 0.279 9,682

Less clean water
Unprotected well −0.585** (0.228) 0.243 9,682
River/pond/lake/dam −0.321 (0.420) 0.193 9,682
Unprotected spring −0.0342 (0.0642) 0.056 9,682

Details are in Table 2 legend. The dependent variable in each row is a
dummy variable indicating whether a household uses the corresponding
source of water as drinking water. The column of the estimated coefficient
shows the estimated coefficient of the ratio of forest area and its SE in the
two-stage least-squares regression. All specifications include all control vari-
ables (cluster fixed effect, time fixed effect, log of rainfall, log of population,
temperature in July, temperature in November, demographic characteris-
tics, household wealth, and the cluster-level initial value × time dummy).
* indicates significant at 10%; ** indicates significant at 5%; *** indicates
significant at 1%.

that when deforestation progresses, the use of piped water will
decrease and the use of unprotected wells, rivers, and ponds will
increase, because a local piped water system needs high-quality
water sources, whereas an unprotected well, river, or pond
does not.

Table 3 shows the effect of the ratio of forest area on access to
each source of drinking water in the 2SLS estimation. In Table 3,
each row shows the estimation result of a 2SLS regression with
a different dependent variable. Each dependent variable is a
dummy variable indicating the source of drinking water. For
example, the row of piped water at public tap presents the esti-
mation result when the dependent variable is a dummy variable
indicating whether the household uses piped water at a public
tap as the source of drinking water. The column for the estimated
coefficient shows the estimated coefficient of the forest area ratio
in the 2SLS regression. Table 3 shows when the ratio of the for-
est area increases by 1 percentage point, access to piped water
at public taps increases by 0.93 percentage points, and the use
of unprotected wells as the source of drinking water decreases
by about 0.59 percentage points. The effects on the use of the
river/pond/lake/dam and unprotected springs are negative as the
hypothesis predicted, although they are statistically insignificant.
Table 3 is consistent with the idea that when the ratio of forest
area increases, the quality of the source of a piped water system
that connects to a public tap improves; as a result, people can use
piped water at a public tap instead of an unprotected well as the
source of drinking water.

Discussion. Studies in forest science and hydrology often indicate
that the relationship between land use and the quality of water is
complex (4, 7, 27). Thus, readers might argue that many factors
that are not included in our model are correlated with both the
ratio of forest area and the accessibility to clean drinking water
and that our estimated coefficients of the ratio of forest area are
biased. However, our model includes the time fixed effect and
the cluster fixed effect. Thus, the national-level time trend and
the effect of time-invariant cluster-specific variables are already
controlled. By applying 2SLS, we also prevent the possibility that
the (time-variant) error term, the effect of time-variant variables
that are not modeled in Eq. 1, is correlated with the ratio of
the forest area and that our estimated coefficients of the ratio
of forest area are biased.

Note that the instrumental variable in our 2SLS is the
latitude × time dummy and we include the cluster-level initial

values × time dummy as control variables. Thus, essentially in
our 2SLS estimation, we compare clusters with different latitudes
but the same initial characteristics, assuming that those clusters
have the same time trend on access to clean drinking water if the
rates of deforestation are the same.

However, some might argue that a cluster with higher lati-
tude, that is, a cluster in the southern areas, has a time trend
of higher infrastructure development, even after controlling the
initial cluster-level characteristics and other covariates. In such
a case, our 2SLS estimation might pick up not only the effect of
the ratio of forest area but also the fact that a cluster with higher
latitude has a time trend of higher infrastructure development.

To determine whether a cluster with higher latitude has a time
trend of higher infrastructure development, we conduct a falsifi-
cation test based on the reduced-form regression. In this test, we
pick up a variable that is strongly correlated with development
but is not directly affected by the forest ratio. Then, we regress
this variable on the instrumental variable and control variables.
The estimated coefficient of the instrumental variable showing
a significant positive sign indicates that, in Table 2, our instru-
mental variable picks up the effect of urban development since
the ratio of forest area should not affect such a variable. For the
first falsification test, we use a dummy variable indicating access
to electricity as a dependent variable because the ratio of forest
area should not directly affect the use of electricity. For the sec-
ond and third tests, we use the radio ownership and the quality
of the respondent’s home as dependent variables. SI Appendix,
Data Sets discusses how we measure the quality of a home. We
exclude information on household wealth from the control vari-
ables in this falsification test, since the dependent variables are
related to wealth.

SI Appendix, Table S11A shows the estimated coefficients of
the instrumental variable in our first falsification test. In SI
Appendix, Table S11A, the absolute value of the estimated coef-
ficient of the instrumental variable is 1/10th of the estimated
coefficient of the effect of the instrumental variable on access
to clean drinking water (SI Appendix, Table S6). The sign of
the estimated coefficients is the opposite of the signs in SI
Appendix, Table S6, and the estimated coefficients are statis-
tically insignificant. Thus, it is unlikely that our instrumental
variable is picking up the higher time trend of development in
clusters with higher latitude. SI Appendix, Table S11B, which
uses the radio ownership as a dependent variable, shows a similar
pattern.

SI Appendix, Table S11C shows that the effect of the instru-
mental variable is again negative and statistically insignificant.
SI Appendix, Table S11A–C suggests that it is unlikely that the
southern region has a time trend of higher development. We can
thus safely conclude that it is unlikely that a positive effect of the
forest ratio on access to clean drinking water in our 2SLS estima-
tion is the consequence of the southern region having a higher
time trend of development.

In summary, all robustness checks and falsification tests show
that our estimated results are robust and consistent. Thus, it is
very unlikely that the estimated coefficients of the ratio of forest
area in our 2SLS pick up other unobserved effects.

Conclusion
In this study, we directly examine the causal relationship between
deforestation and access to clean drinking water using the defor-
estation and household-level water access data in Malawi. We
find that a 1-percentage-point decrease in the forest area in
a local area decreases the probability of households’ access to
clean drinking water in lieu of less clean drinking water by 0.93
percentage points.

Our analysis has two implications. First, it shows that pro-
tecting the forest area and fighting against illegal tree cutting
will benefit local communities. Since the local residents often
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earn income by selling charcoal during the off-harvest season
and the forest area is quite diverse, the community’s understand-
ing of the merit of forest protection as well as participation in
protecting the forest is essential. Our study shows the benefit of
forest protection for local residents in Malawi.

Second, during 2000–2010, the ratio of forest area in Malawi
decreased by 14% or by 5.6 percentage points (SI Appendix, Table
S3). This implies that the probability of accessing clean drinking
water decreases by 5.2 (= 5.6 × 0.93) percentage points. On the
other hand, our regression shows that a 1% decrease in rainfall
decreases access to clean drinking water by 0.57 percentage points.
Thus, to compensate for a 5.6-percentage-point decrease in the
forest ratio, Malawi needs about a 9 (= 5.2/0.57)% increase in
rainfall. In other words, when the amount of rainfall decreases
by about 9% due to a change in the weather pattern, this effect
can be offset, for example, by preventing a 5.6-percentage-point
decrease in the forest area. This calculation shows that the effect of
deforestation on access to clean drinking water is not trivial and
has important policy implications, for example, to prepare for a
possible change of weather patterns in the future.

Materials and Methods
Datasets. This study uses satellite data of the land cover and land use of 2000
and 2010, data of the Demographic Health Survey (DHS) of 2000 (28) and 2010
(29) with GPS location information, weather data, and population data.

The DHS datasets report geographical coordinates of the primary sam-
pling unit, called a cluster. Each cluster is defined based on the census
enumeration areas. To apply the panel data analysis at the cluster level, we
match clusters in DHS 2000 to clusters in DHS 2010, such that the distance
between a cluster in DHS 2000 and a matched cluster in DHS 2010 is less
than 5 km. Among the matched pairs of clusters, we select cluster pairs in
which a cluster at year 2000 is in a rural area. After matching and selection,
171 pairs of clusters are selected. The 171 clusters in DHS 2000 have 4,378
households, and the 171 clusters in DHS 2010 have 5,304 households.

The forest ratio in each cluster is obtained from satellite images of land
use and land cover maps from the Ministry of Natural Resources, Energy and
Mining in Malawi. We create circles with 7.5-km radius using the cluster’s
GPS coordinate as the center of each circle and calculate the share of the
forest area using the 2000 and 2010 satellite images. For robustness checks,
we create circles with 12.5-km radius and calculate the ratio of forest area
in each circle. After calculating this ratio, we conduct the same regression
for robustness checks.

Regarding information on access to clean drinking water, the DHS
datasets have information on a household’s source of drinking water. The
DHS’s final report classifies the sources of drinking water into improved
water sources and unimproved water sources. Following this DHS definition,
we classify the sources of drinking water as clean drinking water or unsafe
water if they are classified in the DHS as improved or unimproved, respec-
tively. In SI Appendix, Data Sets, we explain how each source of water is
classified. For the population, temperature, and rainfall datasets, we use the
Gridded Population of the World (GPW) v4 [Center for International Earth
Science Information Network (CIESIN)] (30), WorldClim (31), and Climate
Hazards Group InfraRed Precipitation with Station data 2.0 (32), respec-
tively. SI Appendix, Data Sets describes how each variable is constructed.
All datasets and Stata code used in this study are available at ref. 33.

Estimation Model and Identification Strategy. To estimate the causal effect of
deforestation on access to clean drinking water, we estimate the equation

Waterijt = β0 + β1RatioForestjt + β2X1ijt

+ β3X2j0×Dt +α2t +α2j + uijt , [1]

where Waterijt is a dummy variable indicating whether household i in clus-
ter j at time t has access to clean drinking water. RatioForestjt is the ratio of
the area covered by the forest to the total area of the DHS cluster j at time t.

α2t is a time fixed effect, and α2j is a cluster fixed effect. X1ijt is a vector of
control variables that directly affects access to clean drinking water. At the
household level, X1ijt includes the household assets, educational level of the
head of the household, number of household members, and gender of the
head of the household. At the cluster level, X1ijt includes the log of annual
rainfall, average temperatures of the hottest and coldest months, and log of
the population in each cluster. X2j0 is a vector of the cluster-level values at the
initial period, and Dt is a time dummy. X2j0×Dt allow clusters with different
initial values to have different time trends. uijt is the error term that explains
the variation of Waterijt that cannot be explained by the listed explanatory
variables of Eq. 1. The model needs the error term because there are many
factors that are not observable to researchers but affect the access to clean
drinking water. When this error term is correlated with RatioForestjt through
omitted variables or other confounders, we have the endogeneity problem.

To solve the endogeneity problem of RatioForestjt , we use a 2SLS estima-
tion. As the first-stage equation of the 2SLS estimation of Eq. 1, we estimate
the following first-stage equation,

RatioForestjt = γ0 + γ1Latitudej ×Dt

+ γ3X1ijt + γ4X2j0×Dt +α1t +α1j + εijt , [2]

where α1t is a time-fixed effect, and α1j is a cluster-fixed effect. Dt is a time
dummy and εijt is the error term. The excluded instrumental variable is the
latitude × the time dummy, Latitudej ×Dt . We assume that this instrumen-
tal variable is uncorrelated with uijt . This is the key identifying assumption
of our 2SLS.

This key identifying assumption implies that, after controlling the effect
of covariates, clusters with different latitudes have the same time trend
regarding access to clean drinking water if changes in forest areas are the
same in those different clusters (SI Appendix, Eqs. S3 and S4). To be fully
flexible in our estimation, we include the cluster-level initial value such as
the 1990s level of the forest ratio and the cluster-level average of the good
floor material dummy in 2000× time dummy as additional control variables.
Inclusion of these variables allows us to assume that different clusters with
the same latitude have different time trends if those initial values are dif-
ferent in those clusters. In this estimation strategy, we essentially compare
the change in access to clean drinking water of different clusters with differ-
ent latitudes that have the same initial characteristics, such as (cluster-level)
population, the 1990s forest area ratio, and wealth level in the initial year.

Historically, in Malawi, the northern region has a higher deforestation rate,
as is shown in SI Appendix, Table S1 and Fig. 1, despite the fact that only about
10% of the population lives in this region, as indicated in SI Appendix, Table
S2. This regional difference in deforestation results from the fact that moni-
toring and preventing illegal tree cutting in the northern region is not easy
because of the small population density, whereas a higher population density
in the southern and central regions makes illegal tree cutting more difficult.
Furthermore, historically, before the independence of Malawi, the majority
of the population lived in the southern region, and easily accessible forests
were already cut in that region before 1970. Given the deforestation trend in
Malawi during 1972–1992, it is reasonable to assume that such a pattern per-
sisted during 2000–2010. SI Appendix, Table S3 supports this assumption and
shows that this is indeed the case. In addition, the first-stage regression results
of the top section in Table 2 show that there is a strong relationship between
the latitude and the rate of deforestation.

Regarding the SE calculation, we apply the clustering robust SEs while
assuming that the error terms are correlated within each cluster× year cell.
SI Appendix, Standard Error Calculation discusses the appropriateness of this
SE calculation.
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