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Electrophysiological and transcriptomic
correlates of neuropathic pain in human dorsal
root ganglion neurons
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Neuropathic pain encompasses a diverse array of clinical entities affecting 7-10% of the population, which is challenging to
adequately treat. Several promising therapeutics derived from molecular discoveries in animal models of neuropathic pain have
failed to translate following unsuccessful clinical trials suggesting the possibility of important cellular-level and molecular differ-
ences between animals and humans. Establishing the extent of potential differences between laboratory animals and humans,
through direct study of human tissues and/or cells, is likely important in facilitating translation of preclinical discoveries to
meaningful treatments. Patch-clamp electrophysiology and RNA-sequencing was performed on dorsal root ganglia taken from
patients with variable presence of radicular/neuropathic pain. Findings establish that spontaneous action potential generation in
dorsal root ganglion neurons is associated with radicular/neuropathic pain and radiographic nerve root compression.
Transcriptome analysis suggests presence of sex-specific differences and reveals gene modules and signalling pathways in
immune response and neuronal plasticity related to radicular/neuropathic pain that may suggest therapeutic avenues and that
has the potential to predict neuropathic pain in future cohorts.
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Introduction

Significant effort has been placed on development of mo-
lecularly targeted therapies for neuropathic pain given the
tremendous unmet need and consequent expanding chronic
pain epidemic (van Hecke et al., 2014). Yet, numerous
promising therapeutics derived from discoveries in animal
models have failed in clinical trials (Hill, 2000; Gavva
et al., 2008). A variety of factors have been proposed as
possible causes for these failures with basic cellular-level
and molecular differences between animals and humans
commonly implicated (Borsook et al., 2014; Gereau et al.,
2014). More efficient translation may be facilitated through
direct study of human tissues and/or cells. Prior laboratory
studies with human dorsal root ganglion (DRG) neurons
from foetal tissue, post-mortem organ donation, and pa-
tients undergoing surgical treatments for chronic pain
have attempted to make such confirmations by probing a
wide array of basic histochemical and electrophysiological
parameters (Baumann et al., 1996; Borsook et al., 2014;
Davidson et al., 2014; Li et al., 2015, 2017). However, a
key gap in knowledge is direct comparison of DRG neuron
electrophysiology and paired gene expression profiling from
patients with and without chronic neuropathic pain. Using
a unique cohort of patients, here we provide detailed elec-
trophysiological characterization and RNA sequencing
(RNA-seq) of DRG neurons and tissue, respectively, from
people with neuropathic pain. Our results provide clear
evidence of spontaneous activity in sensory neurons as a
driver of neuropathic pain; and our RNA-seq data suggest
key pathways for targeted therapeutics and reveal potential
biomarkers for neuropathic pain.

Materials and methods

Study approval

Written informed consent for participation, including use of
tissue samples, was obtained from each patient prior to inclu-
sion. The protocol was reviewed and approved by the M.D.
Anderson and The University of Texas at Dallas Institutional
Review Boards and all experiments conform to relevant guide-
lines and regulations.

Clinical data collection

Clinical data were obtained from patients undergoing treat-
ment at MD Anderson Cancer Center for malignant tumours
involving the spine through a combination of retrospective
review of medical records and prospective data collection at
the time of study enrolment. These data included basic patient
demographics, medical history, and clinical symptoms.
Preoperative MRI was evaluated for radiographic evidence of
spinal cord or nerve root compression. Spinal cord compres-
sion was evaluated according to the epidural spinal cord com-
pression scale (Bilsky et al., 2010). Presence of nerve root
compression was determined based on a documented report
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from a neuroradiologist or review by a neurosurgeon. Axial
spine pain was defined as present if there was a documented
history of pain complaint in the midline in the neck or back,
or if physical exam findings indicative of the axial spine as a
pain generator was present. Axial spine pain was determined
as absent if there was no documentation of a history of mid-
line pain in the neck/back and a documented denial of axial
pain, nor any physical exam findings indicative of axial spine
as a pain generator. Determination of presence or absence of
radicular/neuropathic pain was performed for each dermatome
associated with a harvested dorsal root ganglion and consist-
ent with the guidelines for probable or definite neuropathic
pain from the Assessment Committee of the Neuropathic
Pain Special Interest Group of the International Association
for the Study of Pain (IASP) (Haanpaa et al., 2011).
Specifically, pain was deemed present if the patient had docu-
mented symptoms of spontaneous pain, sensory loss, paraes-
thesia, dysaesthesia, hyperalgesia, or allodynia in a distribution
at or within two classically defined dermatomes of the har-
vested ganglion. Neuropathic pain was considered absent if
the patient had no history of any symptoms defined in part
1 or if the ganglion was harvested from the side contralateral
to reported pain in a patient with only unilateral symptoms.
Any remaining scenario was categorized as indeterminate and
neurons from these ganglia excluded from analysis of associ-
ations with clinical data. Of note, although some patients had
a history of chemotherapy treatment, the DRG collected here
were outside the dermatomes affected by length-dependent
neuropathy. Detailed clinical characteristics for the entire
cohort are found in Supplementary Table 1.

Human dorsal root ganglion neuron
preparation

Human DRG neurons were prepared as described previously
(Li et al., 2015, 2017) and based largely on additional prior
work (Davidson et al., 2014). Briefly, each donor was
undergoing surgical treatment that necessitated ligation of
spinal nerve roots to facilitate tumour resection or spinal re-
construction. Spinal roots were ligated proximal to the DRG,
spinal root sharply cut both proximal and distal to the DRG,
and excised DRG transferred immediately into cold (~4°C)
and sterile balanced salt solution containing nutrients. DRG
were transported to the laboratory on ice in a sterile, sealed
50-ml centrifuge tube. Upon arrival to the laboratory, each
ganglion was carefully dissected from the surrounding connect-
ive tissues and sectioned into three to four parts. One section
was immediately frozen in RNAlater (Ambion) and saved for
subsequent RNA sequencing. One or two sections of DRG
were further cut into several ~1-2-mm pieces and cells disso-
ciated for electrophysiology recording. Further details on the
DRG cell dissociation, recording procedures can be found in
the Supplementary material.

RNA sequencing

Total RNA from 21 quartered DRG samples from 15 patients
were purified using TRIzol™ (ThermoFisher) and subjected to
ribosomal RNA depletion and total RNA Tru-seq library prep-
aration according to the manufacturer’s instructions (Illumina).
Tru-seq total RNA library kit with ribosomal RNA depletion
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(llumina) was used to generate sequencing libraries. Fifty
cycle, single-end sequencing of these RNA-seq libraries was
performed on the Illumina Hi-Seq sequencing platform.
Obtained sequencing reads were mapped to the reference
genome in a strand-aware fashion, retaining only uniquely
mapped reads, based on the reference transcriptome annota-
tions and the reference human genome hgl9 in the NCBI
Entrez/RefSeq database (Maglott et al., 2005). The bowtie2
tool (with maximum allowed alignment mismatch <2)
(Langmead and Salzberg, 2012) was used for mapping reads
and the Subread package was used for counting mapped reads
(Liao et al., 2013). Read counts were normalized to transcripts
per million for downstream analysis.

Random Forest-based prediction of cohort
membership

We performed a proof-of-principle analysis for predicting the
pain categorization of each sample based solely on the RNA
abundance profile using the predictive classification model
Random Forest, which uses an ensemble of decision trees to
classify samples, and which has been used successfully in
whole genome assay studies (Chen and Ishwaran, 2012). We
built separate classifiers to discriminate between male-pain and
male-no pain samples; and between male-pain and female-pain
samples, solely based on the RNA profile of the autosomal
gene expression profile of the corresponding sample. We per-
formed leave-one-out cross validation analysis, by training our
Random Forest model on all but one of the samples. We then
blinded ourselves to the cohort membership of the held out
sample (referred to as the test sample), and then predicted the
label of the test sample using its RNA profile. This analysis
was performed on every sample in turn to generate a cohort
membership prediction for every sample based on their indi-
vidual RNA profiles. Our leave-one-out cross validation ap-
proach provides an alternative to an independent validation
cohort for confirming whether conclusions drawn from our
present cohort about discriminative gene sets can be success-
fully applied to new datasets.

Statistics and computation: clinical,
electrophysiological and RNA-seq
data analysis

Clinical and electrophysiological data were analysed with
GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA).
Unless otherwise specified, data are expressed as mean +
standard error of mean (SEM). Continuous variables were
analysed with Mann-Whitney U-test. Fisher’s exact test was
used for analysis of contingency tables. Details of the compu-
tational analysis of the RNA-seq data (including the random
forest classification algorithm) can be found in the
Supplementary material.

Data availability

The neurophysiological data can be shared on request. The
full transciptomic dataset and code for analysis is available
at: https://www.utdallas.edu/bbs/painneurosciencelab/sensoryo-
mics/hdrgclinical/. Raw sequencing datasets are available from
the dbGaP repository as single-end read libraries
(phs001158.v2.p1).
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Results

Sixty-six DRG were collected from 26 (eight female and 18
male) patients whose clinical data, including opioid con-
sumption, are summarized in Supplementary Table 1. The
donor cohort in this study is unique in that all donors had
a complete medical history available for review allowing us
to make clear distinctions between pain and no pain sam-
ples for electrophysiological and RNA-seq analyses. The
majority of patients (7 =17) were afflicted with metastatic
carcinoma to the spine versus primary malignancies of
bone (n=7) or local extension of a primary carcinoma
(n=2); and most (n=25) had a history consistent with
axial spine pain. Presence versus absence of associated der-
matomal radicular/neuropathic pain was determined for all
donated ganglia. These criteria defined three patient
groups. The first was composed of six patients with iso-
lated axial spine pain, but without any radicular/neuro-
pathic pain (Fig. 1A-C). Group 2 included 15 patients
with unilateral radicular/neuropathic pain (Fig. 1D and E)
and Group 3 included five patients with bilateral radicular/
neuropathic pain (Fig. 1G-I). Radicular/neuropathic pain
was strongly associated with radiographic evidence of
nerve root compression (Fig. 1K, 35/39 compressed ganglia
with pain, P < 0.001). At maximal intensity, median visual
analogue pain scale (VAS) was 7.72 for the entire cohort
and no statistically significant difference between VAS score
for patients with versus without radicular/neuropathic
symptoms (7.72 versus 7.53, P =0.85). The majority of
patients’ radicular/neuropathic symptoms were present for
more than 6 months (12/20) and there were no patients
without symptoms dating back at least 1 month.
Whole-cell patch clamp recordings were performed on
samples from 17 patients from a total of 28 DRG after
dissociation and >24h in culture. The median patched
cells per patient was nine (range 2-26). Spontaneous activ-
ity was recorded in 13% of neurons (20/149), from 39% of
donated DRG (11/28), and in 59% of patients (10/17).
Representative analogue traces show the baseline mem-
brane potential in a non-spontaneous activity neuron was
stable (Fig. 1]); whereas the exploded view of the baseline
membrane potential (Fig. 1K) and compressed time base
(Fig. 1L) for a neuron with spontaneous activity show the
occurrence of spontaneous depolarizations of membrane
potential was only observed in cells with spontaneous ac-
tivity (Fig. 1K) and these cells typically showed an irregular
pattern of action potentials (Fig. 1L). Statistical analysis
relating the clinical parameters to electrophysiology re-
vealed significant associations of spontaneous activity and
neuronal hyperexcitability [hyperpolarization of action po-
tential threshold (Fig. 1M) and decrease in step rheobase
(Fig. 1N)] with both radicular/neuropathic pain and radio-
graphic nerve root compression (Fig. 1L and M, spontan-
eous activity: P < 0.05, spike threshold P < 0.05, rheobase:
P < 0.05). Spontaneous activity was noted in 19% (20/
106) of neurons from DRG with corresponding
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Figure | DRG neurons from dermatomes with radicular/neuropathic pain show ectopic spontaneous activity and hyperex-

citability. Pain diagrams and MRI spinal images for three categories of patients are shown in A—l. The orange shaded area in A, D and G indicate
where patients marked the location of their pain. This was either localized to the spine without signs of radicular/neuropathic pain (axial pain only,
A); showed radiation only to one side (unilateral radicular/neuropathic pain, D); or pain that radiated to both sides of the body (bilateral radicular/
neuropathic pain). The large MRI scan in B shows that patients with axial pain often only had tumours (outlined in red) that did not compress the
nerve roots or spinal cord. Patients with unilateral neuropathic pain (E) typically had tumours that compressed one or more nerve roots on one

(continued)
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Table | Detailed neurophysiological parameters for DRG neurons organized by groups

Group Diameter, RMP, mV  C, pF Rheobase, Spike AP peak, AP AP rise AP fall AHP Tau, ms
um nA threshold, mV overshoot, time, ms time, amplitude,
mV mV ms mV
All neurons 43.7 208 —579+09 190+ 10 0.74+008 —141+13 770+14 624+1.7 19 +0.1 60+£03 [57+05 4I.1 £3.0
With pain  42.1 £0.8 —578+1.0 200420 0.6 £0.09%* —148+ 1.7F 780 £15 634+18 1.8+£0.1 6.1 £04 159+06 402+35
No pain 451 +13 —-582+18 180+20 09+0.17 —113+£21 753+35 609+42 20+£03 55+07 I152+12 453169

AHP = after-hyperpolarization; AP = action potential; C = capacitance; RMP = resting membrane potential.

*P < 0.05.

dermatomal pain and in 20% (22/112) of neurons with
associated radiographic nerve root compression. spontan-
eous activity was noted in only 4.6% (2/43) of neurons
from DRG without associated dermatomal pain and in
none (0/37) of the neurons from DRG without radio-
graphic nerve root compression. Differences in resting
membrane potential, neuron size, capacitance, action po-
tential profile and kinetics were not significantly correlated
with either radicular/neuropathic pain or nerve root com-
pression (Table 1). No significant relationships for these
same parameters were found for age, sex, axial spine
pain, radiographic spinal cord prior
chemotherapy, prior radiation treatment, or a history of
length-dependent peripheral neuropathy (this latter symp-
tom affected dermatomes that were not sampled).
Pairwise distances between 21 sample transcriptomes
were calculated from RNA-seq data (Supplementary Table
2). Samples were separated into two groups: those with
associated dermatomal radicular/neuropathic pain and
those without. Distribution of distances between pain and
non-pain samples was higher on average (Fig. 2A). Twelve
of 21 samples were from six donors with two sequenced
DRGs each. The pairwise distance between donor-con-
trolled pairs was smaller for their respective groups
(Fig. 2A). Hierarchical clustering of pain and non-pain
groups revealed that only a small number of genes are con-
sistently differentially expressed between the groups.
However, female pain samples were well correlated with
each other (Fig. 2B) suggesting that sex of the sample is
also influential in shaping the DRG transcriptome. Based
on these insights, our 21 samples were partitioned into four

compression,

Figure | Continued

cohorts by sex and pain state (male, female, pain, and no-
pain).

The three male donor DRG pairs with pain in one
dermatome, but not the other, were each analysed for dif-
ferentially-expressed genes (Table 2 and Supplementary
Tables 3 and 4). Several signalling pathways were enriched
in the gene set upregulated in pain samples, including the
TNF-alpha, TGF-beta, MAPK and TLR pathways (Letterio
and Roberts, 1998; Morikawa et al., 2004; Wei et al.,
2013; Cevikbas et al., 2014). Transcription factors linked
to neuropathic pain in preclinical models, including FOS,
FOSB and ATF3, and a number of well-known cytokine
ligands including TNF, IL6 and CCL3 were also upregu-
lated in at least two of the three pairs.

The analysis was broadened further to contrast the male-
pain and male-no pain cohorts. The comparison yielded 70
genes that were upregulated and 52 genes that were down-
regulated in the male-pain cohort (Fig. 2C and
Supplementary Table 5). Gene set enrichment analysis
(Supplementary Table 6) showed an upregulated signature
of genes related to spinal cord injury, and enrichment of
several important signalling pathways (MAPK, TGFB,
OSM and corticotrophin hormone pathways) that were
similar to observations in the paired samples. Genes upre-
gulated in pain samples include well known neuro-immune
genes (CD93, CCL4, SOCS3), Schwann cell genes involved
in rodent models of nerve injury (NR4A1, EGR1, EGR3),
and genes known to be expressed in the human DRG and
mouse sensory neurons (ARC, OMP, CHST1), suggesting
crosstalk between immune cells and neurons/glia (Usoskin
et al., 2015; Ray et al., 2018).

side and part of the spinal cord. Patients with bilateral neuropathic pain typically had compression of one or more roots on both sides and the
spinal cord (H). The area in B, E and H outlined in white are magnified in C, F, and | to show the spinal cord and nerve roots better (outlined in
yellow). A representative recording of the resting membrane potential with an expanded time base for a cell without spontaneous activity is

shown in ] while a similar recording for a cell with spontaneous activity is shown in K to illustrate the spontaneous depolarizing fluctuations
(DSFs) in membrane potential that occurred in these cells. A single action potential is shown at the right of this trace occurring atop one of the
larger of these DSFs. The representative trace shown in L illustrates the irregular pattern of action potentials typically seen in cells with

spontaneous activity. The bar graphs in M show that radiological evidence of nerve compression was strongly associated with signs of radicular/
neuropathic pain; while in N the bar graphs show the relationship of radicular/neuropathic pain and nerve compression with spontaneous activity
(SA). The box and whisker plots in O and P show that DRG neurons from a dermatome with pain and/or nerve compression had a more

depolarized spike threshold potential and lower rheobase, respectively.
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Figure 2 Differential expression analysis for human DRG transcriptomes. (A) Empirically estimated density function for pairwise
transcriptome distances between samples with the same pain state and between samples with different pain states show overlap but a clear
increase overall. Inter-sample distances for samples from the same patient (shown by triangles on the x-axis) are comparatively low with respect
to the set of all distances. (B) Hierarchical clustering of RNA profiles for all samples, showing close distances between female pain samples.
Standard hierarchical clustering was performed for all RNA-seq samples using expression patterns of high variability (entropy < 3.5, see Fig. 3),
expressed [transcripts per million (TPM) > |.5 in at least one sample] genes with distance metric = | — Pearsons’ correlation coefficient, and
average linkage. Four cohorts [male-pain (M/P), male-no pain (M/N), female-pain (F/P), and female-no pain (F/N)] are colour-coded. (C and D)
Several representative differentially-expressed gene sets for the male-pain versus male-no pain (C) and for the male-pain versus female-pain (D)

comparison.

Interestingly, comparison of the male-pain and female-
pain cohorts (Fig. 2D and Supplementary Table 7) yielded
a more extensive set of differentially-expressed genes (426
autosomal genes upregulated in male-pain and 149 upregu-
lated in female-pain cohorts). This could occur because
some of the detected genes have sex-differential expression
in baseline DRG while others could potentially underlie a
sex-specific neuropathic pain pathology. It is interesting to
note that based on gene set enrichment analysis
(Supplementary Table 6), a different set of spinal cord
injury-associated genes were upregulated in the female-
pain cohort (TLR4, AIF1, OMG, C1QB) as compared to

the male-enriched genes (EGR1, NR4A1, ZFP36, BTG2,
MYC and others). Overlap with known lineage-specific
gene modules in human macrophage lineages (Xue et al.,
2014) suggests that some of the sex-differential gene ex-
pression in pain samples may be driven by macrophages
(Supplementary Table 7). Human macrophage lineage-en-
riched genes up in the male-pain cohort (136 out of 426
autosomal genes) include CXCL2, TNF, and several tran-
scription factors of the FOS-JUN family (FOS, FOSB,
JUNB, JUND), while genes up in the female-pain cohort
(75 of 149 autosomal genes) include several class A rhod-
opsin like G-protein coupled receptors (CX3CRI,
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Table 2 Fold change in transcripts per million in paired single patient samples (pain:no pain)
Patient 15  Patient 29  Patient 26 MAPK TNF-a TGF-p TLR OSM AHR SCI
signalling  signalling  signalling signalling signalling signalling

Transcription factors and co-factors
JUN 2.62 1.24 1.83 v v - v - 4 -
FOS 2.60 2.00 10.40 v - - v v - v
NFKB2 2.00 1.06 0.92 - v - v = c -
RUNX2 2.75 1.22 1.93 - - v - - o o
FosB 13.55 13.53 283.90 - - v = 5 - -
ATF3 7.58 1.99 1.76 - - v - . = -
JUNB 3.39 1.38 4.90 - - v - v 4 -
EGRI 6.28 247 10.19 - - - - v - v
KLFI0 235 1.28 1.47 - - v - . = -
NR4A| 3.21 1.01 1.76 v - - - - = v
HESI 241 1.17 1.36 - - = 5 . v/ -
AHR 2.02 1.26 1.04 - - - 5 5 4 -
BTG2 1.23 .11 2.79 - - - - - = v
RNA binding proteins
ZFP36 229 1.31 4.12 - - - - 2 = v
Cytokine ligands
TNF 3.71 LE 19.66 v v - v - v v
ILIB 8.72 LE 9.09 v - - v - 4 v
IL6 9.13 LE 468 . v = v 5 - v
ILI2A 3.0l 1.40 1.31 - - - v s 4 -
ca2 3.04 1.00 0.93 - - - - v - v
CCL3 12.52 3.45 75.40 - - - v 2 = .
ccL4 23.60 1.60 3035.20 - - - v s - -
CXcL2 1.92 LE 2.99 - - - - 2 = v
OoSM 10.39 LE 37.07 - - = 5 4 - -
TGFBI 2.13 1.09 1.8l v - v - - v v
TGFB3 4.77 1.35 1.8l v - 4 - - - -
GDNF 8.47 LE LE - - = 5 . = v/
Cytokine regulators
SOCSs3 14.41 2.84 4.64 - - - v v = =
Neurotrophins
NGF 2.30 1.04 1.39 v - = 5 . - -

Genes involved in important signalling pathways or spinal cord injury, and their fold-change in the three pairs of samples from the same patients with differing pain states show several
key transcription factors and cytokines to be upregulated in the pain state. LE = low expression; SCI = spinal cord injury.

v = gene set membership.

ADORA3, P2RY13 and GPR6S). While DRG-specific ion
channels have been shown to be differentially expressed in
mouse and rat models of neuropathic pain (Lacroix-Fralish
et al., 2011; Zhang and Dougherty, 2014) and in human
neuropathic pain (Li et al., 2018), we do not find statistic-
ally significant differences in abundances for ion channels
expressed in human DRG (Supplementary Table 8), pos-
sibly due to regulation in translation or post-translation
phases that are not reflected in RNA-seq data. Based on
our cohort analysis, we found a set of ion channels
(ANOS8, GRIKS, GRINI1, HCN2, KCNAB2, KCNCI,
KCNG1, KCNH2, KCNK3, PANX2) that have higher
expression in the male-pain cohort compared to the
female-pain cohort, again suggesting sexually dimorphic
mechanisms (Supplementary Table 8).

Multiple control analyses were performed on the data.
The distribution of gene relative abundances (in transcripts

per million) were plotted to ensure a similar distribution
and comparable inflexion points in the distribution across
samples (Fig. 3A). Genes with higher variability across sam-
ples in our dataset were identified in a cohort-agnostic
manner using the notion of Shannon’s entropy (Fig. 3B).
The sex of each sample was validated based on reads map-
ping to the XIST locus (Fig. 3C). For pain and non-pain
samples derived from the same patient, the distribution of
fold change in gene expression was quantified to identify
the genes with the biggest change in abundance (Fig 3D).

We predicted cohort membership for each sample (with
the exception of the sole female-no pain sample) based on
trained Random Forest classifiers. The cross validation
training and testing batches we used are shown in
Fig. 4A. We classified 11 male-pain and five female-pain
samples using the male-pain versus female-pain classifier,
and classified 11 male-pain and four male-no pain samples
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Figure 3 Insilico controls for RNA-sequencing analysis. (A) The estimated probability density function for transcripts per million (TPMs)
(smoothed by adding 0.5 to each value) show that all samples have approximately similar distributions over coding gene TPMs, along with a
consistent number of genes expressed at 1.5 TPM or higher in each sample (between 13850 and 14715). (B) Genes with high variability in TPM
across our datasets were identified in a fashion agnostic to clinical information by calculating Shannon’s entropy for each gene’s TPMs across RNA-
seq samples, identifying genes with high variability (based on low entropy values in the left tail of the estimated distribution, value <3.5). Higher
values correspond to more generic expression patterns. (C) Some well-known marker genes were checked in RNA-seq samples. The reported
sex for each sample was independently verified using reads mapping to the XIST non-coding gene. (D) Estimated density function for the gene
expression (for genes with transcripts per million > 3.0 in either sample) fold change between pain and non-pain samples derived from the same
patient, showing that a 2-fold change corresponds to the top 5th percentile.

using the male-pain versus male-no pain classifier. This pro-
cess was repeated 20 times (using random seeds to initialize
the classifier training) to evaluate our classification algo-
rithm. Of the 620 (31 classifications over 20 trials) predic-
tions, we obtained a high (94.7%) accuracy in cohort
membership prediction, suggesting that the gene expression
changes we see are consistent and correlated and our clas-
sifier is able to harness this signal to perform classification
(Fig. 4B). Random Forests are trained by identifying a set
of discriminative features (in this case, genes) used to con-
struct decision trees. We identified the genes that were most

frequently chosen by the algorithm to construct Random
Forests, since these were putatively the most reliable genes
for discriminating across cohorts. For genes used in >15%
of the trained Random Forests, we find that a majority of
these genes overlap with the genes we identified in our
cohort analysis in the previous section. They include
genes coding for transcriptional regulators (like members
of the FOS/JUN and EGR family), post transcriptional
and translational regulators (ZFP36, EEF2K), transferases
(WNK2, SOCS3, MAPK7), and signalling molecules
(ISLR2, OSM, CD93, IL1B) (Fig 4C). Regulatory and
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Figure 4 Sample cohort prediction using Random Forests. (A) Leave one out cross validation schema is shown, with one sample (test
sample) held out from training in each batch. The RNA profile of the test sample is then used by the trained classifier to predict its cohort

membership, and the predicted cohort label is compared to actual cohort membership to evaluate the quality of classification. (B) Classification
metrics for our optimal Random Forest model, using 25 decision trees, with no more than five decisions per tree, and using an input set of

discriminative candidate genes is shown on top. Metrics from random forests built using |2 trees; as well as from random forests using |12 trees
and a larger input set of candidate genes are also shown. Our classifier achieves discriminative results across a range of training parameters. We
also show expected classification metrics for classifiers with no discriminative ability: based on models of biased and unbiased coin tosses. (C) A
small set of genes are chosen for many of the random forests that we trained, suggesting a high predictive ability of these genes. Histograms show
the number of genes that are chosen most frequently (in 3% to 45% of trained random forests) for both male-pain (M/P) versus female-pain (F/P)
and male-pain versus male-no pain (M/N) classification. Genes chosen in > 15% of the random forests include transcriptional/post transcriptional
regulators, enzymes, and signalling molecules, many of which are associated with pain.

signalling molecules

clearly

the discriminative gene set

suggests consistent usage of specific regulatory

in
fied (Supplementary Table 9).

for the list of differentially expressed genes that we identi-
Of ~750 differently ex-

programs and signalling pathways, which could yield mo-
lecular signatures underlying human pain states in the

future.
Finally, we compiled a list of studies that identified gene-

neuropathic pain associations in humans or model species

pressed genes across our analysis, 220 were identified in
existing databases of pain-associated genes in humans.
Therefore, while our dataset has substantial overlap with
an existing knowledgebase in the field, we have identified a
large cohort of new potential targets to investigate for


https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awz063#supplementary-data

1224 | BRAIN 2019: 142; 1215-1226

neuropathic pain mechanisms based entirely on molecular
investigation on patient samples.

Discussion

A key aspect of this study is the pairing of electrophysi-
ology with RNA-seq for discovery of transcriptomic signa-
tures of neuropathic pain. Though limited by a relatively
small cohort and the multifactorial nature of each patient’s
dermatomal pain (with potential contributions from local
effects such as direct neural compression, peritumoral in-
flammation, tumour-derived soluble factors, and systemic
conditions such as diabetes mellitus and/or prior treatments
of patient’s malignancies), our findings allow several im-
portant conclusions.

First, there is a strong correlation between both radicular/
neuropathic pain and radiographic nerve root compression
to the presence of spontaneous activity and electrophysio-
logical measures of hyperexcitability. Our results are simi-
lar to incidence of spontaneous activity reported in the
literature for animal experiments with 10.3-20.5% for
injured nerves versus 1.6-2.8% in controls (Liu et al.,
2002; Ma and LaMotte, 2007; Li et al., 2017). Three
physiological maladaptations were noted in recent work
on the mechanisms underlying spontaneous activity in a
model of spinal cord injury neuropathic pain. These
included the development of a more positive resting mem-
brane potential; a more hyperpolarized action potential
threshold; and the occurrence of depolarizing spontaneous
fluctuations in membrane potential (Odem et al., 2018).
We found two of these occurring in human neurons with
spontaneous activity, a more hyperpolarized action poten-
tial threshold (Table 1) and depolarizing spontaneous fluc-
tuations (Fig. 1K). Therefore, we establish that the
emergence of DRG neuron spontaneous activity and hyper-
excitability are fundamental shared features between
animal models of radicular/neuropathic pain and humans
with clinically defined radicular/neuropathic pain.

It is perhaps surprising that significant changes in specific
ion channels were only observed for the paired samples but
not in the overall population analysis. There are a number
of potential reasons for this. RNA-seq data measures the
steady-state abundance of RNA species. This means that
only changes at the transcriptional and post-transcriptional
levels will be reflected in the data. There is clear evidence
that specific ion channels contribute to ectopic spontaneous
activity in human DRG neurons as shown by increased
protein abundance changes and suppression of spontaneous
activity using specific ion channel inhibitors (Li et al., 2017,
2018). But this can occur because of changes in transla-
tional regulation. Additionally, post translational regulation
can also affect ion channel function. These changes would
not be apparent in our datasets. Moreover, we performed
bulk RNA-seq, with input coming from neuronal and non-
neuronal cells, thus the signal for changes in a single sen-
sory neuronal subpopulation (as would be the case for an
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ion channel such as Na,1.7) would be diluted in the bulk
RNA-seq data. Future single cell assays (like imaging stu-
dies for in situ hybridization, or single cell RNA-seq) may
be sufficiently sensitive to adequately capture such changes.
Alternatively, changes in ion channel abundance may be
temporally transient during the development of neuropathic
pain. Electrophysiological recordings and RNA-sequencing
are performed on the same donor DRG, but patients are at
different times in the disease pathology. This cannot be
controlled for in a clinical cohort like ours, but is always
controlled for in animal studies, where much of the evi-
dence for such changes originates. Finally, a combination
of these points is likely.

The second broad conclusion that can be drawn here is
that in male DRGs from painful dermatomes a transcrip-
tional signature associated with spinal cord injury and en-
riched in signalling factors that converge on gp-130
receptors can be clearly identified. Given the known role
of gp-130 expression in the DRG in preclinical pain models
(Andratsch et al., 2009), our findings validate this pathway
but unexpectedly implicate OSM and its receptor, OSMR,
which forms a signalling complex with gp-130, in human
neuropathic pain. This would not be predicted based on the
preclinical literature which has predominately focused on
IL6 as the primary mechanism for activating gp-130 in
chronic pain. This finding has obvious implications for bio-
logical (e.g. antibody) development targeting this signalling
system. We also uncover preliminary evidence of differ-
ences in transcriptomic signatures in the DRGs of males
and females with neuropathic pain. While our cohort
sizes are relatively modest and require further validation,
this is consistent with emerging lines of evidence for sex
differential neuroimmune response in preclinical models
(Sorge et al., 2015; Lopes et al., 2017) and suggests the
potential of sex-specific mechanisms for the development of
neuropathic pain and spontaneous activity in DRG neurons.

Importantly, our study identifies sets of genes that are
differentially expressed in the male-pain, male-no pain
and female-pain cohorts. Our machine learning approach,
which used a Random Forest model, finds that these genes
have good predictive ability for identifying these cohorts,
suggesting consistent changes in gene expression. We pro-
pose that this experimental framework will be useful in
new datasets that are generated from independent projects
to test if pain phenotypes can be reliably predicted from
RNA-seq data. A limitation of this approach is that DRGs
are not readily available from most clinical cohorts.
However, some previous experiments in animal models
have shown that certain immune cells can be predictive
of transcriptomic changes in other nervous system areas
in neuropathic pain (Massart et al., 2016). If this is also
true in humans, it may eventually be possible to use a spe-
cific immune cell population as a proxy for transcriptomic
changes in the DRG. This idea can be tested in ongoing
studies with the clinical cohort described here.

Finally, while many of the genes we identified are known
from previous human or (mostly) rodent studies, the
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majority of these have been understudied or not been studied
in the context of neuropathic pain (e.g. OSM, discussed in
the ‘Results’” section). Another excellent example is ISLR2.
This mRNA encodes a protein called Linx that is known to
play a role in the development of nociceptors (Mandai et al.,
2009). Linx interacts with two well-known tyrosine receptor
kinases, TrkA and TrkC, and previous work has shown a
clear effect of this gene product in regulating how NGF
signals through the TrkA receptor (Mandai et al., 2009).
No previous studies have investigated the role of this gene
in neuropathic pain but our machine learning approach
identifies this gene as predictive of neuropathic pain pheno-
types. Given the well-known role of NGF and TrkA signal-
ling in pain, and the expanding clinical literature based on
anti-NGF therapeutics with mixed results in neuropathic
pain trials (Bannwarth and Kostine, 2014), we propose
that this is an excellent example of a high-quality target
for further exploration as a therapeutic intervention point.

In conclusion, our work provides the first evidence that
neuropathic pain in humans is associated with spontaneous
activity in the soma of DRG neurons. Combining this elec-
trophysiological approach with bulk RNA-seq gives exten-
sive new insight into mechanisms of neuropathic pain based
entirely on clinical samples. Two important features of
neuropathic pain emerging from this approach are
marked sexual dimorphisms and nuances in known mech-
anisms that have important implications for therapeutic de-
velopment. A caveat in consideration of these results is that
the possibility exists that some of the results seen here
could also be due to the influence of tumour-derived factors
in addition to nerve injury.

Funding

This work was supported by grants from the National
Institutes of Health: AI107067 (T.H.K.), NS 065926
(T.J.P.), CA200263 (P.M.D.), the Thompson Family
Foundation  Initiative (P.M.D.) and the H.E.B.
Professorship in Cancer Research (P.M.D.).

Competing interests

The authors report no competing interests.

Supplementary material

Supplementary material is available at Brain online.

References

Andratsch M, Mair N, Constantin CE, Scherbakov N, Benetti C,
Quarta S, et al. A key role for gp130 expressed on peripheral sen-
sory nerves in pathological pain. ] Neurosci 2009; 29: 13473-83.

BRAIN 2019: 142; 1215-1226 | 1225

Bannwarth B, Kostine M. Targeting nerve growth factor (NGF) for
pain management: what does the future hold for NGF antagonists?
Drugs 2014; 74: 619-26.

Baumann TK, Burchiel KJ, Ingram SL, Martenson ME. Responses of
adult human dorsal root ganglion neurons in culture to capsaicin
and low ph. Pain 1996; 65: 31-8.

Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP,
et al. Reliability analysis of the epidural spinal cord compression
scale. J Neurosurg Spine 2010; 13: 324-8.

Borsook D, Hargreaves R, Bountra C, Porreca F. Lost but making
progress—Where will new analgesic drugs come from? Sci Transl
Med 2014; 6: 249sr3.

Cevikbas F, Kempkes C, Buhl T, Mess C, Buddenkotte J, Steinhoff M.
Role of interleukin-31 and oncostatin M in itch and neuroimmune
communication. In: Carstens E, Akiyama T, editors. Itch:
Mechanisms and Treatment. Boca Raton, FL: CRC Press/Taylor
& Francis Publishers; 2014.

Chen X, Ishwaran H. Random forests for genomic data analysis.
Genomics 2012; 99: 323-9.

Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RW.
Human sensory neurons: membrane properties and sensitization
by inflammatory mediators. Pain 2014; 155: 1861-70.

Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A,
et al. Pharmacological blockade of the vanilloid receptor TRPV1
elicits marked hyperthermia in humans. Pain 2008; 136: 202-10.

Gereau RW, Sluka KA, Maixner W, Savage SR, Price TJ, Murinson
BB, et al. A pain research agenda for the 21st century. ] Pain 2014;
15: 1203-14.

Haanpaa M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira
D, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain
2011; 152: 14-27.

Hill R. NK1 (substance P) receptor antagonists—why are they not an-
algesic in humans? Trends Pharmacol Sci 2000; 21: 244-6.

Lacroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS.
Patterns of pain: meta-analysis of microarray studies of pain. Pain
2011; 152: 1888-98.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012; 9: 357-9.

Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta.
Annu Rev Immunol 1998; 16: 137-61.

Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, et al.
The cancer chemotherapeutic paclitaxel increases human and rodent
sensory neuron responses to TRPV1 by activation of TLR4.
J Neurosci 20155 35: 13487-500.

Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD, et al.
DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-
induced neuropathy in rats and in humans with neuropathic pain.
J Neurosci 2018; 38: 1124-36.

Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM,
et al. Dorsal root ganglion neurons become hyperexcitable and in-
crease expression of voltage-gated T-type calcium channels (Cav3.2)
in paclitaxel-induced peripheral neuropathy. Pain 2017; 158: 417-28.

Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scal-
able read mapping by seed-and-vote. Nucleic Acids Res 2013; 41: ¢108.

Liu CN, Devor M, Waxman SG, Kocsis JD. Subthreshold oscillations
induced by spinal nerve injury in dissociated muscle and cutaneous
afferents of mouse DRG. J Neurophysiol 2002; 87: 2009-17.

Lopes DM, Melek N, Edye M, Jager SB, McMurray S, McMahon SB,
et al. Sex differences in peripheral not central immune responses to
pain-inducing injury. Sci Rep 2017; 7: 1-8.

Ma C, LaMotte RH. Multiple sites for generation of ectopic spontan-
eous activity in neurons of the chronically compressed dorsal root
ganglion. J Neurosci 2007; 27: 14059-68.

Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-cen-
tered information at NCBI. Nucleic Acids Res 2005; 33(Database
issue): D54-8.

Mandai K, Guo T, St Hillaire C, Meabon ]S, Kanning KC, Bothwell
M, et al. LIG family receptor tyrosine kinase-associated proteins


https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awz063#supplementary-data

1226 | BRAIN 2019: 142; 1215-1226

modulate growth factor signals during neural development. Neuron
2009; 63: 614-27.

Massart R, Dymov S, Millecamps M, Suderman M, Gregoire S,
Koenigs K, et al. Overlapping signatures of chronic pain in the
DNA methylation landscape of prefrontal cortex and peripheral T
cells. Sci Rep 2016; 6: 19615.

Morikawa Y, Tamura S, Minehata K, Donovan PJ, Miyajima A,
Senba E. Essential function of oncostatin m in nociceptive neurons
of dorsal root ganglia. J Neurosci 2004; 24: 1941-7.

Odem MA, Bavencoffe AG, Cassidy RM, Lopez ER, Tian ], Dessauer
CW, et al. Isolated nociceptors reveal multiple specializations for
generating irregular ongoing activity associated with ongoing pain.
Pain 2018; 159: 2347-62.

Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, et al.
Comparative transcriptome profiling of the human and mouse
dorsal root ganglia: an RNA-seq-based resource for pain and sen-
sory neuroscience research. Pain 2018; 159: 1325-45.

Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK,
et al. Different immune cells mediate mechanical pain

R. Y. North et al.

hypersensitivity in male and female mice. Nat Neurosci 2015;
18: 1081-3.

Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al.
Unbiased classification of sensory neuron types by large-scale single-
cell RNA sequencing. Nat Neurosci 2015; 18: 145-53.

van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N.
Neuropathic pain in the general population: a systematic review of
epidemiological studies. Pain 2014; 155: 654-62.

Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, et al. The up-
regulation of IL-6 in DRG and spinal dorsal horn contributes to
neuropathic pain following LS5 ventral root transection. Exp
Neurol 2013; 241: 159-68.

Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al.
Transcriptome-based network analysis reveals a spectrum model of
human macrophage activation. Immunity 2014; 40: 274-88.

Zhang H, Dougherty PM. Enhanced excitability of primary sensory
neurons and altered gene expression of neuronal ion channels in
dorsal root ganglion in paclitaxel-induced peripheral neuropathy.
Anesthesiology 2014; 120: 1463-75.



