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Abstract

Introduction: Multiple genetic mechanisms have been identified in EGFR-mutant lung cancers 

as mediators of acquired resistance (AR) to EGFR tyrosine kinase inhibitors (TKI) but many cases 

still lack a known mechanism.
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Methods: To identify novel mechanisms of AR, we performed targeted large panel sequencing 

on 374 consecutive patients with metastatic EGFR-mutant lung cancer, including 174 post-TKI 

samples of which 38 patients also had a matched pre-TKI sample. Alterations hypothesized to 

confer AR were introduced into drug-sensitive EGFR-mutant lung cancer cell lines (H1975, 

HCC827, PC9) using CRISPR-Cas9 genome editing. MSK-LX138cl, a cell line with EGFR 
ex19del and PJA2/BRAF fusion, was generated from an EGFR TKI-resistant patient sample.

Results: We identified 4 patients (2.3%) with a BRAF fusion (3 AGK/BRAF, 1 PJA2/BRAF) in 

samples obtained at AR to EGFR TKI (2 post-erlotinib; 2 post-erlotinib and post-osimertinib). 

Pre-TKI samples were available in 2/4 patients and both were negative for BRAF fusion. Induction 

of AGK/BRAF fusion in H1975 (L858R+T790M), PC9 (ex19del) and HCC827 (ex19del) cells 

increased phosphorylation of BRAF, MEK1/2, ERK1/2 and STAT3, and conferred resistance to 

growth inhibition by osimertinib. MEK inhibition with trametinib synergized with osimertinib to 

block growth. Alternately, a pan-RAF inhibitor as a single agent blocked growth of all cell lines 

with mutant EGFR and BRAF fusion.

Conclusion: BRAF fusion is a mechanism of AR to EGFR TKI in approximately 2% of 

patients. Combined inhibition of EGFR and MEK (with osimertinib and trametinib) or BRAF 

(with a pan-RAF inhibitor) are potential therapeutic strategies that should be explored.
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INTRODUCTION

Long term clinical benefits of EGFR tyrosine kinase inhibitors (EGFR TKI) in EGFR 
mutant non-small cell lung cancers remain limited by the development of drug resistance 

[1]. The most common mechanism of resistance to first and second generation EGFR TKIs, 

the EGFR T790M mutation (60%), can be targeted successfully with third generation drugs 

such as osimertinib [2]. Recently, osimertinib has been approved as first line therapy for 

EGFR mutant lung cancer [3]. As expected, disease progression due to acquired resistance 

to osimertinib has emerged, with the most common alteration described to date being the 

EGFR C797S mutation [4]. Activation of parallel signaling pathways (amplification of 

HER2 and MET) or of downstream signaling (mutations in KRAS, PIK3CA, and BRAF) 

has also been shown to induce resistance to osimertinib and other EGFR TKIs [5]. Several 

acquired gene rearrangements, including fusions involving ALK, BRAF, FGFR3, NTRK1 
and RET have recently been reported as possible mechanisms of resistance to EGFR TKI 

[6–11]. Clinically, a combination of an EGFR TKI with a drug targeting either ALK or RET, 

has been shown to be effective in lung cancer patients with an EGFR mutation and the 

respective gene fusion. However, only RET or FGFR3 fusions have been experimentally 

proven to confer resistance to EGFR inhibitors in EGFR-mutant lung cancers [7, 12, 13].

Activating BRAF fusions typically occur at a very low frequency across a wide variety of 

cancers with the exception of pilocytic astrocytomas [9, 14]. BRAF rearrangements are 

divided into N-terminal deletions (NTD), kinase domain duplications (KDD) and BRAF 
fusions. Overall, BRAF alterations are present in 4.4 % NSCLC, and rearrangements 
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represent 4.3 % of all alterations [10]. Rearrangements retain the BRAF kinase domain at 

the 3’ end, while lacking the N-terminal inhibitory domain. Due to the lack of the N-

terminal BRAF inhibitory domain, rearrangements result in constitutive dimerization of 

RAF proteins independently of RAS activation [15], thereby activating downstream MAP 

kinase signaling.

Here, we report 4 cases of EGFR mutant NSCLC with concurrent expression of a BRAF 
fusion and provide functional data supporting BRAF fusions as a mechanism of acquired 

resistance to EGFR therapy in EGFR mutant lung adenocarcinomas. In addition, we present 

data supporting treatment strategies focusing on targeting RAF with pan-RAF inhibitors.

METHODS

Generation of AGK/BRAF fusion using CRISPR/Cas9 in EGFR mutant lung cancer cell lines

gRNA design and cloning.—In order to faithfully model a BRAF fusion, gRNAs were 

designed to generate a fusion linking AGK exons 1–2 with BRAF exons 8 – 18. Specifically, 

four guide RNAs (gRNAs) were designed (Supplemental table 1) to target the intron 

between AGK exons 2 and 3 or BRAF exons 7 and 8 and selected using http://

crispr.mit.edu/. The placement of these gRNAs aimed to minimize splicing interference by 

being positioned at least 50 bp-250 bp from the splice site. gRNA cloning was performed 

according to previously published protocols [16]. 1 μg px458 (containing Cas9 and GFP 

cDNAs) was digested with 1 μl FastDigest Bpil, 1 μl fast AP, 2 μl 10× FastDigest buffer 

diluted in 6 μl water at a final volume of 20 μl at 37°C for 45 min. The resulting DNA was 

cleaned up with PCR clean up kit to a final concentration of 15–30 ng/μl. 1 μl of each pair of 

gRNA was then phosphorylated and annealed with 1 μl 10× T4 ligation buffer, 0.5 μl T4 

polynucleotide kinase and 6.5 μl RNAse/DNAse-free water to a final volume of 10 μl, in a 

Biorad C1000 Touch thermocycler for 30 min at 37°C, then decrements in temperature from 

95°C to 25°C in 5 min intervals. Annealed gRNAs were ligated into px458 using 50 ng of 

vector, 1.5 μl of annealed gRNAs (1:100 dilution), 5 μl of quick ligase buffer, 1 μl quick 

ligase with addition of RNAse/DNAse-free water to a final volume of 10 μl, at room 

temperature for 30 min. The annealed and ligated plasmids were then transformed using 

TOP10 chemically competent E. coli. The plasmid DNA was extracted and insertion of 

gRNAs in px458 was confirmed by Sanger sequencing.

Validation of gRNAs.—To test the efficacy of fusion generation, human bronchoepithelial 

cells (HBEC) (plated at a density of 500,000 cells/well in 6-well plates) were transfected 

with each possible pair of gRNAs with 1 μg of each CRISPR/Ca9 construct. After 48 h, GFP 

was readily visible, and after 72 h each pool of cells was harvested for RNA extraction, 

cDNA synthesis and RT-PCR to detect the fusion mRNA. The pool of cells containing 

BRAF gRNA #4 and AGK gRNA #4 generated detectable fusion mRNA. This pairing 

(BRAF gRNA #4 and AGK gRNA #4) was transfected into H1975, HCC827 and PC9 cells 

plated at a density of 1,500,000 cells/10 cm dish with 7.5 μg of each plasmid and fusion 

mRNA detected as described above.

Clonal selection.—Transfected cells were maintained in growth media supplemented 

with 0.5 μM osimertinib to select for a drug-resistant population. The resistant cells were 
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then replated at a density of 500 cells/10 cm dish to isolate single-cell clones. Colonies were 

then picked with cloning discs and replated in a 96-well plate for expansion in RPMI 

containing 10% FBS, 1% antibiotic/antimycotic and 0.5 μM osimertinib. Once clones began 

to proliferate readily, cells were serially moved to larger containers and then subjected to RT-

PCR for fusion detection.

Generation of BRAF fusion constructs.—The cDNA encoding PJA2/BRAF fusion 

was amplified from MSK-LX138cl cells by PCR and cloned into pENTR/TOPO vector. The 

cDNA encoding AGK/BRAF fusion was generated by first amplifying the AGK and BRAF 
fragments from HEK-293T cells and then assembling the two pieces into Kpn I -EcoRV-

digested pENTR1A vector by Gibson assembly. These BRAF fusion cDNAs were then 

subcloned into pLX303 lentiviral transfer vector. The primer sequences used for plasmid 

construction are shown in Supplemental Table 2. All constructs were confirmed by DNA 

sequencing. Lentiviruses harboring the two fusions were generated using HEK-293T cells 

and then used to infect cells the lung cancer lines. Cells stably expressing the cDNAs were 

selected with blasticidin (20 μg/mL) for 10 days.

shRNA infection and BRAF knockdown.—shRNAs (TRCN0000195066 – Sh2, 

TRCN0000195609 – Sh3 and TRCN0000196844 – Sh1) were obtained from Sigma-Aldrich 

(St. Louis, MO). Lentiviruses were generated using HEK-293T cells and were used to infect 

cells. Cells were plated in 6-well plates at a density of 150,000–500,000 cells/well and then 

infected 24 h later with viral supernatant (MOI=7) expressing BRAF shRNAs or non-

targeting sequence, mixed with 10 μg/mL polybrene. Infected cells were selected with 5–10 

μg/mL puromycin then replated for viability testing with osimertinib or used to detect BRAF 
by RT-qPCR.

RESULTS

Co-expression of EGFR mutation and BRAF fusions in lung cancer samples refractory to 
EGFR TKI.

We performed targeted large panel sequencing using the MSK-IMPACT assay [14, 17] on 

374 consecutive patients with metastatic EGFR mutant lung cancers, including 200 tested 

prior to receiving an EGFR TKI, 136 tested after progression on an EGFR TKI, and 38 

patients with both types of samples. We identified four patients (4/174; 2.3%) with disease 

progression on EGFR TKI (two on erlotinib; two on erlotinib, followed by osimertinib) with 

an EGFR mutation and a BRAF fusion (3 AGK/BRAF and 1 PJA2/BRAF). In one patient 

for which paired pre- and post TKI samples were available, an AGK/BRAF fusion was 

present only after progression on erlotinib supporting the hypothesis that BRAF fusions are 

possible acquired mechanisms of drug resistance. The other 3 EGFR TKI-resistant patient 

samples lacked pre-EGFR TKI data from the same site sample, however one patient had pre-

EGFR TKI MSK-IMPACT testing on a lung biopsy and a BRAF fusion on a pleural effusion 

(Supplemental table 5). Importantly, none of 200 patients whose tumor sample was obtained 

prior to EGFR TKI treatment showed a concurrent BRAF fusion.
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Clinical course of two patients with matched pre- and post-TKI samples

Case 1.—A 48-year-old man, never smoker, presented with a right cranial nerve 12 palsy 

and was found to have metastatic lung adenocarcinoma to the brain, liver, bone, and 

lymphangitic spread in the lungs (patient 2, Supplemental table 4) (Figure 1). Evaluation of 

the right upper lobe biopsy sample by PCR revealed a 15-base pair EGFR exon 19 deletion. 

The patient received whole brain radiation therapy followed by single agent erlotinib 150 mg 

daily. A complete depiction of the treatment course and diagnosis is shown in Figure 1A. 

The patient initially had a robust clinical and radiologic response but after 7.7 months of 

treatment was noted to have progressive disease in the bone and subsequently liver. A biopsy 

was performed on the liver and MSK-IMPACT [17] testing revealed a newly acquired EGFR 
T790M mutation. The patient was subsequently given osimertinib 80 mg daily with initial 

response. After 9.5 months the patient had radiologic and clinical progression with right-

sided chest pain and a pleural effusion. A thoracentesis was done with MSK-IMPACT 

testing revealing a BRAF structural rearrangement. Targeted RNAseq using MSK-Fusion 

Solid, a panel assay based on anchored multiplex PCR [18], was performed and showed the 

AGK/BRAF fusion (Supplemental Table 5). The patient was changed to nivolumab but 

showed further clinical deterioration and died 2 weeks later (Figure 1).

Case 2.—A 69-year-old woman, former smoker (22 pack-years) was diagnosed initially 

with stage IIa (pT2aN1M0) lung adenocarcinoma status post a left upper lobe lobectomy 

and mediastinal node dissection followed by adjuvant cisplatin and pemetrexed for 4 cycles 

(patient 4, Supplemental table 4) (Figure 1). She was maintained on active surveillance for 

2.9 years at which time she was noted to have a metastatic recurrence to the brain. She 

underwent a metastasectomy with pathology of a right frontal lobe metastasis showing a 1.8 

cm tumor with predictive immunohistochemistry negative for EGFR L858R and ALK. 

MSK-IMPACT analysis revealed an EGFR exon 19 deletion. A timeline of the clinical 

course is shown in Figure 1B. An interval CT scan found enlarging mediastinal lymph nodes 

and the patient was given erlotinib 150 mg daily. The patient had a clinical and radiologic 

response to erlotinib, remaining on it for 1.5 years at which point she was noted to have 

progression in her mediastinal lymph nodes. MSK-IMPACT analysis of the post-erlotinib 

treatment sample identified the original EGFR exon 19 deletion as well as a new AGK/

BRAF fusion (Supplemental Table 5). She was placed on multiple lines of cytotoxic 

chemotherapy, however, she had continued disease progression and died.

Generation of isogenic EGFR mutant cell lines with BRAF fusions.—To examine 

the influence that acquired BRAF rearrangements have on sensitivity to EGFR TKIs, we 

inserted an AGK/BRAF fusion into EGFR mutant lung cancer cell lines H1975 (T790M, 

L858R), HCC827 (EGFR Ex19del) and PC9 (EGFR Ex19del) using CRISPR/Cas9 genome 

editing [16, 19]. An outline of the experimental scheme is illustrated in Figure 2A. Guides 

were designed to target intron 1 of AGK and intron 7 of BRAF in order to generate a fusion 

of AGK exon 2 with exon 8 of BRAF (Figure 2A) and cloned into pX458 expression 

plasmid. Plasmids were introduced and cells selected with osimertinib as described in 

Methods. All osimertinib-resistant clones were positive for the AGK/BRAF fusion by PCR 

(22 H1975, 16 HCC827 and 20 PC9). Two clones of each cell line that was positive for 

AGK/BRAF fusion at the mRNA and genomic DNA level were selected for further analysis 
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(Figure 2B). The fusion junction of the two genes was confirmed by Sanger sequencing 

(Figure 2C).

Expression of AGK/BRAF fusion in EGFR mutant cell lines induces resistance 
to EGFR TKIs.—Western blot analysis with phospho-specific BRAF anti-sera confirmed 

the presence of the AGK/BRAF chimeric protein at the predicted molecular mass of 50 kDa. 

All cells expressing the AGK/BRAF fusion showed enhanced phosphorylation of MEK1/2 

and ERK1/2 (Figure 2D) compared to the parental control cells. Importantly, treatment with 

osimertinib (0.5 μM) blocked activation of MEK1/2, ERK1/2 and STAT3 in parental cells 

but not in the AGK/BRAF-expressing cells, probably due to EGFR-independent activation 

of the pathways by the BRAF fusion (Figure 2D).

To confirm that expression of BRAF fusions can impede osimertinib efficacy, we assessed 

viability of EGFR mutant cell lines expressing AGK/BRAF fusion in dose-response studies. 

Osimertinib inhibited growth of parental HCC827, H1975 and PC9 with IC50 value of 0.001, 

0.006 and 0.009 μM, respectively. In contrast, clones expressing AGK/BRAF were 

approximately 1000-fold less sensitive to osimertinib than the parental lines (Figures 2E and 

2F). To provide orthogonal validation of these results obtained with the CRISPR-generated 

AGK/BRAF isogenic lines, we also expressed AGK/BRAF and PJA2/BRAF fusions using 

lentiviral plasmids harboring the respective fusion cDNAs in H1975 and PC9 cells 

(Supplementary figure 1A). As shown in Supplementary Figure 1B, expression of the two 

BRAF fusions in H1975 and PC9 cells resulted in lower sensitivity to osimertinib. To ensure 

that the resistance to EGFR TKIs was due to expression of BRAF fusions, we examined 

viability in two independent clones (H1975-AGK/BRAF-C8 and HCC827-AGK/BRAF-C1) 

in which BRAF was knocked down with two independent shRNAs targeting kinase domain 

of BRAF. Expression of BRAF mRNA was reduced by 98.2–100% by the two shRNAs, 

compared to cells expressing a non-targeting control shRNA (Figure 2G). HCC827 and 

H1975 clones expressing the AGK/BRAF fusion were resensitized to osimertinib upon 

treatment with these shRNAs targeting the portion of BRAF included in the fusion, 

confirming that the resistance we observed was due to expression of the fusion (>100 fold 

decrease in IC50 compared to non-targeting control) (Figure 2H). Similar results were 

obtained in cells expressing AGK/BRAF and PJA2/BRAF cDNAs (Supplementary figure 1C 

and 1D). Taken together, these results confirm BRAF fusions as resistance mechanism to 

EGFR TKI.

An EGFR TKI-resistant patient derived cell line with EGFR Ex19 del and PJA2/
BRAF.—We generated a patient derived xenograft (MSK-LX138) and paired cell line 

(referred to as MSKLX138cl) from tissue isolated from patient 1 after resistance to EGFR 

TKI emerged. MSK-IMPACT analysis of this tumor sample showed a PJA2-BRAF fusion 

and we confirmed the presence and expression of the fusion at genomic DNA, mRNA and 

protein level (Figure 3A, 3B, 3C). In agreement with the MSK-IMPACT data, Sanger 

sequencing of the PCR amplicon indicated a fusion between exon 7 of PJA2 and exon 11 of 

BRAF (Figure 3B), and EGFR exon 19 deletion (Supplementary figure 2A). Similar to the 

observations in the isogenic lung cancer cell lines with AGK/BRAF fusion that we 

generated, MSK-LX138cl cells exhibited high levels of MEK and ERK phosphorylation, 
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which persisted despite osimertinib treatment. Interestingly, this cell line exhibited no AKT 

phosphorylation (Figure 3C), suggesting that BRAF fusions can drive growth and survival 

signals independently of the PI3K-AKT pathway. Growth of MSK-LX138cl cells was 

insensitive to EGFR TKIs (afatinib, erlotinib, osimertinib, gefitinib) and several BRAF 

inhibitors (vemurafenib, dabrafenib, sorafenib, RXDX-105) (Figure 3D–E). Similar results 

with BRAF inhibitors were obtained in the established CRISPR fusion clones (Figure 4A). 

As BRAF fusions function as dimers, the lack of activity of vemurafenib and dabrafenib was 

not unexpected. In agreement with the reduced sensitivity of these cells to EGFR and BRAF 

inhibitors, there was no apoptosis-related induction in caspase 3/7 activity in response to 

treatment with several EGFR and RAS-MAPK pathway inhibitors as single agents 

(osimertinib, erlotinib, trametinib, RXDX-105, sorafenib, dabrafenib) further supporting the 

resistant nature of this cell line (Figure 3F).

Combined inhibition of MEK and EGFR as potential therapy.—Given the presence 

of two actionable oncogenes in our cell lines and patients, we tested the hypothesis that co-

inhibition of MEK and EGFR could be an efficient therapeutic strategy. Treatment with 

trametinib alone decreased growth of all cell lines with EGFR mutation alone, or with a 

BRAF fusion; cell lines with the BRAF fusion were more sensitive, consistent with 

published data showing only limited activity of MEK inhibitors in EGFR-mutated cell lines 

[20]. Indeed, we found that only a maximum inhibition of 50% cell growth was achieved by 

trametinib (results not shown). This may indicate that a subpopulation of cells from lines 

expressing a BRAF fusion can still survive after MEK inhibition. Taken together, these 

support the notion that MEK inhibition alone is not sufficient to fully inhibit growth of 

BRAF-fusion positive cell lines. To determine the combinatorial effect of osimertinib and 

trametinib we employed the method of Chou-Talalay that was developed to identify if two or 

more agents act in a synergistic manner [21]. We calculated the combination index (CI) of 

multiple combinations of different drug concentrations, where CI<1 represents synergy, 

CI=1 represents an additive effect and CI>1 represents an antagonistic effect, to determine if 

the two agents can act synergistically. The experiment was performed in MSK-LX138cl 

(Figure 4B) as well as two of our isogenic EGFR mutant cell lines with AGK/BRAF fusion 

(H1975-C1, HCC827-C1). Our results show that trametinib and osimertinib acted in a 

synergistic manner to inhibit growth up to a concentration of 100 nM.

LY3009120, a pan-RAF inhibitor is effective as a single agent in BRAF-fusion-
positive cell lines.—BRAF rearrangements are grossly insensitive to BRAF inhibitors (eg 

vemurafenib, dabrafenib) due to homo- and heterodimerization with other RAF proteins [22, 

23]. We also show above, as previously described [24], that BRAF inhibitors are not 

effective in cell lines with BRAF fusions. However, RAF inhibitors such as BGB659 and 

LY3009120 are expected to be effective against the fusions because they can bind and inhibit 

all RAF isoforms [25–29]. Treatment of MSK-LX138cl with LY3009120 resulted in 

complete inhibition of growth with IC50 = 0.006 μM (Figure 5A). The melanoma cell line 

A375, which harbors a BRAF V600E mutation [30], was used as a positive control in these 

experiments. We next examined the effect of LY3009120 on caspase 3/7 activity. 

LY3009120 caused a small but significant increase in caspase 3/7 activity, similar to that 

observed with trametinib+osimertinib in MSK-LX138cl (Figure 4F) and HCC827-AGK/
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BRAF-C1 cells, but not in the parental HCC827 cell line (Figure 5C). Finally, to better 

understand how LY3009120 inhibits growth, we examined its effect on phosphorylation of 

BRAF fusion and other downstream signaling proteins. LY3009120 at 0.1 μM caused a 

profound reduction in phosphorylation of MEK, ERK and STAT3 (Figure 5B).

DISCUSSION

The present study establishes BRAF fusions as a mechanism of resistance to EGFR TKI in 

EGFR-mutant NSCLC and offers two potential therapeutic strategies to circumvent the drug 

resistance, namely combined inhibition of MEK and EGFR, or inhibition of BRAF fusion. 

Of seven patients with BRAF fusion present on MSK-IMPACT (n = 374), four had 

concomitant EGFR driver mutations suggesting that the co-occurrence of EGFR mutations 

and BRAF fusion is a rare but recurrent event. Importantly, all 4 patients were resistant to 

EGFR TKIs (erlotinib or osimertinib), and in two of four cases the BRAF fusions were 

confirmed to be acquired because pre-TKI samples were available and negative for BRAF 
fusion. AGK, which, like BRAF, resides at 7q34, encodes a mitochondrial membrane 

protein involved in lipid and glycerolipid metabolism, whereas PJA2 protein (encoded by a 

gene at 5q21) has E2-dependent E3 ubiquitin-protein ligase activity. AGK/BRAF fusions 

have been described in melanomas, gliomas, and cancers of the lung, thyroid, and breast 

[14]. To the best of our knowledge, this is the first report of a PJA2/BRAF fusion. Multiple 

cellular models including one patient-derived cell line and isogenic EGFR-mutated lung 

cancer cell line models demonstrated that expression of BRAF fusion mediated resistance to 

EGFR TKIs. In these models, we observed activation of the MEK-ERK pathway 

independently of EGFR. We further found that loss of BRAF fusion expression restores 

sensitivity to EGFR TKI. Taken together these results indicate that BRAF fusions drive 

resistance to EGFR TKIs in a subset of EGFR mutant NSCLC and provides a pathway for 

developing a viable therapeutic strategy.

It is customary to express a cDNA for a given gene either by lipid-based transfection or viral 

transduction to determine if expression of the gene alters biological properties such as 

response to small molecules. These methods of gene expression typically result in 

supraphysiologic levels of the protein because multiple copies of the cDNA are usually 

introduced, and expression is driven from a strong, constitutively active viral promoter. 

Therefore, there is often a concern that the observed results may be an artifact of 

overexpression of the protein. To avoid this pitfall, we engineered the AGK/BRAF fusion 

using CRISPR-Cas9-mediated genome editing in lung cancer cells harboring drug-sensitive 

EGFR mutations. The advantage of this method over conventional exogenous cDNA 

expression is that the BRAF fusion is expressed from the endogenous, non-amplified allele, 

resulting in a physiological level of protein expression. Using this approach, we 

demonstrated that a physiological level of AGK/BRAF fusion was able to induce resistance 

to EGFR inhibitors in EGFR-mutant lung cancer cell lines. These results were concordant 

with data obtained by overexpression of BRAF fusions using lentiviral vectors harboring the 

respective cDNAs. Our approach represents a methodological advance that can be used to 

model other fusion genes as mechanisms of resistance.
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Although BRAF fusion may seem to be an obvious therapeutic target, FDA-approved BRAF 

inhibitors have not been effective against BRAF fusions [24, 31–33] and have not always 

been effective against BRAF mutants. As previously described, BRAF V600E-positive 

colorectal cancers have notoriously been insensitive to selective BRAF inhibitors 

(vemurafenib or dabrafenib), due to feedback activation of EGFR and subsequent RAF 

dimerization [34]. A similar resistance mechanism has been noted in BRAF V600E 

melanomas, where RAF inhibition abrogates ERK activation, which then terminates the high 

ERK negative feedback on RTK-dependent activation of RAS, leading to consequent RAF 

dimerization and ERK reactivation [35]. This ineffectiveness of FDA-approved BRAF drugs 

against BRAF fusions is highlighted by the fact that an AGAP3/BRAF fusion has been 

proposed as a mechanism of acquired resistance to vemurafenib in BRAF V600E melanoma 

[24]. When compounds like vemurafenib and dabrafenib bind to the first site within the 

BRAF dimer, affinity for the second dimer site is significantly lower, explaining why 

traditional BRAF inhibitors do not abrogate ERK phosphorylation in BRAF fusion-positive 

tumors [36]. BRAF V600E mutants can become resistant to BRAF inhibitors via formation 

of BRAF dimers by the mechanism described above [23, 37], which prompted development 

of pan-RAF inhibitors [26, 38]. Yao et al have reported superiority of a dual RAF inhibitor 

BGB659 over BRAF inhibitors [36]. Similarly, Peng et al reported the development of 

LY3009120, a pan-RAF inhibitor that binds simultaneously to two sites of BRAF dimers 

and equally inhibits all RAF isoforms (ARAF, BRAF, CRAF) with similar affinity [25–29]. 

We found LY3009120 to be very active against cell lines with BRAF fusions as a single 

agent. Taken together, this indicates that pan-RAF inhibition is a superior single agent 

strategy for targeting these acquired BRAF fusions. Notably, we (N.X.R.) have recently 

shown that another promising RAF inhibitor, PLX8394, selectively disrupts BRAF dimers, 

sparing CRAF homodimer-dependent RAF function in normal cells, which may lead to a 

better safety profile clinically [39]. Clinical studies will be needed to determine if RAF 

inhibitors are effective against tumors with BRAF fusions as a single agent or should be 

combined with an EGFR TKI to maximize the effectiveness.

To identify potential therapeutic strategies for patients with co-expression of EGFR mutant 

and BRAF fusion that can be utilized immediately, we investigated the effectiveness of a 

combination of trametinib and osimertinib. We found that combined inhibition of MEK and 

EGFR with these drugs inhibited growth of isogenic cell line models as well as a patient-

derived cell line with a BRAF fusion and EGFR mutation (established from a patient who 

did not respond to EGFR drugs) in a synergistic manner. The maximum inhibition of growth 

that we observed was 76%, which may have been due to reactivation of HER2 and ERK 

following the prolonged treatment of cells with osimertinib and trametinib, respectively 

(data not shown). Nevertheless, these results suggest that combined MEK and EGFR 

inhibition is a possible treatment strategy in the absence of more effective FDA-approved 

RAF inhibitors that are effective against BRAF fusions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Clinical information for patients with resistance to EGFR TKI and BRAF fusions.
A. Disease course of patient 2, found to have acquired resistance to osimertinib and AGK/
BRAF fusion. B. Disease course of patient 4, found to have acquired resistance to erlotinib 

and progressive mediastinal disease with AGK/BRAF fusion.

Vojnic et al. Page 13

J Thorac Oncol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vojnic et al. Page 14

J Thorac Oncol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. Generation and characterization of CRISPR/Cas9 AGK/BRAF cell lines.
A. CRISPR/Cas9 genome engineering protocol scheme. B. Expression of AGK/BRAF. C. 

Sanger sequencing of PCR product confirming fusion in cell line of AGK exon 2 with exon 

8 of BRAF. D. H1975 and PC9 cells expressing AGK/BRAF were treated with 0.5 

osimertinib for 1 h, whole-cell extracts prepared and then lysates were subjected to 

immunoblotting. Results represent 3 independent experiments. E. The indicated cell lines 

were plated at a density 7,500/well in 96-well plates, treated with osimertinib for 96 h and 

the IC50 values for growth inhibition are shown in the Table in panel F. G-H. Cells were 
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plated at a density of 150,000 cells/well in 6-well plates then infected 24 h later with 

lentiviruses harboring the indicated shRNAs and then selected with puromycin 48 h later. 

BRAF mRNA levels was determined by qRT-PCR (G) or cells were replated in osimertinib 

and growth assessed 96 later (H). IC50 values for growth inhibition were determined by 

nonlinear regression analysis using Graphpad Prism software. Results represent the mean ± 

SD of 2 experiments.
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FIGURE 3. Characterization of an EGFR mutant cell line with PJA2/BRAF fusion.
A. Expression of PJA2/BRAF in a patient-derived cell line, MSK-LX138cl, and xenograft 

tissue. B. Sanger sequencing of PCR product confirming a fusion between PJA2 exon 7 and 

BRAF exon 11. C. MSK-LX138cl cells were treated with 0.5 osimertinib for 1 h, whole-cell 

extracts prepared and then lysates were subjected to immunoblotting. Results represent 3 

independent experiments. D-E. MSK-LX138cl cells were plated at a density 7,500/well in a 

96-well plates, treated with EGFR (D) or BRAF (E) inhibitors. IC50 values for growth 

inhibition were determined by nonlinear regression analysis using Graphpad Prism software. 
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F. 50,000 MSK-LX138cl cells/well were plated in 96-well plates, the following day they 

were treated with 0.1 or 1 μM of the indicated agents or a combination of osimertinib, and 

trametinib. Caspase 3/7 activity was determined 48 h later. Results represent the mean ± SD 

of 2 experiments.
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FIGURE 4. Combined inhibition of MEK and EGFR is effective and reducing growth of cells 
with EGFR mutation.
A. Cells were plated at a density of 7,500 cells/well in 96-well plate and treated with 

vemurafenib or dabrafenib for 96 h then growth was determined. IC50 values for growth 

inhibition are shown (Right). B. MSK-LX138cl cells were plated at a density of 7,500 cells/

well in 96-well plates and treated with trametinib (0–1μM) and osimertinib (0–1μM) for 96 

h. Growth inhibition was then determined and combination index calculated using 

CompuSyn software. Data represent the mean value of growth inhibition ratio at each 
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concentration of the drugs in two independent experiments. Dot plot indicates the 

combination index and fraction affected (inhibition ratio) of various drug concentrations.

Vojnic et al. Page 20

J Thorac Oncol. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. The pan-RAF inhibitor LY3009120 effectively inhibits growth of EGFR mutant cell 
lines with BRAF fusions.
A. Cells were plated in 96-well plates, treated with LY3009120 and then growth determined 

(Left). IC50 values for growth inhibition were determined by nonlinear regression analysis 

using GraphPad Prism software (Right). B. MSK-LX138cl cells were treated with the 

indicated concentration of LY3009120 or vemurafenib for 1 h then whole-cell extracts 

prepared and immunoblotted for the indicated proteins. Results are representative of two 

independent experiments. C. Cells were treated with 0.1 or 1 μM of the indicated 
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compounds or osimertinib/trametinib combinations and caspase 3/7 activity determined 48 h 

later.
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