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Abstract. The segmentation of the dermal–epidermal junction (DEJ) in in vivo confocal images represents
a challenging task due to uncertainty in visual labeling and complex dependencies between skin layers.
We propose a method to segment the DEJ surface, which combines random forest classification with spatial
regularization based on a three-dimensional conditional random field (CRF) to improve the classification robust-
ness. The CRF regularization introduces spatial constraints consistent with skin anatomy and its biological
behavior. We propose to specify the interaction potentials between pixels according to their depth and their
relative position to each other to model skin biological properties. The proposed approach adds regularity to
the classification by prohibiting inconsistent transitions between skin layers. As a result, it improves the
sensitivity and specificity of the classification results. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:
10.1117/1.JMI.6.2.024003]
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1 Introduction
In this paper, we address the problem of segmenting the dermal–
epidermal junction (DEJ) in in vivo reflectance confocal micros-
copy (RCM) using a three-dimensional (3-D) conditional
random field (CRF) model.

The DEJ is a complex, surface-like, 3-D boundary separating
the epidermis from the dermis. Its peaks and valleys, called
dermal papillae, are due to projections of the dermis into the
epidermis. The DEJ undergoes multiple changes under patho-
logical or aging conditions. Alterations of the epidermal and
dermal layers induce a flattening of the DEJ,1,2 reducing the
surface for exchange of water and nutrient from the dermis to
the epidermis.

RCM is a powerful tool for noninvasively assessing skin
architecture and associated cytology. RCM images provide a
representation of the skin at the cellular level, with melanin and
keratin working as natural autofluorescent agents.3 Pellacani
et al.4 have shown that the use of RCM can improve the diag-
nosis of pathological lesions, while reducing the number of
unnecessary excisions. However, the review of confocal images
by trained dermatologists requires a lot of time and expertise.
Several approaches to automate confocal skin image analysis
have been proposed. In this context, they focus on quantifying
the epidermal state,5 performing computer-aided diagnostic of
skin lesions,6 or on identifying the layers of human skin.7–9

One particularly difficult point is the visualization of the
DEJ, which is hard to identify purely by visual means. In
fair skin, the DEJ can have multiple patterns. It can appear
as an amorphous and low-contrasted structure or as circular
rings, which correspond to the two-dimensional vertical view
of a dermal papillae (see Fig. 1). Automating the DEJ segmen-
tation makes it easier for clinicians to locate it and opens the way

to quantitatively characterize its appearance. It could further
improve the diagnosis of pathological lesions and could also
result in a better understanding of the skin physiological
response toward aging or other environmental conditions.

1.1 Related Work

As the DEJ appearance varies significantly and its contrast can
be low, the precise localization of the DEJ is difficult. Therefore,
in practice ground truth annotations often consist of three thick
layers: the epidermis (E), an uncertain area containing the DEJ
(U), and the dermis (D). There exist different approaches to
delineate skin strata in RCM, which can be divided two main
groups: on one hand, finding a continuous 3-D boundary
between the layers of the skin, which implies a pixel-level clas-
sification, and on the other hand, performing an image-level
classification to estimate the location of the transitions between
layers.

Kurugol et al.7 proposed a machine learning-based method
using textural features to automatically locate the DEJ location.
They reproduce the key aspects of human visual expertise,
which relies on texture and contrast differences between layers
of the epidermis and dermis, in order to locate the DEJ. They
used an LS-SVM method, a variant of support vector machine
(SVM), which takes into account the expected similarity
between neighboring tiles within images to include spatial rela-
tionship between neighbors and to increase robustness. They
also propose a second approach, which incorporates a math-
ematical shape model for the DEJ using a Bayesian model.10

The DEJ shape is modeled using a marked Poisson process.
Their model can account for uncertainty in number, location,
shape, and appearance of the dermal papillae. Their main focus
is to find the location of the DEJ rather than to study its shape.
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Hames et al.9 addressed the problem of identifying all of the
anatomical strata of human skin using a one-dimensional (1-D)
linear chain conditional random field and structured SVMs to
model the skin structure. They show an improvement in the
classification scores with the use of such a model. However,
their 1-D linear chain does not take advantage of the 3-D
organization of the skin structure to regularize their output
segmentation.

The following methods perform an image-level classification
instead of a pixel-level classification.

Somoza et al.11 used an unsupervised clustering method to
classify a whole en-face image as a single distinct layer, result-
ing in a good correlation between human classification and auto-
mated assessment. However, the classification assumes that each
image contains a single class, and therefore does not allow to
capture the complex shape of the DEJ.

Kaur et al.12 used a hybrid of classical methods in texture
recognition and recent deep learning methods, which gives
good results on a moderate size database of 15 stacks. They clas-
sify each confocal image as one of the skin layers. They intro-
duce a hybrid deep learning approach which uses traditional
feature vectors as input to train a deep neural network.

Bozkurt et al.13 proposed the use of deep-recurrent conven-
tional neural networks (RNN)14,15 to delineate the skin strata.
The dataset used in this study is composed of 504 RCM stacks.
Each confocal image is labeled in one of three classes: epider-
mis, DEJ, or dermis. They make the assumption that the skin
layers are ordered with depth: the epidermis is the top layer
of the skin, followed by the DEJ and the dermis. The use of
deep RNN on a large dataset allows them to take the sequential
dependencies between different images into account. They have
trained numerous models with varying networks architectures to
overcome the computational memory issues. This approach is
potentially more flexible, as it provides the model with the com-
plete RCM stack and allows it to learn what information is use-
ful for slice-wise classification. With partial sequence training,
the authors showed no improvement when enlarging the neigh-
borhood of images around the RCM image to be classified.
Bozkurt et al.16 added a soft attention mechanism in order the
get information about which images the network pays attention
to which making a decision.

Due to the uncertainty in visual labeling and intersubject
variability, state-of-the-art methods tend to combine textural
information and prior information on the DEJ shape, either
by modeling the DEJ shape or by using a regularization of
the segmentation through depth. The use of an RNN enables
the representation of the dependencies between images.

Most methods focus on the localization of the DEJ in depth,
with no consideration toward the characterization of its shape.
Our goal is to segment the DEJ shape in order to quantify
the modifications it undergoes during aging. In order to do so,
we aim to combine textural information and 3-D dependencies
between pixels within an RCM stack to perform a pixel-level
segmentation.

Graphical models appear to be well-adapted and useful tools
toward this purpose.

1.2 Modeling with Conditional Random Fields

Segmenting boundaries of interest in 3-D microscopy images
are often challenging due to high intra- and intersubject (or
specimen) variability and the complexity of the boundary struc-
tures. This task involves predicting a large number of variables
(each image pixel is a variable) that depend on each other as well
as on other observed variables. In this paper, we address the
problem of segmenting the DEJ, a complex 3-D structure,
imaged using in vivo RCM.

The way output variables depend on each other can be rep-
resented by graphical models, which include various classes of
Bayesian networks, factor graphs, Markov random fields, and
conditional random fields.

Most works in graphical models have focused on models
that explicitly attempt to model a joint probability distribution
pðyjxÞ, where y and x are random variables, respectively, rang-
ing over observations and their corresponding label sequences.
These models are fully generative, and they identify dependent
variables and define the strength of their interactions. The
dependencies between features can be quite complex, and the
construction of the probability distribution over them can be
challenging.

A solution to this problem is the modeling of a conditional
distribution. This is the approach taken by CRF.17 A detailed
review can be found in Sutton et al.18 Conditional random fields

(a) (b)

Fig. 1 Examples of different DEJ patterns. The circular rings pattern in (a) provides an easy identification
of the DEJ compared to the uncertain one in (b). However, the latter one is the most frequent, especially
on the cheeks.
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are popular techniques for image labeling because of their
flexibility in modeling dependencies between neighbors and
image features. Linear chain CRFs are the simplest and the
most widely used. They have become very popular in natural
language processing19,20 and bioinformatics.21 Applications of
CRFs have also extended the use of graphical structures in com-
puter vision.22,23 Medical imaging has been a field of interest in
applying CRFs to many segmentation problems such as brain
and liver tumor segmentation.24,25

1.3 Contribution

Our approach consists of designing a 3-D conditional random
field, which allows us to provide a spatial regularization on
label distribution and to model skin biological properties.
Our emphasis lies on exploiting the additional depth and 3-D
information of the skin architecture. To our knowledge, this
is the first method to include 3-D spatial relationships and to
incorporate prior information about the global skin architecture.

We aim to segment the confocal images in three classes: epi-
dermis (E), uncertain (U), and dermis (D). Our approach starts
with a random forest (RF) classifier, providing the probabilities
of a pixel to belong to one of these three classes, with no
assumptions on the dependencies between pixels. The RF output
encodes the textural information and gets in the CRF potentials.

The CRF model parameterization is inspired by prior infor-
mation on the skin structure. The skin architecture is modeled
by the conditional relationship between pixels. The relations
between pixel neighbors mimic the skin layers behavior in
3-D by imposing a specified potential function according to
their depth and their relative position to each other. The CRF
potentials are learned from annotated skin RCM data. The
CRF model allows us not only to incorporate resemblance
between neighbors, but also to specify biological information.

We present several experiments, proving the benefit of the
adapted CRF potentials to model the skin properties compared
to more standard CRF parameterization strategies and to state-
of-the-art methods.

2 Conditional Random Fields
An image I consists of M pixels i ∈ S ¼ ½1;M� with observed
data yi, i.e., y ¼ ðy1; y2; : : : ; yMÞ. Pixels are organized in layers
(en-face images) forming a 3-D structure. We want to assign
a discrete label xi to each pixel i from a given set of classes
C ¼ fE;U;Dg. The classification problem can be formulated
as finding the configuration x̂ that maximizes pðxjyÞ, the pos-
terior probability of the labels given the observations.

A CRF is a model of pðxjyÞ that can be represented with
an associated graph G ¼ ðV;EÞ, where V is the set of vertices
representing the image pixels and E the set of edges modeling
the interaction between neighbors.26 Here E is the usual 3-D
six-connectivity.

We use a model with pairwise interactions defined by

EQ-TARGET;temp:intralink-;e001;63;171pðxjyÞ ∝
Y

i∈S
φiðxi; yÞ ×

Y

ði;jÞ∈E
ψ ijðxi; xj; yÞ; (1)

where φiðxi; yÞ is the node potential linking the observations to
the class label at pixel i, and ψ ijðxi; xj; yÞ is the interaction
potentials modeling the dependencies between the labels of
two neighboring pixels i and j.

The CRF model is represented in Fig. 2.

In this paper, we propose to specify the CRF potentials in
order to incorporate biological information. The skin layers
are strictly ordered according to their depth. The epidermis is
the top skin layer, followed by the uncertain area (containing
the DEJ) and then by the dermis. Therefore, a pixel located
near the surface will have a higher probability to belong to
the epidermis than to the uncertain area or to the dermis. The
CRF potentials are defined in order to forbid the incoherent
transitions between layers.

The CRF parameters are depth-dependent. We define D the
set of all depths of the image I. For each d ∈ D, we define:

• Sd is the set of pixels at depth d,

• Ed is the set of edges at depth d,

• Ed→d�1 is the set of edges between depth d and dþ 1,
resp. d − 1.

The notation 1x¼c represents the indicator function, which
takes the values 1 when x ¼ c and 0 otherwise. We denote
by xT the transposed vector of x. The operators ∘ and · denote,
respectively, the Hamadar product (element-wise multiplication)
and the dot (or scalar) vector product.

2.1 Node Potential

The node potential is defined as the probability of a label xi to
take a value c given the observed data y, that is:

EQ-TARGET;temp:intralink-;e002;326;260φiðxi ¼ c; yÞ ¼ p½xi ¼ cjf iðyÞ�; (2)

with f iðyÞ a feature vector computed at pixel i from the
observed data.

In our case, each node potential φiðxi; yÞ is associated
with the predicted class probability vector f iðyÞ produced by
an RF classifier.27 The node potentials φiðxi; yÞ are linked by
the relation

EQ-TARGET;temp:intralink-;e003;326;163

Y

i∈S
φiðxi ¼ c; yÞ ¼

Y

d∈D

Y

i∈Sd

1xi¼c ∘ θd · f iðyÞT: (3)

The parameter θd ¼ ðθepidermis; θuncertain; θdermisÞ balances the
bias introduced by labels appearing more often in the training
data, i.e., the epidermal and the dermal one.

Fig. 2 Three-dimensional CRFmodelization. The set of nodes in gray
and in white belong to two different en-face sections. The edge poten-
tials of each en-face sections ψ jk [Eq. (3)] are learned at each depth.
Edge potentials between en-face sections ψ i j [Eq. (3)] impose biologi-
cal transition constraints.
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The feature vector f iðyÞ is a 1 × 3 vector of probability for a
pixel to belong to each label. It is produced by an RF classifier27

along with bootstrap aggregating and feature bagging.
Features are computed within a 50 × 50 pixel window,

which is large enough to include two epidermal cells forming
the epidermal honeycomb pattern as their diameter varies from
15 to 35 μm. We use the following well-known textural features
inspired by Ref. 7:

1. First- and second-order statistics. We calculate statis-
tical metrics mean, variance, skewness, and kurtosis.

2. Power spectrum28 of the window.

3. Gray level co-occurrence matrix contrast, energy, and
homogeneity.29 The features are calculated for four
orientations (0 deg, 45 deg, 90 deg, and 135 deg).

4. Gabor response filter output.30,31 We compute a bank
of Gabor filters with four levels of frequency and four
orientations. As features, the local energy and the
mean amplitude of the response are used.

We propose new features to estimate the distance of the
current pixel to the DEJ.

The Laplacian is related to the curvature of intensity changes.
In classical edge detection theory,32 the zero-crossings of
the Laplacian indicate contour locations. High values in the
Laplacian are also associated with rapid intensity changes. The
DEJ is an amorphous area compared to the epidermis, which
appears as a honeycomb pattern, and to the dermis, which con-
tains collagen fibers. Thus we expect low values in the Laplacian
variance32 in confocal sections around the DEJ location. For a
pixel i at a given confocal section p, we calculate the Laplacian
variance for every confocal section at its location.

A feature vector is computed containing the Laplacian vari-
ance at pixel i coordinates at all depths. The pixel i is charac-
terized by its distance along the z axis to its closest minimum in
the feature vector. We add to the set of features: the Laplacian
variance of pixel i, its distance to its closest minimum as

described above and the features (Laplacian variance and depth)
of its closest minimum within the Laplacian feature vector.
An example is presented in Fig. 3. The distance to the closest
minimum is expressed as the product of the number of confocal
images to the closest minimum and the step that has been set for
the 3-D acquisition. It is thus expressed in micrometer. For a
given acquisition protocol, the distance to the closest minimum
should be adjusted by the step parameter.

These features were chosen for their ability to discriminate
texture from blurry patterns, which mostly corresponds to the
DEJ pattern. The ringed DEJ pattern can be identified via its
strong contrast and specific spatial arrangement. A summary of
the proposed features is presented in Table 1.

2.2 Interaction Potential

The interaction potential describes how likely xi is to take the
value c given the label c 0 of one of its neighboring pixel j:

EQ-TARGET;temp:intralink-;e004;326;358ψ ijðxi ¼ c; xj ¼ c 0; yÞ ¼ pðxi ¼ cjxj ¼ c 0Þ: (4)

Prior information on skin structure is essential to determine
efficiently the interaction potentials in our CRF model. The
interaction potentials are modeled by a 3 × 3matrix representing
the transition probabilities between classes.

We define two types of transitions: the transitions within
a layer referred to as Hd, which are symmetrical and depth-
dependent and the transitions interlayers Vþd and V−d, which
are directional and also depth-dependent.

The product of the pairwise interaction potentials
ψ ijðxi; xj; yÞ is expressed as
EQ-TARGET;temp:intralink-;e005;326;217 Y

ði;jÞ∈E
ψ ijðxi ¼ c; xj ¼ c 0; yÞ ¼

Y

d∈D

Y

ði;jÞ∈Ed

1xi¼c · Hd · 1Txj¼c 0

∘
Y

ði;jÞ∈Ed→dþ1

1xi¼c · Vþd · 1Txj¼c 0

∘
Y

ði;jÞ∈Ed→d−1

1xi¼c · V−d · 1Txj¼c 0 : (5)

2.2.1 Within-layer interaction potential

The within-layer interaction potentialHd models the behavior of
the skin at a given depth. We know that several skin layers can

Fig. 3 Laplacian variance and distance to the closest minimum for a
pixel between 20 and 120 μm. The blue line represents the Laplacian
variance at coordinates ði ; jÞ at all depths. The dashed vertical lines
mark the position of the minimum of the Laplacian variance. The red
line corresponds to the distance to the closest minimum.

Table 1 Set of the 52 features used to produce the node potentials.

Feature type
Number of
features Presumed use

Statistics 4 Low intensity of the blurry DEJ pattern

Power spectrum 1 Low intensity of the blurry DEJ pattern

Gray-level co-
occurrence matrix

12 Epidermal pattern and ringed
DEJ pattern

Gabor output filter 32 Blurry pattern of the DEJ, epidermal,
and dermal contrasted pattern

Laplacian 3 Blurry pattern of the DEJ and
its location in depth
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coexist in a single en-face section. In an en-face section, edges
are modeled symmetrically, i.e., ψ ij ¼ ψ ji (dashed lines in
Fig. 2). The within-layer interaction potential Hd is then mod-
eled as a symmetrical matrix, see Table 2.

2.2.2 Interlayer interaction potential

The skin layers follow a specific order from the surface to inner
layers: the epidermis is the top skin layer, followed by the uncer-
tain area (containing the DEJ), and then by the dermis. We
define an inconsistent transition as a transition not following
this specific order. Between en-face sections, only consistent
transitions are allowed, the edge potentials thus depend of
their direction, i.e., ψ ij ≠ ψ ji.

To impose the biological transition order in depth, constraints
are added to the transition matrix according to the edge direc-
tion. We define in Table 3 Vþd as the vertical transition matrix
from pixels i to j, with i above j. The reverse transition matrix
V−d from j to i is then defined in Table 4.

2.3 Parameter Optimization

The parameters described above are learned from the ground
truth dataset.

Our model can be expressed as

EQ-TARGET;temp:intralink-;e006;326;539 log½pðxjyÞ� ¼
X

i∈S
log½φiðxi;yÞ� þ

X

i;j∈E
log½ψ ijðxi; xjÞ�: (6)

We define Ωd the set of parameters at depth d and
Ω ¼ S

d∈DΩd the set of parameters for all depths. The set of
parameters is summarized in Table 5.

Our goal is to find the set of parameters Ω that maximizes
the log-likelihood:

EQ-TARGET;temp:intralink-;e007;326;443Ω ¼ argmax
Ω

X

i∈S
logfp½xi ¼ cxjf iðyÞ�g; (7)

with cx is the class of x, and fðyiÞ is the feature vector.
The parameters θd, Hd, Vþd, and V−d are depth-dependent.

We estimate such transition probabilities from the frequency of
co-occurrence of classes (c and c 0) between neighboring pixels i
and j in the ground truth images. Co-occurrence frequencies are
learned at each depth d ∈ D of en-face sections. The value of
θd is initialized at [0.3 0.3 0.3] for all depths and optimized
to increase the model accuracy.

For each depth d, we estimate the parameters of Ωd.
The number of parameters N to estimate for n depths is
given by the following formula: N ¼ ðθd × nÞ þ ðHd × nÞ þ
½V þd ×ðn − 1Þ� þ ½V −d ×ðn − 1Þ�, which leads us to 370
parameters for 20 depths (see Table 5). The parameters in Ω
are trained using the Powell search method, an iterative optimi-
zation algorithm33 that does not require estimating the gradient
of the objective function. We use a loopy belief propagation

Table 2 Horizontal transition matrix with neighboring pixels i and j
where ad ; : : : ; f d are the learned probabilities of transition see
Sec. 2.3. The symmetric, nonzero values ensure that transitions in
both ways are equally possible.

Labeli

Labelj

Epidermis Uncertain Dermis

Hd ¼ Epidermis ad bd cd

Uncertain bd dd ed

Dermis cd ed f d

Table 3 Vertical transition matrix with i above j wheremd ; : : : ; sd are
the learned probabilities of transition. The null values ensure that
inconsistent transitions are impossible.

i

j

Epidermis Uncertain Dermis

Vþd ¼ Epidermis md nd pd

Uncertain 0 qd r d

Dermis 0 0 1

Table 4 Vertical transition matrix with j below i wheremd ; : : : ; sd are
the learned probabilities of transition. The null values ensure that
inconsistent transitions are impossible.

j

i

Epidermis Uncertain Dermis

V−d ¼ Epidermis 1 0 0

Uncertain nd qd 0

Dermis pd r d md

Table 5 Set of parameters of Ωd for the CRF model.

Parameter Form Number of parameters Use

θd 1 × 3 vector 3 Weight bias vector used to balance the labels occurrences

Hd 3 × 3 symmetrical matrix 6 Transition matrix between classes at depth d

Vþd 3 × 3 upper triangular matrix 5 Transition matrix between classes between d and d þ 1

V−d 3 × 3 lower triangular matrix 5 Transition matrix between classes between d and d − 1
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method to estimate pðxjyÞ. The computation is done using the
library developed in DGM Lib.34

3 Experimentation

3.1 Database

Image acquisition was carried out on the cheek to further
assess chronological aging. RCM images were acquired using a
near-infrared reflectance confocal laser scanning microscope
(Vivascope 1500; Lucid Inc., Rochester, New York).35 On each
imaged site, stacks were acquired from the skin surface to
the reticular dermis with a step of 5 μm. Our dataset consists
of 23 annotated stacks of confocal images acquired from
15 healthy volunteers, with 1.5� 0.5 stacks/subject, with
phototypes from I to III,36 i.e., from volunteers whose skin
strongly reacts to sun-exposure. As melanin is a strong contrast
agent in confocal images, confocal images of fair skin represent
the most challenging analysis compared to higher melanin
content. The more melanin, the more contrasted skin confocal
patterns.

Neither cosmetic products nor skin treatment was allowed on
the day of the acquisitions. Appropriate consent was obtained
from all subjects before imaging. Visual labeling of the DEJ
is not easy to perform even for experts. An expert, whose grad-
ing had been previously validated, delineated the stacks in three
zones: epidermis (E), uncertain (U), and dermis (D) (see Fig. 1).
We segmented confocal images between depths 20 and 120 μm,
the images above 20 μm belonging to the epidermis with high
confidence. We used a subject-wise 10-fold cross validation test
to evaluate the segmentation results. In order to compare the
results, the same subdataset is used for both the training and
testing parts for all the experiments. As several stacks acquired
from one subject can contribute to the annotation dataset,
stacks acquired from the same subject are not considered as
independant data. Therefore, a subject-wise cross-validation is
conducted, i.e., one subject cannot belong to both the training
and testing sets at each fold.

3.2 Feature Evaluation

To evaluate our proposed set of features used for the RF clas-
sification, we compare the mean accuracy of our classification
results to the state-of-the-art methods. The mean accuracies of
the RF classifications are presented in Table 6. Kurugol et al.7

achieved 64%, 41%, and 75% of correct classification of tiles for
epidermis, transition region, and dermis, respectively. Hames
et al.9 achieved 82%, 78%, and 88% of correct classification
for the epidermis, DEJ, and dermis, respectively. With the

proposed set of features, we were able to achieve 90%, 54%,
and 75% accuracy, respectively, for the epidermal, uncertain
area, and dermal classification. These results suggest that our
set of features is relevant to identify the three skin labels accord-
ing to the visual inspection by experts. However, the result of
our initial classification still contains 11% of inconsistent
transitions (not following the expected biological order), see
Table 10, motivating the introduction of spatial constraints
with the CRF regularization.

3.3 CRF Parameters Evaluation

To evaluate the chosen parameters, we compare three cases:

1. CRF2-D is the CRF with only horizontal regularization.
Each confocal section is regularized independently
using the horizontal transition matrix Hd.

2. CRF3-DSym is the CRF with horizontal regularization
Hd and symmetrical vertical regularization, i.e.,
Vþd ¼ V−d.

3. CRF3DAsym is the CRF with horizontal regularization
Hd and asymmetrical vertical regularization, i.e.,
Vþd ≠ V−d. This is our proposed model where the
skin layers order is imposed.

The global accuracies, presented in Table 7, for the three
experiments are comparable. We also achieve a high specificity
for the three classes (above 0.90%), see Table 8. The
CRF3-DAsym parameterization allows us to increase the sensitiv-
ity of the uncertain area classification, compared to CRF2-D and
CRF3-DSym, while maintaining the epidermal and dermal sensi-
tivity above 0.90%, see Table 9.

Table 6 Results for the unregularized experiments. Mean accuracy
of the RF classifications of the three labels. The RF classification pro-
vides the node potentials for the CRF model.

Epidermis Uncertain Dermis
Number of
RCM stacks

Proposed features 0.90 0.54 0.75 23

Kurugol et al.7 0.64 0.41 0.75 15

Hames et al.9 0.82 0.78 0.88 308

Table 7 Global accuracy percentage for the three regularization
schemes.

Accuracy

RF 78

RFþ CRF2-D 85

RFþ CRF3-DSym 85

RFþ CRF3-DAsym 86

Table 8 Specificity of the three labeling in the regularized cases.

Specificity

Epidermis Uncertain Dermis

CRF2-D 0.90 0.89 0.93

CRF3-DSym 0.94 0.92 0.95

CRF3-DAsym 0.96 0.92 0.95
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We have defined an inconsistent transition as a transition
between skin layers, which does not follow the biological
order. The resulting segmentation with CRF2-D contains
18% of inconsistent transitions. CRF3-DSym still contains 4%

of inconsistent transition, whereas CRF3-DASym contains
none. The inconsistent transitions’ percentages are presented
in Table 10.

Examples of resulting segmentations at two following depths
are presented in Figs. 4 and 5. A direct classification after fea-
tures calculation leads to a misclassification and inconsistent
transitions between classes. The positive impact of our CRF
model is noticeable. Moreover, the computation of the DEJ
segmentation only takes a few minutes per stack on a common
computer, which enables the use of its use in large-scale analysis
and clinical studies.

One can notice that the optimization of the parameter set Ω
improves the sensitivity of the uncertain area classification
from 66% to 68% and the epidermal and dermal specificity
up to 95%.

3.4 Comparison to State-of-the-Art Methods

We compare our results to the state-of-the-art methods. The
results presented below should be considered with caution,
because of the differences in labeling and dataset size.

Global accuracy of our model is similar to state-of-
the-art methods. The sensitivity and specificity results of the
regularized CRF model are presented in Tables 11 and 12.
The specificity results obtained by Kurugol et al.7 are not
available.

Deep learning methods by Bozkurt et al.16 and Kaur
et al.12 seem to also take into account the dependencies between
images to perform the classification, the author did not observe
any incoherent transitions, but the regression might lack
interpretability.

Fig. 4 Segmentations at depth d : epidermis (red), uncertain (yellow), dermis (blue). (a) Annotated image
at depth d , (b) RF at depth d , (c) CRF2-D at depth d , (d) CRF3-DSym at depth d , and (e) CRF3-DAsym at
depth d . The addition of constraints into the CRF model improves the accuracy of the segmentation.

Table 10 Percentage of inconsistent transitions between the skin
layers. Epidermis, E; uncertain, U; and dermis, D.

U → E D → U D → E Total (%)

RF 0.6 2 3 11

RFþ CRF2-D 7 3 8 18

RFþ CRF3-DSym 0 4 0 4

RFþ CRF3-DAsym 0 0 0 0

Table 9 Sensitivity of the three labeling in the regularized cases.

Sensitivity

Epidermis Uncertain Dermis

CRF2-D 0.90 0.63 0.83

CRF3-DSym 0.91 0.55 0.90

CRF3-DAsym 0.90 0.68 0.93
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4 Conclusion
We have proposed a method to segment the DEJ in confocal
microscopy images. This method combines RF classification
with a spatial regularization based on a 3-D CRF. Moreover,
the 3-D CRF imposes constraints related to the skin biological
properties. The ablation analysis of the model has shown
the importance of each of its components—RF, spatial regulari-
zation, and biological constraints—in order to achieve the best
results. In addition, the results show that the proposed method is
competitive compared to state-of-the art methods.

Our DEJ segmentation algorithm has already been used
in the context of automatic skin aging characterization
from RCM images.37 Indeed, the alteration of the epidermal
and dermal layers within skin aging induces a flattening of
the DEJ (see Fig. 6) and Longo et al.38,39 have identified
the shape of the peaks and valleys of the DEJ as a skin
aging confocal descriptor. We have proposed a characteristic
measurement of regularity of the DEJ that can be
computed automatically. This measurement, extracted on
the DEJ segmented by the method presented in this paper,
has a significant positive correlation with the age of the
subjects.

Table 11 Sensitivity results of CRF3-DAsym compared to state-of-the-
art methods.

Sensitivity Ground
truth
level

Number
of RCM
stacksEpidermis Uncertain Dermis

CRF3-DAsym 0.90 0.68 0.93 Pixel 23

Kurugol et al.7 0.64 0.41 0.75 Pixel 15

Hames et al.9 0.87 0.79 0.88 Image 308

Bozkurt et al.16 0.94 0.84 0.84 Image 504

Kaur et al.12 0.74 0.51 0.68 Image 15

Table 12 Specificity results of CRF3-DAsym compared to state-of-the-
art methods

Specificity Ground
truth
level

Number
of RCM
stacksEpidermis Uncertain Dermis

CRF3-DAsym 0.96 0.92 0.95 Pixel 23

Hames et al.9 0.94 0.87 0.94 Image 308

Bozkurt et al.16 0.96 0.90 0.96 Image 504

Kaur et al.12 0.86 0.75 0.85 Image 15

Fig. 5 Segmentations at depth d þ 1. (a) Annotated image at depth d þ 1, (b) RF at depth d þ 1,
(c) CRF2-D at depth d þ 1, (d) CRF3-DSym at depth d þ 1, and (e) CRF3-DAsym at depth d þ 1.
Inconsistent transitions exist between depth d and d þ 1. One can notice the misclassification obtained
by RF and CRF2-D. The use of CRF3-DAsym provides a coherent segmentation.
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