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Abstract

Purpose of Review We summarize neuroimaging findings related to processing of taste (fat, salt, umami, bitter, and sour) in the
brain and how they influence hedonic responses and eating behaviors and their role in obesity.

Recent Findings Neuroimaging studies in obese individuals have revealed alterations in reward/motivation, executive control/
self-regulation, and limbic/affective circuits that are implicated in food and drug addiction. Psychophysical studies show that
sensory properties of food ingredients may be associated with anthropometric and neurocognitive outcomes in obesity. However,
few studies have examined the neural correlates of taste and processing of calories and nutrient content in obesity.

Summary The literature of neural correlated of bitter, sour, and salty tastes remains sparse in obesity. Most published studies have
focused on sweet, followed by fat and umami taste. Studies on calorie processing and its conditioning by preceding taste
sensations have started to delineate a dynamic pattern of brain activation associated with appetition. Our expanded understanding
of taste processing in the brain from neuroimaging studies is poised to reveal novel prevention and treatment targets to help

address overeating and obesity.
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Introduction

The prevalence of obesity in the United States has risen sig-
nificantly since the 1980s [1]. Between 2015 and 2016, 4 in 10
Americans were considered obese, which is defined in the
USA as having a body mass index (BMI) over 30, and over
28 in China [2¢, 3]. Obesity-related diseases are some of the
leading causes of preventable death in the USA and world, so
it is paramount to understand their underlying causes [4, 5].
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With the increasing presence of refined sugars, salts, and fats
and the high calorie content in processed foods, individual,
neurobiological differences in taste perception and
conditioning to these ingredients may contribute to increased
risk for obesity [6, 7, 8¢, 9—11]. To that end, neuroimaging and
psychophysical studies could reveal neural mechanisms of
aberrant eating in obesity.

Sensory systems, particularly taste and smell, significantly
affect food selection and consumption. Taste sensation occurs
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when chemosensory stimuli (e.g., salt) interact with taste re-
ceptor cells (TRCs) in the tongue. In addition to the five basic
tastes (sweet, salty, bitter, sour, and umami), which are
chemotopically organized in the human gustatory cortex, fat
is considered a sixth taste modality [12—16]. Taste information
is sent to the brain’s feeding and reward systems, which affect
eating behaviors and taste preferences [17, 18]. Hedonic eat-
ing, or food consumption for pleasure but not hunger, when
excessive, can lead to weight gain and obesity disrupting pro-
cessing of taste input to the brain and enhancing conditioning
to taste, smell, and calorie processing [11, 19-23]. When it
comes to smell, olfactory ablation protects against diet-
induced obesity in preclinical studies, suggesting that smell
modulates taste perception to influence food intake [24].
Additionally, alterations in reward, executive control and af-
fective circuits, and in homeostatic signals are risk factors for
excessive hedonic eating [25]. Aberrant dopamine signaling
akin to that observed in addiction is associated with these
disruptions, which may further contribute to compensatory
reward-seeking behaviors like overeating [26-28].

Psychophysical methods (e.g., whole mouth sip and spit of
tastants) have been extensively used to study taste. However,
advances in neuroimaging procedures and chemosensory
stimulus delivery techniques (e.g., tastant delivery during
brain imaging sessions) have provided novel insight into cen-
tral mechanisms underlying taste and hedonic eating. Brain
responses to food stimuli may differ in obese individuals com-
pared to those without obesity, as illustrated in Fig. 1.
Additionally, individuals with obesity show marked structural
and functional brain-circuitry alterations [29-36].

Here, we review the impact of taste on neuroimaging out-
comes regarding the hedonic aspects of eating in obesity, with
a focus on the neural correlates of fat, umami, bitter, salty, and
sour tastes across brain areas implicated in obesity, as outlined
in Table 1. Although sweet is one of the basic tastes, the neural

correlates of hedonic responses to sugar in obesity were re-
cently reviewed so we do not discuss them here [37, 38].
Further, evidence of compromised olfaction capacity in obe-
sity exists [39, 40]. However, few studies have assessed brain
activation patterns to smell in individuals with obesity
[41-43]. The brain regions we focus on include the primary
and secondary gustatory cortices. The primary gustatory cor-
tex processes taste perception and comprises the anterior
insula and frontal operculum. The secondary gustatory cortex,
which comprises the orbitofrontal cortex (OFC) and medial
prefrontal cortex (mPFC), integrates sensory properties of
food to generate flavor and assigns saliency values [44].

Fat Taste

Palatable, high-fat foods contribute to increased risk for obe-
sity [45]. Recently, orosensory fat perception was proposed as
a primary taste that might regulate dietary fat consumption
[13—-16]. Although several taste receptors for fat exist,
CD36, a scavenger receptor with an affinity for long chain
fatty acids, is the most studied [13]. CD36 is expressed on
the membrane of lingual TRCs and facilitates fatty acid uptake
[46]. Preclinical CD36 knockout studies indicate that the re-
ceptor is necessary to establish fatty taste preferences [47].
Additionally, CD36 genetic variations have been associated
with obesity in humans [13].

Recent neuroimaging studies in healthy volunteers investi-
gated the brain’s response to fatty stimuli. Several studies
found that oral fat administration was associated with blood-
oxygen-level dependent (BOLD) activation in the secondary
gustatory cortex [48, 49]. Support from source-localized elec-
troencephalography (EEG) studies shows that consumption of
high-fat relative to low-fat milk was associated with greater
late positive potential amplitudes in OFC and hippocampus,

Fig. 1 Brain activation patterns (overweight and obese > healthy
controls) of taste modalities (bitter, salty, and fat) compiled from studies
in Table 1. Red (fat taste): BOLD contrast (overweight > healthy
controls) to high-fat, high-sugar milkshake in right insula/operculum,
precentral gyrus, angular gyrus, bilateral precuneus, posterior cingulate
(Bohon et al., 2017). Green (bitter taste): BOLD contrast (obese >
healthy controls) to quinine-hydrochloride solution in insula, ACC,
OFC, amygdala, putamen, pallidum (Szalay et al. 2012). Blue (salty

taste): ['"®F-FDG] glucose metabolism (overweight and obese > healthy
controls) following sodium chloride solution in insula, OFC,
parahippocampus (Li et al., 2017). Pink: Overlapping brain activation
in insula in response to fat, salty, and bitter tastes. Turquoise:
Overlapping brain activation in OFC in response to bitter and salty
tastes. Yellow: Overlapping brain activation patterns in response to fat
and bitter tastes the numbers above the brain slices indicate the Z-
coordinate in MNI space
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Table 1

Neural correlates of taste information processing in obese and overweight populations

Authors (year) Study group

Imaging task

Neural correlates in obese and
overweight populations vs
healthy controls

Fat taste

Bohon et al. (2017) N =10 healthy-weight children (BMI
between 5th and 85th percentile)
N =8 overweight children (BMI

greater than 85th percentile)

Babbs et al. (2013) N =12 normal-weight adults
(BMI < 25)

N =13 overweight adults (BMI>25)

Umami taste

Magerowski et al. (2018) N =30 healthy-weight women (mean
BMI: 22.1+0.4)

N =30 Three Factor Eating
Questionnaire at baseline

Randomization into buffet meal test
or fMRI paradigm after MSG+/MSG-
broth consumption

N =15 buffet meal tests

N =14 fMRI paradigm

Salty taste

Lietal. (2017) N =156 healthy-weight participants

N =100 overweight participants
(BMI > 25) and participants with
obesity (BMI >28)

N =30 healthy-weight participants (BMI
between 18.5 and 25)

N =25 participants with obesity
(BMI>30)

Hardikar et al. (2018)

Bitter taste

Szalay et al. (2012) N =12 healthy-weight participants
(mean BMI 21.42 +£2.53)

N =12 participants with obesity (mean
BMI: 34.05 £3.35)

N =15 healthy-weight participants
(mean BMI: 25.25+£3.3)

N =16 individuals with abdominal
obesity (mean BMI: 39.26 +2.2)

Green et al. (2015)

Sour taste

N/A N/A

Visual food cue presentation of either
chocolate milkshake or water

Tastant delivery of either
chocolate milkshake or
tasteless solution

(3 T fMRI)

Tastant delivery of either
milkshake or tasteless solution

Self-report measures of
impulsivity, willingness to
work for food, and pleasantness
(rated during scan) of
milkshake taste

(3 T fMRI)

Visual food cue presentation that
subjects rated on health and
appetitiveness.

Choice selection followed
visual food cue presentation
where subjects presented with
two images of food and told
to choose the food they would
“rather eat right now”

(3 T fMRI)

Buccal administration of sodium
chloride stimulus solution
40 min prior to scan

(["*F-FDG]-PET/CT)

Tastant delivery of
suprathreshold sucrose or
sodium chloride solution

(EEG)

Tastant delivery of either quinine
hydrochloride or tasteless
distilled water

(3 T fMRI)

Tastant delivery of either
caffeine or sucrose solutions

(3 T fMRI)

N/A

Greater BOLD contrast
(milkshake > tasteless) in right
insula, operculum, precentral
gyrus, angular gyrus, bilateral
precuneus, and posterior cingulate

Greater BOLD contrast
(milkshake > tasteless) in
ventral putamen

Lower BOLD contrast
(milkshake > tasteless) in
caudate nucleus

Greater BOLD contrast
(MSG+ > MSG-) in left DLPFC
and lower BOLD contrast
(MSG+ >MSG-) in cerebellum,
precuneus, and fusiform gyrus
in women with high eating
disinhibition

*note: all subjects are healthy
volunteers

Greater glucose metabolism in insula,
OFC, and parahippocampus

Weaker and shorter-latency
gustatory-evoked potential to
sodium chloride

Greater brain activation in ACC,
gustatory cortex, OFC, amygdala,
putamen, and pallidum

Greater brain activation in pre- and
post- central gyri, fusiform gyrus,
insula, lentiform nucleus, putamen,
and frontopolar cortex to caffeine
and sucrose

N/A

which reflected calorie content assessment of milk [50].
However, compared to sugar, fat may affect brain reward re-
gions differently. For example, high fat relative to high-sugar
milkshakes elicited greater BOLD responses in caudate and
somatosensory regions, but no significant bilateral insular
changes, whereas high sugar relative to high-fat milkshakes
elicited greater BOLD responses in putamen and gustatory
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regions and increased bilateral insula activation [S1]. Based
on these findings, it appears that fat might affect brain reward
circuitry differently than sugar.

Further, obesity is associated with reward circuitry
dysregulations, which is reflected in brain response to fat
[30, 52, 53]. For instance, overweight compared to healthy-
weight children showed greater BOLD responses in right
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insula, operculum, bilateral precuneus, and posterior cingulate
cortex following milkshake consumption [9]. Additionally,
following milkshake consumption, overweight compared to
healthy-weight adults showed greater BOLD responses in
ventral putamen and rolandic operculum but lower caudate
BOLD responses, which were associated with higher impul-
sivity [10]. This suggests a mechanism for compulsive eating
[10]. However, these milkshakes had high sugar and fat con-
tent, making it unclear whether these brain response patterns
reflect an interaction between the tastants [9, 10].

Brain responses to fat in healthy volunteers can also be
used to elucidate eating patterns and BMI gain. Eldeghaidy
et al. [54] showed that amygdala BOLD response to a fatty
stimulus is attenuated after a high-fat meal compared to water
intake. This suggests that satiety from a high-fat meal reduces
the reward response to fat. Moreover, reduced BOLD re-
sponse to a high-fat, low-sugar milkshake relative to a taste-
less solution in the pre-supplementary motor area, a region
critical for inhibitory control, predicted BMI gain in healthy
volunteers [55]. Similar studies should be replicated in indi-
viduals with obesity in order to understand how these process-
es differ between individuals with and without obesity.

Salty Taste

Excess dietary salt has been linked to obesity and its comorbid-
ities [56-58]. Altered salt perception may be a risk factor for, or
a result, of obesity, as altered salt taste perception has been
reported in obese individuals by some investigators but not by
others [58-62]. Salt taste is generated by the salt-sensitive epi-
thelial sodium channel (ENaC) and transient receptor potential
cation channel subfamily V member 1 (TRPV1) [63-65].
While ENaC regulates appetitive responses to low salt concen-
trations, TRPV1 regulates aversive responses to high salt con-
centrations in part via bitter and sour TRCs [66—68]. This
concentration-dependent response helps maintain optimal sodi-
um balance and coincides with a negative association between
salt taste intensity and hedonic ratings [69-71].

Functional magnetic resonance imaging (fMRI) studies
demonstrate that salty tastes engage various brain regions,
including the frontal operculum, amygdala, OFC, middle cin-
gulate cortex, thalamus, pre- and postcentral gyrus, and dor-
solateral prefrontal cortex (DLPFC) [72, 73]. These regions
modulate reward, taste processing, and executive control in
eating. For example, increased activity in the left DLPFC, a
region implicated in executive function, has been associated
with improved self-control during food choice selection
[74-77]. These regions also encode salt taste intensity:
[H,"°0J-PET (positron-emission tomography), which mea-
sures cerebral blood flow, and fMRI studies reveal that sodium
chloride in both highly concentrated, aversive levels and low,
non-aversive levels engages the amygdala and OFC [72, 78].

For example, the middle insula and amygdala are increasingly
engaged as sodium concentrations increase and hedonic rat-
ings decrease [79]. Thus, a range of salt intensities recruit
similar circuitry despite varied subjective responses.
Additionally, salt taste intensity modulates the strength of
insular-thalamic effective connectivity and is negatively asso-
ciated with hedonic ratings, suggesting a mechanism for aver-
sion to high salt intensities [68, 69].

Whether salt taste perception is different in obesity remains
uncertain due to mixed psychophysical findings. Several studies
showed no significant salt taste sensitivity differences between
individuals with and without obesity [61, 62]. In studies that
report differences, some studies show higher salt sensitivity in
obese individuals compared to those without obesity [80, 81].
Yet, other studies report lower salt sensitivity in obese individ-
uals compared to those without obesity [8, 82, 83].
Additionally, studies on salt taste preferences have yielded
mixed results in individuals with obesity [8e, 80, 81]. These
discrepancies may be due to methodological differences.
Specifically, studies that found lower salt sensitivity in individ-
uals with obesity used taste strips or food stimuli; the textual
properties of these stimuli may have confounded taste responses
[8e, 82, 83]. Furthermore, in studies that report higher or similar
salt sensitivities in obese compared to non-obese individuals,
stimulus delivery patterns may have also confounded results;
whereas some studies had participants rinse the oral cavity with
aqueous solutions of sodium chloride, other studies had solu-
tions sipped or directly administered to the tongue [62, 80, 81].

To date, studies on neural responses to salty taste in obesity
have been limited. In an ['*F-F luorodeoxyglucose (FDG)]-PET
study to measure brain glucose metabolism (marker of brain
function), patients with obesity showed greater OFC, insular,
and parahippocampal metabolism in response to a salty taste
stimulus compared to healthy controls [8¢]. Increased activity in
these regions was associated with reduced salt sensitivity,
higher salt preference, and greater salt intake in patients with
obesity [8¢]. Although no perceptual differences were reported,
an EEG study revealed that obese compared to non-obese indi-
viduals showed weaker and shorter-latency gustatory-evoked
potentials in response to salty taste [84]. Thus, salt consumption
in obesity may be associated with alterations in reward, gusta-
tory, and memory-related areas.

Umami Taste

Umami contributes to a sense of satiety [85]. Due to its role in
signaling satiety, umami has been examined in the context of
weight-loss interventions and obesity [86]. Umami is a savory
flavor transmitted by monosodium L-glutamate (MSG), and is
recognized as one of five basic tastes largely through
glutamate-binding G protein-coupled receptors and amino ac-
id and nucleoside sensing receptors in taste buds [87-89].
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Umami receptors are also expressed in the gut such that glu-
tamate consumption is related via a vague-nerve mediated
signaling pathway to the forebrain, where feeding behaviors
are regulated [86, 90-94].

Studies show that umami contributes to satiety, as con-
sumption of MSG-added (MSG+) broth increased subjective
satiety in healthy-weight women compared to MSG-absent
(MSG-) broth [95]. Whether this affects subsequent caloric
intake is mixed. Across women with and without obesity,
MSG+ soup was associated with lower calorie consumption
at mealtime relative to MSG- soup [96, 97]. Women with high
eating disinhibition, as assessed by the Three Factor Eating
Questionnaire, consumed less saturated fat in a buffet meal
following consumption of MSG+ relative to MSG- broth
[86]. However, some studies report no effect of MSG on sub-
sequent calorie intake [86, 95]. Together, these findings sug-
gest that MSG influences satiety and possibly calorie con-
sumption, especially in individuals with obesity or individuals
at risk of weight gain [86, 96].

Some studies suggest that individuals with obesity have
reduced sensitivity but higher preference for umami taste
compared to individuals without obesity. Women and adoles-
cents with obesity required higher MSG concentrations for
umami taste detection compared to healthy controls [83, 98].
However, another study found that umami taste detection did
not vary by BMI [22]. Interestingly, Van Langeveld et al. [99]
found that individuals with obesity obtain a larger percentage
of daily calories from “salt, umami, and fat”-tasting foods and
less from “sweet and fat”-tasting foods than individuals with-
out obesity reflecting perhaps a higher preference for umami-
tasting foods in obesity.

fMRI studies in healthy volunteers have demonstrated the
effects of umami taste on brain activation patterns. Umami and
glucose taste stimuli result in similar BOLD activation patterns,
including the insular/opercular cortex and the caudolateral OFC,
but umami resulted in greater BOLD activation in the rostral
anterior cingulate cortex (ACC), a region involved in complex
cognition and behavioral adjustment [100]. Increasing MSG
concentration with an umami-enhancer, disodium 5’-inosinate,
was associated with middle insula BOLD activation [101].
Other studies found both MSG and NaCl administration were
associated with activation in the insula, operculum, pre- and
postcentral gyrus, thalamus, supplementary motor area, and
OFC [22, 102]. Moreover, umami and salty tastes were associ-
ated with stronger activation in the primary gustatory cortex in
umami high-tasters compared to low-tasters [22]. Together, these
findings suggest that umami and salty taste perception share a
common processing system, and may thus have similar contri-
butions to behaviors implicated in obesity.

As demonstrated with fMRI, relay of umami-related taste
information to cortical areas involved in inhibitory control can
further mediate subsequent food intake. In subjects with high
eating disinhibition, consumption of MSG+ relative to MSG-
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broth resulted in increased BOLD response in the left DLPFC,
but decreased BOLD responses in regions (cerebellum,
precuneus, and fusiform gyrus) that have been associated with
increased motivation and attention to food; these responses
were associated with lower saturated fat intake in a subsequent
buffet meal [86]. Additionally, cognitive functions influence
umami taste perception and its representation in the brain.
MSG exposure was associated with greater insula BOLD re-
sponse when participants were instructed to remember and
rate the intensity relative to the pleasantness of taste, but great-
er medial OFC and pregenual cingulate BOLD response when
participants remembered and rated the pleasantness relative to
the intensity of taste; thus, selective attention, may influence
umami taste perception and its valuation in the brain [103].

Bitter Taste

Bitter taste detection ability has been shown to influence die-
tary fat consumption, suggesting its potential relevance in
obesity [104]. Bitter tastes are transduced by specialized G
protein-coupled bitter taste receptors (T2Rs) [105-107].
From an evolutionary perspective, bitter tastes signal the pres-
ence of toxic food ingredients [70].

Bitter tastes affect various brain regions associated with
appetite reduction. [H,'>O]-PET, fMRI, and functional near-
infrared spectroscopy studies have demonstrated that bitter
tastes are associated with stronger recruitment of amygdala,
OFC, DLPFC, frontal operculum, and bilateral ventrolateral
PFC compared to tasteless solutions in healthy volunteers
[108-110]. Likewise, DLPFC responses to bitter taste stimuli
are associated with appetite reduction [108]. EEG studies have
further shown that bitter relative to neutral tastes also reduce
appetitive ratings to high-caloric food images and are reflected
in blunted event-related potentials, including fronto-central
late positive potentials [111, 112].

Conditioning to bitter tastes also modulates hedonic eval-
uation. For instance, the quantity of coffee intake per week
was positively associated with right caudate BOLD response
to caffeine, suggesting that habitual consumption of bitter-
tasting substances recruits reward-related areas [113].
Interestingly, lower left ACC, right precuneus, and left supe-
rior frontal gyrus BOLD responses to caffeine in caffeine con-
sumers compared to non-caffeine consumers were associated
with lower ratings of bitter taste intensity [114]. These find-
ings may be attributed to caffeine-induced modulation of
adenosine receptor density in the caudate rather than the bitter
taste [115]. Furthermore, presentation of a visual cue condi-
tioned to be mildly aversive was associated with lower insula
and operculum BOLD responses and predicted lower aversion
ratings to a highly aversive, bitter-tasting quinine solution
[116]. Thus, altering expectations can affect subsequent taste
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perception. Further, variations in bitter taste receptor genes
may also affect bitter taste perception [117].

Studies in individuals with obesity show that brain activa-
tion patterns associated with bitter tastes may influence bitter
taste hedonics. For example, individuals with obesity showed
stronger ACC, insula and operculum, OFC, amygdala, puta-
men, and pallidum activation in response to quinine-
hydrochloride compared to individuals without obesity
[118]. Activation in these areas, which modulate reward, ex-
ecutive function, and gustatory processing, negatively corre-
lated with hedonic scores, suggesting that quinine-
hydrochloride downregulates hedonic responses to bitter
tastes more so in individuals with obesity [118]. Compared
to healthy controls, individuals with abdominal obesity also
showed greater activation in sensory and higher-level taste
processing regions while evaluating bitter taste hedonics;
however, no differences in hedonic ratings were reported
[119+]. Mixed findings on the interaction between brain re-
sponses and hedonic ratings to bitter tastes highlight the need
for more consistent and reliable measures of taste preferences
in human studies [120, 121].

Sour Taste

Although less explored in the context of obesity, sour taste
may play arole in food selection and consumption. Sour tastes
are mostly registered by the polycystic-kidney disease-like ion
channel, a proton channel that is sensitive to low-pH stimuli
[122]. Stimulation of TRCs that contain this channel may
mediate aversion to highly acidic concentrations to prevent
further sour food ingestion [123, 124].

In healthy populations, fMRI studies show that sour taste
stimuli, such as citric acid, recruit brain regions in an age-,
sex-, and condition-dependent manner [125, 126]. For example,
citric acid exposure was associated with increased caudate acti-
vation across all sated participants and in hungry females, but
not in hungry males [125]. Further, neural responses to sour
tastes differed by age, whereas hedonic ratings for sour tastes
were independent of sex or condition [125]. Similarly, citric acid
was associated with greater posterior insula BOLD response
relative to water in younger compared to older adults [126].

While the neural correlates of sour taste in obesity are lim-
ited, psychophysical measures have provided insight.
Adolescents with and without obesity displayed similar sensi-
tivities to and recognition for citric acid [80, 83]. In contrast,
adults with a BMI over 28 had significantly worse sour taste
detection ability compared to adults with a BMI under 28 [62].
Given that sour tastes are programmed to signal toxic sub-
stances, these findings indicate the presence of long-term ef-
fects of obesity on sour taste processing and associated health
outcomes [127].

Clinical Implications and Research
Opportunities

While chemosensory stimuli interact with TRCs in the tongue
to generate taste perception in the brain, taste also results from
the interaction of chemosensory stimuli with extraoral TRCs,
including those in the gastrointestinal (GI) tract [128—-130].
Although their function continues to be explored, GI taste re-
ceptors (i.e., sweet, bitter, fat, and amino acid receptors) appear
to modulate satiety hormones [131-135]. Furthermore, dysreg-
ulation of chemosensory pathways in the gut may contribute to
increased risk for obesity [136]. Given the importance of taste
perception in neuroendocrine functions, TRCs in the GI tract
could offer potential therapeutic targets in obesity [137ee].

Intragastric administration of quinine and/or MSG can alter
brain activation patterns in regions (insula, subcortical limbic and
memory structures, homeostatic and hedonic centers) that regu-
late food intake [129, 130]. Further, intragastric administration of
quinine can lead to lower hunger scores and hedonic eating,
which were associated with changes in orexigenic and satiety
gut hormone levels [128, 138, 139]. That gut taste receptor stim-
ulation affects brain activation patterns underscores the impor-
tance of oral-nasal-brain-gut axis signaling in chemosensory
pathways associated with appetite regulation, which may eluci-
date how nutritional interventions target these pathways in
obesity.

Studies of bariatric surgery on taste activation patterns in
obese populations lend further support for gut-brain axis signal-
ing in postoral nutrient sensing, or appetition. Indeed, bariatric
surgery has been shown to recover structural abnormalities and
mu-opioid receptor density in the insula [140, 141]. Additionally,
following bariatric surgery, the insula showed decreased resting-
state activity compared to pre-bariatric surgery, which may reflect
reduced interoceptive attention to hunger signals [142, 143].

While these studies show that vagal and gut-brain hormonal
signaling promotes satiety to control food intake in a negative-
feedback manner, appetition, a distinct process from satiation,
can drive positive reinforcement of food intake [144ee].
Conditioning studies in rodents have demonstrated that fla-
vored solutions paired with intragastric infusion of palatable
foods modulate flavor preferences, suggesting that gut-brain
signaling mechanisms drive appetition and increased food in-
take via postoral nutrient-conditioned preferences [145-147].
More research on these mechanisms may help identify better
targets for pharmacological blockade and subsequent reversal
of nutrient-conditioned flavor preferences [144ee].

Collectively, more research addressing the clinical implica-
tions of taste perception and extraoral chemosensory receptors
in obesity are needed to understand how different interven-
tions such as exercise may affect taste perception. For exam-
ple, exercise has recently been associated with increased sen-
sitivity and lower hedonic ratings to sweet and umami tastes
[148e¢]. In adolescents with obesity, high intensity interval
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exercise was associated with lower fat and sweet taste prefer-
ences and lower fat implicit wanting, all of which contributed
to reduced food intake [149]. With neuroimaging, the effects
of exercise on taste and smell perception would help elucidate
the neurobiological basis of exercise in the prevention of obe-
sity. Such knowledge could potentially help clinicians use
activity levels to guide personalized nutritional and dietary
interventions for obesity in the future.

Summary and Conclusion

In this review, we summarize the neural correlates of umami,
salty, fat, bitter, and sour tastes that may be altered in obesity, as
outlined in Table 1. While sweet taste is widely linked to obesity,
additional primary tastes, particularly fat and umami, may also
be implicated. Alterations in the neural correlates of the basic
tastes, notably fat and umami, may reflect different hedonic re-
sponses to taste information in obesity. However, limited and
conflicting findings of neuroimaging outcomes on bitter, salty,
and sour tastes highlight their inconclusive role in obesity.

Fat tastes recruit reward, executive control, and gustatory
brain regions that regulate dietary restraint [48—51]. Reduced
neural responses to fat in these regions have been associated
with increased intake of highly palatable food. Several fMRI
studies have supported these findings, demonstrating differen-
tial BOLD responses to fat taste in participants who were
obese or overweight compared to healthy controls, particular-
ly in the gustatory cortex and reward pathway [9, 10]. Thus,
hedonic eating in obesity may be driven by individual differ-
ences in the neural mechanisms of fat taste perception.
Further, variations in the CD36 taste receptor gene have been
associated with obesity in humans [13].

Similar to fat, umami tastes recruit reward, executive control,
gustatory, and salience networks in the brain, and are associated
with satiety levels. MSG has been studied for its role in appetite
suppression and calorie restriction [96, 97]. Further, fMRI stud-
ies suggest that MSG influences BOLD activation patterns in
areas related to dietary restriction and attention to food [86].
Together, these findings highlight the relevance of umami in
obesity in the context of weight loss. Studies of both fat and
umami found links between taste stimuli-induced BOLD re-
sponse and impulsivity, which further implicates taste percep-
tion in disinhibited eating and obesity [10, 86].

Although not discussed in this review, sweet tastes are asso-
ciated with altered activation in reward, executive control, ho-
meostatic, and affective brain regions in individuals with obe-
sity. Obese compared to healthy-weight individuals show de-
creased perfusion in the PFC but increased perfusion in the
hypothalamus following glucose and fructose consumption
[150]. In addition, obese and overweight compared to
healthy-weight individuals show differential BOLD response
to sweet taste in reward, gustatory, and affective brain regions;
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however, whether sweet taste coincided with differences in he-
donic and behavioral measures was mixed [9, 10, 119+, 151].

Together, these findings illustrate the neurobiological under-
pinnings of taste modalities and hedonics to food tastes and their
relevance in obesity. While neuroimaging studies of fat and uma-
mi tastes show the most robust association with obesity in the
present review, further studies on brain activation responses to
sour, salty, and bitter tastes are needed to understand the interplay
of primary taste perception in cognitive control over eating be-
haviors and dietary restraint. Given that smell modulates taste
perception to influence food intake, more neuroimaging studies
of smell in obesity are also needed. Indeed, application of odorant
stimuli delivery techniques to neuroimaging procedures such as
fMRI and EEG has started to gain traction in recent years [152,
153]. Further neuroimaging research is also needed to better
characterize the influence that taste receptors in the gut have on
brain responses following food consumption. A greater under-
standing of the brain responses to taste and smell in obesity may
help inform prevention and treatment efforts.
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