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In the past decade, brief bursts of fast oscillations in the ripple range have been identified in the scalp EEG as a promising non-

invasive biomarker for epilepsy. However, investigation and clinical application of this biomarker have been limited because

standard approaches to identify these brief, low amplitude events are difficult, time consuming, and subjective. Recent studies

have demonstrated that ripples co-occurring with epileptiform discharges (‘spike ripple events’) are easier to detect than ripples

alone and have greater pathological significance. Here, we used objective techniques to quantify spike ripples and test whether this

biomarker predicts seizure risk in childhood epilepsy. We evaluated spike ripples in scalp EEG recordings from a prospective

cohort of children with a self-limited epilepsy syndrome, benign epilepsy with centrotemporal spikes, and healthy control children.

We compared the rate of spike ripples between children with epilepsy and healthy controls, and between children with epilepsy

during periods of active disease (active, within 1 year of seizure) and after a period of sustained seizure-freedom (seizure-free, 41

year without seizure), using semi-automated and automated detection techniques. Spike ripple rate was higher in subjects with

active epilepsy compared to healthy controls (P = 0.0018) or subjects with epilepsy who were seizure-free ON or OFF medication

(P = 0.0018). Among epilepsy subjects with spike ripples, each month seizure-free decreased the odds of a spike ripple by a factor

of 0.66 [95% confidence interval (0.47, 0.91), P = 0.021]. Comparing the diagnostic accuracy of the presence of at least one spike

ripple versus a classic spike event to identify group, we found comparable sensitivity and negative predictive value, but greater

specificity and positive predictive value of spike ripples compared to spikes (P = 0.016 and P = 0.006, respectively). We found

qualitatively consistent results using a fully automated spike ripple detector, including comparison with an automated spike

detector. We conclude that scalp spike ripple events identify disease and track with seizure risk in this epilepsy population,

using both semi-automated and fully automated detection methods, and that this biomarker outperforms analysis of spikes

alone in categorizing seizure risk. These data provide evidence that spike ripples are a specific non-invasive biomarker for seizure

risk in benign epilepsy with centrotemporal spikes and support future work to evaluate the utility of this biomarker to guide

medication trials and tapers in these children and predict seizure risk in other at-risk populations.
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Introduction
In the past decade, brief bursts of high frequency oscilla-

tions (80–600 Hz) have been identified as a promising bio-

marker for epilepsy that track disease with higher fidelity

than classic interictal spikes (Worrell and Gotman, 2011;

Frauscher et al., 2017). Originally described in invasive

intracranial recordings (Worrell et al., 2004), several

recent studies have now identified short bursts of ripple

range activity (80–200 Hz) in the scalp EEG in patients

with epilepsy from a variety of aetiologies (Kobayashi

et al., 2004, 2010a; Inoue et al., 2008; Andrade-Valenca

et al., 2011, 2012; van Klink et al., 2016b; Chu et al.,

2017), raising interest in this biomarker as a potential

non-invasive measure of epileptogenicity. Consistent with

observations from intracranial EEG recordings (Zijlmans

et al., 2009), early work investigating scalp-recorded rip-

ples has shown that these events decrease with medication

in infantile spasms (Kobayashi et al., 2015) and track with

disease severity, where more frequent ripples were observed

in epilepsy patients with more frequent seizures (van Klink

et al., 2016b). In addition, ripple-based classification meth-

ods identified patients with epilepsy with more specificity

than those based on spikes (van Klink et al., 2016b).

Despite the enormous potential clinical utility of scalp-re-

corded ripples, translation of this biomarker to clinical prac-

tice has been limited (Frauscher et al., 2017). Two factors

impeding clinical testing and application of ripples include

the difficulty of detecting these low amplitude, brief events in

noisy brain recordings, and the time-consuming and subject-

ive process of manual detection and verification of ripple

events. Recent advances in ripple detection include the de-

velopment of automated algorithms (Blanco et al., 2010;

Zelmann et al., 2010; Dümpelmann et al., 2012; von

Ellenrieder et al., 2012; Malinowska et al., 2015; Gliske

et al., 2016; Charupanit and Lopour, 2017; Chu et al.,

2017), and the observation that nearly half of ripples co-

occur with interictal epileptiform discharges (or ‘spikes’),

termed ‘spike ripple’ events (Urrestarazu et al., 2007;

Jacobs et al., 2009; von Ellenrieder et al., 2012; van Klink

et al., 2016a). Spike ripple events are easier to detect than

ripples alone, and may have greater pathological signifi-

cance. Ripples co-occurring with a spike are more closely

related to the seizure onset zone than ripples without a

spike (Roehri et al., 2018) and are more likely to represent

a pathological event than healthy physiology (Blanco et al.,

2011; van Klink et al., 2016b; Chu et al., 2017).

Here we sought to objectively test scalp spike ripple events

as a non-invasive biomarker for seizure risk. To do so, we

analysed a population of patients with the most common

childhood focal epilepsy syndrome, benign epilepsy with

centrotemporal spikes (BECTS), and healthy control children.

We chose this patient population for two reasons. First, des-

pite extensive clinical experience with this disease, there are

no clinical predictors available to determine an individual

child’s risk of subsequent seizure. One-third of children will

have only a single seizure, while others will have recurrent

seizures over several years (Bouma et al., 1997). A non-in-

vasive biomarker to isolate which children are at ongoing

risk of seizure would improve treatment decisions and pre-

vent the consequences of over- or under-medication during

critical years of cognitive and psychosocial development in

this large cohort of children. Second, because epilepsy in

BECTS spontaneously remits, this patient population pro-

vides an ideal cohort to test the ability of a biomarker to

track seizure risk over the course of resolving disease.

We hypothesized that the spike ripple rate would be

higher in BECTS children during the active phase of epi-

lepsy compared to healthy control children and children

with resolving or controlled epilepsy and that the presence

of spike ripples would predict seizure risk better than clas-

sically identified spikes alone. To test these hypotheses, we

quantified spike ripple events from EEG recordings in a

cohort of children with BECTS at different stages of the

disease and healthy control children, using semi-automated

and fully automated detection techniques. We then com-

pared the characteristics and diagnostic accuracy of spike

ripple events to manually and automatically detected spikes

in these children.

Materials and methods

Subject recruitment

All children aged 4–15 years who received a clinical diagnosis of
BECTS by a child neurologist following 1989 ILAE criteria
(Commission on Classification and Terminology of the
International League Against Epilepsy, 1989) were eligible for
this prospective study. Candidate BECTS subjects without both
a history of focal motor or generalized seizures and an EEG show-
ing sleep activated centrotemporal spikes were excluded (Fisher
et al., 2014). Healthy control school-aged subjects without a his-
tory of seizure or known neurological disorder were also recruited.
BECTS and healthy control subjects with a history of autism spec-
trum disorder, intellectual disability, or other unrelated neuro-
logical disease were excluded. Children with attention disorders
and mild learning difficulties were included, as these profiles are
consistent with known BECTS comorbidities (Wickens et al.,
2017). Twenty-seven children with BECTS and 17 healthy control
children were enrolled. Of those enrolled, five children with
BECTS and four healthy control children did not fall asleep
during EEG recording and were excluded from this analysis.
One further child with BECTS was excluded because of poor
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EEG recording quality (continuous artefact contaminating all elec-
trodes). In total, 21 children with BECTS (aged 4.9–16.8 years, 17
males) and 13 healthy control subjects (aged 8.7–14.3 years, five
males) were included in this study. Two children with BECTS
returned after a minimum of 12 months for repeat evaluations.

Clinical data on each subject including age, time from most
recent seizure, and medication use were collected from chart
review and updated on the day of EEG recording. Detailed
clinical data on each subject are provided in Table 1. This
research received prior approval by the Massachusetts
General Hospital and Boston University institutional review
boards and informed consent was obtained from each subject
and guardian.

Subjects were grouped as belonging to one of three cate-
gories of seizure risk: BECTS with active disease (here, defined
as having had a seizure within the last 12 months, n = 10),
BECTS seizure-free (here, defined as seizure-free for at least
12 months, n = 13), and healthy controls (n = 13). Of the
10 active BECTS patients, five were not treated with

anticonvulsant drugs (three because of combined parent and
provider preference, one because of parent preference, and one
because of side effects from a medication trial). Here, we chose
to use 1 year of seizure freedom among BECTS subjects to
signify a low risk of seizure recurrence because the vast ma-
jority of children with BECTS who are seizure-free for 1 year
have a sustained remission (Berg et al., 2004). As children who
are seizure-free for longer are less likely to have a subsequent
seizure (Berg et al., 2001; Sillanpaa et al., 2017), we also
evaluated the relationship between spike ripple rate and dur-
ation seizure-free as a continuous variable (see below).

EEG acquisition and preparation

All subjects arrived to EEG recording sessions after instruc-
tions for sleep restriction (recommended maximum of 4 h of
sleep) the previous night. Sleep deprivation prior to an EEG is
standard protocol in order to increase the likelihood of captur-
ing sleep in the recording. To optimize spatial and temporal

Table 1 Subject characteristics

Patient Age, years Gender Group Medications Electrodes

1 4.9 M Active LCM T3, C4

2 13.7 F Remission None T3, C4

3 11.8 M Seizure-free LEV C5, C4

4 14.7 M Active None C5, T4

4 Visit 2 16.8 M Remission None C3, C4

5 14.9 M Remission None C3, C4

6 13.3 M Seizure-free LEV C3, C4

7 9.1 F Active LEV, LTG C3, C4

8 9.8 M Active OXC CP5, C4

9 8 M Remission None CP5, C4

10 11 F Active None C5, C4

10 Visit 2 12 F Remission None CP3, C4

11 8.6 F Seizure-free LEV, LTG C3, C4

12 9 F Healthy - C3, C4

13 9 M Active None C5, FC6

14 12.9 F Healthy - C3, C4

15 12.2 F Healthy - C3, C4

16 11.5 M Remission None C3, C2

17 12.8 M Seizure-free LEV C3, C4

18 10.5 F Active LEV C3, F6

19 10.4 M Seizure-free LEV C3, C2

20 11.9 M Seizure-free LEV C1, C4

21 11.6 M Remission None C3, C6

22 9.9 M Active None CP5, C4

23 14.2 F Healthy - C3, C4

24 11.3 M Active None C5, C4

25 9.4 F Healthy - C3, C4

26 13.6 F Healthy - C3, C6

27 9.4 M Healthy - C3, C4

28 14.3 F Healthy - C3, C4

29 13.4 F Healthy - C5, C4

30 14.6 M Active LCM C5, C4

31 8.7 M Healthy - C3, C4

32 10.9 M Healthy - C3, C4

33 11.8 M Healthy - C3, C4

34 11.5 M Healthy - C3, C4

LCM = lacosamide; LEV = levetiracetam; LTG = lamotrigine; OXC = oxcarbazepine.
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resolution of the EEG signal (Chu et al., 2017), EEG were
recorded with a 70-channel cap based on the 10–10 electrode
placement system at a 2035 Hz sampling rate (Easycap,
Vectorview, Elekta-Neuromag) with additional electrodes
placed at T1 and T2 locations. EEG data were visually in-
spected by a board-certified neurophysiologist (C.J.C.) and
channels with significant artefact were excluded from analysis.
To minimize the impact of movement and muscle artefacts,
and improve sensitivity and consistency of spike measures
(Tenney et al., 2016), non-REM sleep was selected for analysis
and all available data per subject were used. A median of 780 s
of data were used for analysis (range 214–2840 s, mean
1030 s). We note that there was no difference in duration of
EEG recording between BECTS and healthy control groups
(two-tailed t-test, P = 0.117). Data were referenced to the aver-
age reference.

Semi-automated and automated
detection of spike ripple events

As patients with BECTS typically have bilaterally independent
spikes (Commission on Classification and Terminology of the
International League Against Epilepsy, 1989), one channel was
selected from each hemisphere to represent each spike popula-
tion for analysis. If spikes were present, then the channel in
which the spike amplitude was maximal was selected. If no
spikes were observed, the C3 and C4 electrodes were selected,
as these electrodes are most commonly involved in this focal
epilepsy syndrome (Koutroumanidis et al., 2017). In the case
of artefact contamination, the closest adjacent artefact-free chan-
nel was selected. Channel selections are listed in Table 1. The
detection of spike ripple events followed a previously described
procedure (Chu et al., 2017) using the software available at
https://github.com/Mark-Kramer/Spike-Ripple-Detector-Method.
To summarize, candidate events that contain a high frequency
oscillation (100–300 Hz) approximately sinusoidal in shape,
with at least three cycles, that co-occur with a large amplitude
discharge were automatically identified, and then validated
through visual inspection (Chu et al., 2017). We report for
each subject the rate (detections/min) of both the automatically
detected and the validated spike ripple events. We note that
epileptiform discharges are typically abundant (present at a
rate 40.1 Hz) during non-REM sleep in BECTS (Commission
on Classification and Terminology of the International League
Against Epilepsy, 1989) and there was no relationship between
duration of EEG recording and the rate of detected or validated
spike ripple events (linear regression, P = 0.29 for predictor of
rate in both cases).

Validation of the candidate events requires the subjective
judgement of ripple quality by a reviewer, which may intro-
duce potential confounds in the resulting analysis. To assess
the inter-rater agreement of each validation, we applied the
following procedure. First, we developed a custom procedure
to choose at random (without replacement) a subject and
hemisphere, and visualized all candidate spike ripple events
from this subject and hemisphere for validation. We performed
this random selection of a subject, and visual inspection of this
subject’s candidate events, until all 36 EEGs were analysed
(n = 1534 candidate events total). We designed this procedure
to replicate a realistic scenario in which a clinical EEG would
be reviewed. Two reviewers with varied experience (C.J.C. and

M.A.K.) performed this entire procedure and classified each
candidate spike ripple event, blinded to subject and hemisphere
and the other reviewer’s classifications.

Manual and automated detection of
spike events

For the manual detection of spikes, each sleep epoch was re-
viewed in 10 s increments by an experienced board certified
paediatric neurophysiologist (C.J.C.) in bipolar, average, and
nasion-referential montages. All epileptiform discharges were
manually marked according to standard clinical criteria
(Commission on Classification and Terminology of the
International League Against Epilepsy, 1989; Niedermeyer
and Lopes da Silva, 2005).

For automated spike detection, we apply one of the most
popular automated spike detection methods in common use:
the Persyst 13 spike detector (Persyst Development
Corporation, San Diego). This commercial software has been
shown to be non-inferior to human experts in two separate
and large studies: one involving 438 000 manually marked
spikes by four neurology board-certified practicing clinicians
(Scheuer et al., 2017) and the other involving 5474 manually
marked individual spikes by three senior EEG technologists
(Joshi et al., 2018). Despite these encouraging results, this
automated spike detector does not yet perform well enough
to replace human experts (Westover et al., 2017), but none-
theless provides a reproducible approach to detect spikes with
similar performance to humans. In our analysis, we applied the
Persyst 13 algorithm (as outlined in Scheuer et al., 2017) to the
same patients and intervals of data analysed with the semi-
automated spike ripple detector. To complement our focus
on a single active channel for spike ripple detections, for
each patient, we selected the 10–20 channel with the largest
number of spike detections reported by Persyst 13 for contin-
ued analysis of spike events.

Analysis of the spatial profiles of spike
ripples and spikes

To assess the spatial profile of spike ripples and spikes, an
experienced electroencephalographer (C.J.C.) first identified
through visual inspection of the EEG data the channel with
the maximal spike amplitude for each patient; we label this the
primary channel. Four channels immediately adjacent to the
primary channel—in the anterior, posterier, left and right dir-
ections—were then identified; we label these the secondary
channels. Finally, four channels immediately adjacent to the
secondary channels—again in the anterior, posterior, left and
right directions—were identified; we label these the tertiary
channels. For each patient with active BECTS (n = 10), we
determined for each channel: (i) the rate of candidate spike
ripple events; and (ii) the average spike amplitude. To compute
the latter, we first identified all validated spike ripples at the
primary channel. We then determined the difference between
the maximum and minimum voltage in a �100 ms interval
surrounding the time of the validated spike ripple at the pri-
mary, secondary, and tertiary channels. We chose the duration
of �100 ms because the typical duration of a spike is
5200 ms. We interpret the difference between the maximum
and minimum voltage within this interval as an approximation
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of the spike amplitude. We average these spike amplitudes
across all spike ripple occurences to calculate the average
spike amplitude for each channel.

Upon computing the results for each patient’s four secondary
(tertiary) channels, we then average these results across the
secondary (tertiary) channels. Then, to compare (i) the spike
ripple rate; and (ii) the average spike amplitude across patients,
we normalize the results for each patient by dividing the re-
sults of the primary, secondary, and tertiary channels by the
value in the primary channels.

To compare the normalized spike ripple rate to the normal-
ized spike amplitude at the secondary or tertiary channels, we
implement a bootstrap procedure (Kramer and Eden, 2016).
To do so, we define as the statistic the difference between the
median normalized spike ripple rate and the median normal-
ized spike amplitude. To test the null hypothesis of no differ-
ence between these two median quantities, we sample with
replacement from the combined set of 20 normalized values
from all patients with active BECTS (n = 10) to generate a
surrogate set of 10 normalized spike ripple rates, and a surro-
gate set of 10 normalized spike amplitudes. We generate these
surrogate data 10 000 times, and for each instance we compute
the test statistic. We then compare the observed value of the
statistic to the distribution of surrogate values, and define as a
P-value the proportion of surrogate statistics less than the
observed statistic.

Statistical analysis

To mitigate the impact of false positive results following from
the multiple testing problem, we tested three a priori hypoth-
eses: (1) that the mean spike ripple rate is higher in children
with active BECTS compared to healthy control children and
children with BECTS who are seizure-free; (2) that the spike
ripple rate decreases with duration seizure-free in patients with
BECTS; and (3) that the presence of spike ripples would have
greater diagnostic accuracy than the presence of manually
identified spikes alone to classify groups based on seizure risk.

For hypothesis (1), we applied a one-way ANOVA with
groups corresponding to the three patient populations. Upon
finding a significant effect, we performed group comparisons
of the spike ripple rates using one-tailed t-tests, following the
protected least significant difference method (Kass et al.,
2014).

For hypothesis (2), we examined the relationship between
the spike ripple rate and duration seizure-free for the validated
spike ripple detections. To do so, we constructed a generalized
linear model, choosing a binomial distribution for the response
variable, defined for each patient as the spike ripple rate (e.g.
the number of validated spike ripples per the data length in
seconds). The model contained a single predictor—the dur-
ation seizure-free—and used the logistic link function. We
tested the hypothesis that duration seizure-free is a significant
predictor of the spike ripple rate using all BECTS patients. We
fit the models and performed statistical tests of the predictor’s
significance using the function fitglm in MATLAB. To assess
model goodness-of-fit, we compared the single predictor model
to a constant model by computing the Akaike information
criterion (AIC) and a chi-square test for nested models; we
found in all cases that the single predictor model reduced the
AIC and provided a statistically significant improvement com-
pared to the constant model.

For hypothesis (3), we first developed a logistic regression
model to examine whether the presence of a spike ripple is
predictive of active BECTS. For this model, we computed the
impact of a non-zero spike ripple rate on the odds of an active
BECTS classification. To rule out the potential confounding
impact of medication, we explored the impact of medication
status on spike ripple rate using a two-tailed t-test.

We then classified each patient as having active BECTS in
two ways: (i) the presence of at least one validated spike
ripple; or (ii) the presence of at least one manually detected
spike. To compare these two classification schemes, we com-
puted the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) and tested for dif-
ferences using the exact binomial test (Zhou et al., 2011) and
the weighted generalized score statistic (Kosinski, 2013) using
the R-package DTComPair (Stock and Hielscher, 2015). We
also provide the performance of manual spikes on all tests
used in hypotheses (1) and (2) for comparison to spike ripples.

We note that for hypothesis (3), the PPV, NPV, sensitivity,
and specificity of spike ripples and spikes as detected using
manual classification are calculated based on the presence or
absence of at least one spike ripple or spike event, respectively.
We chose this approach because, for both spikes and spike
ripples, experts have excellent consensus on the presence or
absence of an event in a subject’s recording (e.g. kappa of
0.83 for the presence of epileptiform discharges, see Stroink
et al., 2006; kappa of 0.73 for the presence of spike ripples, as
reported below). However, inter-rater agreement at the level of
an individual spike or spike ripple (and consequently spike
ripple rate or spike rate) is not as reliable, estimated to be
13–18% for spikes (Webber et al., 1993; Scheuer et al.,
2017) and 78% (kappa 0.55) for individual spike ripples, as
reported here. Thus, based on these observations, the optimal
classification threshold based on rate will vary by reviewer,
and the results may be misleading and would not be replicable.
We also note that although inter-observer agreement is poor
for spikes and spike ripples, there is good consistency in any
individual reader’s style across subjects (Webber et al., 1993;
Chu et al., 2017). We therefore use manually identified spike
and spike ripple rates to characterize the difference in rates
between groups and the relationship between event rates and
duration seizure-free for hypotheses (1) and (2).

We confirmed the objectivity of the results for hypotheses
(1–3) by repeating all analyses on the automatically detected
candidate spike ripples and spikes. Here, for patient classifica-
tion, we compared the performance of the automated spike
ripple detector with the automated spike detector. To do so,
we first computed a threshold corresponding to the optimal
operating point in the receiver operator characteristic (ROC)
curve for each automated method. We then thresholded the
automated spike ripple and spike rates such that patients
with rates above (below) the threshold were classified as
active (not active). As these automated techniques require no
subjective decisions, we expect that creating an ROC curve
and selecting the optimum rate upon which to compute PPV,
NPV, sensitivity, and specificity will be reproducible.

To correct for multiple comparisons, we implemented a pro-
cedure to control the false detection rate proposed by
Benjamini and Hochberg (1995) with a false discovery rate
level of q = 0.05. The exact P-values, effect sizes, and 95%
confidence intervals (CI) are reported. All values are significant
unless noted otherwise.
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Data availability

Raw data were generated at Massachusetts General Hospital
and the Athinoula A. Martinos Center for Biomedical Imaging.
Derived data supporting the findings of this study are available
from the corresponding author on request. Software for the
detection of spike ripple events is available at https://github.
com/Mark-Kramer/Spike-Ripple-Detector-Method.

Results

Spike ripples are identified with good
inter-rater agreement

We applied a semi-automated method to detect spike ripple

events; candidate spike ripple events detected by the

method were subsequently validated by visual inspection

blinded to subject group. When assessed at the level of

individual spike ripple events, we found good inter-rater

agreement between two reviewers; the observed propor-

tional agreement was 0.78 and the kappa statistic was

0.55, consistent with studies requiring manual marking of

spike ripple events (van Klink et al., 2016b). We also deter-

mined for each reviewer whether each patient’s EEG pos-

sessed a validated spike ripple event, or not. Comparing

this patient-level classification (n = 35 EEGs with candidate

spike ripple detections), we found improved agreement be-

tween the two reviewers; the observed proportional agree-

ment was 0.89 and the kappa statistic was 0.73. These

results suggest that the bias introduced by the subjective

visual inspection of the candidate spike ripple events is

low, and that the repeatability of the procedure is good

at the level of an individual spike ripple event. At the

level of patient classification based on the cumulative clas-

sification of events detected over the duration of the EEG

recording (here, �15 min of NREM sleep per subject), re-

peatability was substantial. Representative examples of

agreed positive, agreed negative, and disagreed candidate

spike ripple events are shown in Fig. 1.

As the detector was designed to identify spike ripple

events with low sensitivity and high specificity (Chu

et al., 2017), for the analysis that follows, we classified

the 22% of events for which the reviewers disagreed as

validated spike ripple events. As two channels were evalu-

ated per EEG, for each EEG, we then selected for further

analysis the channel with the largest number of validated

spike ripple events. In this manner, our results reflect the

lowest threshold of validated spike ripple events between

the two combined reviewers and the largest number of de-

tections for each subject. In what follows, we also repeat

the analysis with candidate spike ripple events without clas-

sification, and find qualitatively consistent results.

Spike ripples are more spatially
restricted than spikes

Here we analyse spike ripples that occur at the channel in

which the spike amplitude is maximal in the left and right

hemispheres. The spatial focus imposed by choosing a

single electrode from each hemisphere is motivated by

prior observations showing ripples are more spatially

focal than spikes (van Klink et al., 2016a). To test this

prior result in the scalp EEG data collected here, we

applied the semi-automated spike ripple detector to second-

ary channels immediately adjacent to the channel of max-

imal spike amplitude (the primary channel), and tertiary

channels adjacent to the secondary channels. We found

that the candidate spike ripple rate decreases dramatically

with distance; the median rate at secondary channels is

31% of that observed at the primary channel, and 6% at

Figure 1 Three example candidate spike ripple events. Each subfigure displays the unfiltered EEG data (blue), the bandpass filtered EEG

data (100–300 Hz, red), and the spectrogram of the EEG data in an interval surrounding the spike ripple event (dashed vertical lines) with power

(in decibels) shown in colour. Both reviewers classified the candidate spike ripple events (A) as a true spike ripple, (B) as a false spike ripple, or

(C) the reviewers disagreed on the classification. In A, a distinct high frequency ‘spectral island’ is visually evident in the spectrogram, and a ripple

is visually evident on the spike in the unfiltered data.

EEG spike ripples in BECTS BRAIN 2019: 142; 1296–1309 | 1301

https://github.com/Mark-Kramer/Spike-Ripple-Detector-Method
https://github.com/Mark-Kramer/Spike-Ripple-Detector-Method


the tertiary channels (Fig. 2). In comparison, the median

spike amplitude (see ‘Materials and methods’ section) at the

secondary channels is 69% of that observed at the primary

channels, and 48% at the tertiary channels; the difference

between the median spike amplitude and median spike

ripple rate is significant (P = 0.003 and P = 0.004, for the

secondary and tertiary channels, respectively, bootstrap

resampling procedure, see ‘Materials and methods’ section).

We conclude that, while both spike amplitude and spike

ripple rate decrease with distance from a spatial focus,

the spike ripple rate decreases significantly more rapidly.

This result, consistent with previous observations (van

Klink et al., 2016a), motivates the characterization of

spike ripple events using the channel of maximal spike

amplitude.

Spike ripple rate is higher in active
disease

We found a significant difference in the mean spike ripple

rate between the three groups of active BECTS, seizure-free,

and healthy control subjects (one-way ANOVA, P =

0.00094). To investigate this difference further, we then

compared the mean spike ripple rates between the patients

with active BECTS and the other groups. We found that the

spike ripple rates were significantly higher in patients with

active BECTS (n = 10) compared to healthy controls (n = 13,

P = 0.0018), and compared to BECTS patients who were

seizure-free (n = 13, P = 0.0018, Fig. 3A).

Among patients with active BECTS, anticonvulsant drug

treatment status did not impact spike ripple rate (n = 5 ON

medication, n = 5 OFF medication, P = 0.48). We found a

similar result for BECTS patients without recent seizure

(n = 6 ON medication, n = 7 OFF medication, P = 0.22).

Thus, spike ripple rate was decreased in patients taking

medication, only if they were also seizure-free.

Spike ripple rate decreases with
duration seizure-free

To examine the relationship between spike ripple rate and

disease course, we modelled the spike ripple rate as a func-

tion of the time since a patient’s last seizure for all patients

with BECTS. Visual inspection revealed an inverse relation-

ship (Fig. 3B). To characterize this relationship, we con-

structed a generalized linear model, see ‘Statistical

analysis’ section. Among all BECTS children, we found

that each month seizure-free significantly decreased the

odds of spike ripple by a factor of 0.69 (95% CI: 0.51–

0.93, P = 0.024; Fig. 3B).

We conclude from the generalized linear model that a

significant inverse relationship exists between the spike

ripple rate and time since a patient’s last seizure; the

longer duration seizure-free, the lower the spike ripple rate.

Spike ripples predict seizure risk

To determine whether the presence of a spike ripple in-

creases the odds of active disease, we constructed a logistic

Figure 3 The spike ripple rate is significantly higher in

patients with active BECTS, and decreases with each

seizure-free month. (A) Each circle indicates the spike ripple rate

(detections/min) for a subject, which are divided into three cate-

gories. All patients with active BECTS (red circles) have non-zero

spike ripple rates, whereas no healthy controls and only two seizure-

free patients with BECTS have non-zero spike ripple rates. (B) The

spike ripple rate versus time since last seizure for all patients with

BECTS. Red (grey) circles indicate patients with active (seizure-free)

BECTS. The rate decreases with time since last seizure (black curve

indicates model fit, mean in solid, 95% CI in dashed lines).

Figure 2 Spike ripples are more spatially discrete than

spikes. The normalized spike ripple rate and the spike amplitude at

the primary channel (1�), secondary channels (2�), and tertiary

channels (3�). Each circle indicates one patient, and the bar height

indicates the median across patients. As the distance from the pri-

mary channel increases, both measures decrease, although the de-

crease is significantly faster for the spike ripple rate.
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regression model with outcome disease state (active or free)

and binary predictor of spike ripple rate (non-zero or not).

The bounds of the 95% Bayesian confidence region for the

effect of this predictor included odds 51.65, thus, we con-

clude that the presence of spike ripples increases the odds

of active disease by at least 65%.

Spike ripples have improved
diagnostic accuracy compared
to spikes

To compare the classification performance of spike ripples

and spikes, we computed four measures: the sensitivity,

specificity, PPV, and NPV. We computed all four measures

for patients with active disease and those who were seizure-

free (Table 2). When comparing the presence of at least one

manually identified event, we detected no difference in sen-

sitivity or NPV between spikes and spike ripples (P = 1.0);

however, spike ripples were more specific than spikes as a

diagnostic biomarker of active disease (P = 0.016) and had

a better PPV compared to spikes (P = 0.007).

Consistent with the spike ripple results, we found that the

spike rate is higher in patients with active BECTS compared

to seizure-free patients (P = 0.00052) and healthy control

subjects (P = 3.4 � 10�10; Fig. 4A). Among BECTS sub-

jects, the presence of a spike increases the odds of active

disease. Computing a 95% Bayesian confidence region for

the effect of this predictor, we found that the presence of

spikes increased the odds of active disease by at least 1.15

(the 95% confidence region included odds 51.15). We

conclude that the presence of spike events increases the

odds of active disease by at least 15%. We found no rela-

tionship between spike rate and the time since last seizure

(P = 0.13; Fig. 4B).

Automatic detection of spike ripples
produces consistent result

Nearly all methods to detect ripples in human data require

the subjective classification by an expert reviewer. There

are many disadvantages to manual classification, including

the possible introduction of bias, the difficulty of standar-

dizing the results of different reviewers, and the time

required to perform the classification. To reduce the

impact of manual classification, we repeated the analysis

above using all candidate spike ripple events, without val-

idation. In this way, the analysis was fully automated, and

avoided any subjective classification of events.

Using the candidate spike ripple events, we found that

most patients’ EEGs (n = 35 of 36) had a non-zero spike

ripple rate, including the healthy controls (Fig. 5A).

We found a significant difference in the mean spike ripple

rate between groups (one-way ANOVA, P = 0.00035),

where the spike ripple rate was significantly higher in

patients with active BECTS (n = 10, 7.5 � 2.3 events/min)

compared to healthy controls (n = 13, 0.27 � 0.05 events/

Figure 4 Manually detected spikes performance. (A) The

spike rate is higher in patients with active BECTS, though most

seizure-free subjects have a non-zero spike rate. Each circle indi-

cates the spike rate (events/min) for the three patient categories.

(B) No relationship between the spike rate and time since last

seizure is detected. The black curve indicates a generalized linear

model fit with mean (solid) and 95% CIs (dashed). In both figures,

red (grey) circles indicate patients with active BECTS (seizure-free

BECTS).

Table 2 Spike rate and spike ripple rate diagnostic characteristics

Sensitivity Specificity PPV NPV

Spike ripplesa (95% CI) 1 (1,1) 0.85 (0.65,1) 0.83 (0.62,1) 1 (1,1)

Spikesa (95% CI) 1 (1,1) 0.31 (0.057, 0.56) 0.53 (0.27,0.75) 1 (1,1)

Automated spike ripplesb (95% CI) 0.8 (0.55,1) 1 (1,1) 1 (1,1) 0.87 (0.70,1)

Automated spikesb (95% CI) 1 (1,1) 0.77 (0.54,0.998) 0.77 (0.54,0.998) 1 (1,1)

aBased on presence or absence of event.
bBased on optimal threshold using ROC curve.
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min, P = 0.0008), and compared to patients who were seiz-

ure-free (n = 13, 0.46 � 0.13 events/min, P = 0.0011).

Constructing a standard logistic regression model of dis-

ease state (active or seizure-free) with a single predictor of

automated spike ripple rate, we found that spike ripple

rate was a significant predictor (P = 0.032) of active

BECTS; an increase in spike ripple rate by 0.1 events/min

increased the odds of active BECTS by 26% (95% CI:

1.9%–55%, Fig. 5B).

Medication status did not impact spike ripple rate among

patients with active BECTS (n = 5 ON medication, n = 5

OFF medication, P = 0.35), nor among BECTS patients

without recent seizure (n = 6 ON medication, n = 7 OFF

medication, P = 0.29).

All patients with BECTS (n = 23) had a non-zero spike

ripple rate, which decreased with time since last seizure

(Fig. 5D). Estimating the relationship between spike ripple

rate and the time since last seizure for these patients, we

Figure 5 Analysis of fully automated detection of spike ripple events produces consistent results. (A) The spike ripple rate is higher

in patients with active BECTS. Each circle indicates the spike ripple rate (events/min) for the three patient categories. (B) Patients separated into

those with active BECTS (red circles) and seizure-free (grey circles). A logistic regression model (black curves, mean in solid, 95% CIs in dashed)

indicates a significant increase in the odds of active BECTS with increasing spike ripple rate. (C) From the ROC curve (black), the optimal

operating point (blue) is used for classification. (D) The spike ripple rate decreases with time since last seizure. The black curve indicates a

generalized linear model fit with mean (solid) and 95% CIs (dashed).
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found that each unit increase in month significantly

decreased the odds of candidate spike ripple by a factor

of 0.89 (95% CI: 0.82–0.96, P = 0.0082). We again con-

clude that the longer the time since a patient’s last seizure,

the lower the spike ripple rate.

In conclusion, fully automated detection of candidate

spike ripple events qualitatively reproduced the results of

the validated spike ripple events.

Automatically detected spike ripples
have improved diagnostic accuracy
compared to automatically
detected spikes

To compare the classification of patients with the two auto-

mated methods, we used the optimal operating point in the

ROC curve as the threshold for classification of spike rip-

ples (Fig. 5C) and spikes (Fig. 6C). We found that spike

ripples had higher specificity and PPV than spikes, although

these differences were not statistically significant (Table 2;

P = 0.25 and P = 0.11, respectively).

Similar to the automated spike ripple method, we found that

the automated spike rate is significantly higher in patients with

active BECTS compared to seizure-free patients (P = 0.00094)

and healthy control subjects (P = 3.1� 10�5; Fig. 6A). For the

automated spike detector, the odds of active disease increased

significantly with spike rate (P = 0.010; Fig. 6B). While the

automated detection of spike ripples decreased significantly

with time from last seizure (P = 0.0082; Fig. 5D), we found

no such relationship for the automated detection of spikes

(P = 0.096; Fig. 6D).

Discussion
Epilepsy is a common neurological disorder, affecting 1 in

26 Americans in their lifetime (Institute of Medicine, 2012),

yet diagnosis and management of this disease remains em-

piric, requiring a trial-and-error approach to determine if

and when seizures occur. A reliable, non-invasive bio-

marker for seizure risk could improve stratification of

those potentially at risk from a variety of insults such as

trauma, infection, or genetic predisposition (Engel, 2011).

Here, we used a unique population of patients with a self-

limited epilepsy syndrome to test a proposed non-invasive

biomarker for epileptogenicity, spike ripples. We found that

spike ripples can be reliably identified in a subject’s scalp

EEG using both expert and automated techniques, that

these events track with seizure risk in BECTS, and that

validated spike ripples improve diagnostic accuracy of seiz-

ure risk compared to manually identified spikes.

Growing evidence has highlighted spike ripples as a pro-

mising new biomarker of epilepsy in non-invasive EEG

studies, with continuing work to better characterize and

understand these signals (Frauscher et al., 2017). On

scalp recordings, only a small percentage (3–22%) of

spikes co-occur with ripples (Andrade-Valenca et al.,

2011; Melani et al., 2013; Chu et al., 2017), though ap-

proximately half of ripples co-occur with spikes (Andrade-

Valenca et al., 2011; Melani et al., 2013). The onset of

ripples in spike ripple events typically precedes the spike

peak and ripples are more spatially restricted than spikes

(van Klink et al., 2016a), suggesting that this coupled ac-

tivity may provide higher specificity for the epileptogenic

process. Our work contributes to these growing observa-

tions and helps validate the reliability, utility, and relevance

of this biomarker in non-invasive EEG recordings.

Previously, we have shown good intra-rater reliability in

identifying spike ripple events using a semi-automated tech-

nique (Chu et al., 2017). Here, we show good inter-rater

reliability, as well as good performance in an unsupervised,

fully-automated setting.

We note that, in developing the spike ripple detector, we

must balance the trade-off between sensitivity and specifi-

city (Chu et al., 2017). An overly sensitive detector would

require visual inspection of a high number of candidate

ripple events, making the method less feasible in practice.

An overly specific detector would result in missed detec-

tions of active BECTS patients. We have shown previously

that the sensitivity of the detector to capture spike ripple

events is 62% compared to manual review (Chu et al.,

2017). As spike ripple rate decreases with duration seiz-

ure-free in BECTS patients, and is low but non-zero in

some healthy controls, missed detections in a patient with

a very low spike ripple rate may have low clinical signifi-

cance. Here, the detector successfully identified all subjects

with active BECTS. By changing parameters in the spike

ripple detector (e.g. the envelope threshold; see Chu

et al., 2017), we may increase the sensitivity while reducing

the specificity. Developing a more sensitive measure, while

maintaining the practical utility of the method, would re-

quire additional development, for example an automated,

machine learning procedure to classify the spectrogram

images (Fig. 1). The results reported here were based on

the selection of the channel with maximal spike amplitude,

or in the case of automated spike detection, the channel

with the greatest number of spike detections. Inclusion of

all channels to derive a measure of the total burden of spike

ripple events or spikes may improve the sensitivity of the

method. However, the inclusion of non-informative chan-

nels may increase the variability in detection estimates, and

thus reduce classification performance. We also note that

intracranial studies have suggested that ripple rate varies

with respect to brain structure and brain pathologies,

such that they may provide a better biomarker of epilepto-

genicity in mesiotemporal regions than the occipital lobe

(von Ellenrieder et al., 2016), and in focal cortical dysplasia

than polymicrogyria (Ferrari Mainho et al., 2015), for ex-

ample. As we focused here on stereotyped spike popula-

tions in a single electroclinical syndrome, the results may

not generalize to other populations. Future work is

required to explore the regional variability and generaliz-

ability of spike ripple behaviour to disease in scalp EEG.

EEG spike ripples in BECTS BRAIN 2019: 142; 1296–1309 | 1305



Our findings have direct implications for children with

BECTS. Although no class I or II evidence is available to

guide treatment choice or duration in this disease (Glauser

et al., 2006; Tan et al., 2014), most practitioners favour

prolonged treatment with anticonvulsant medications until

at least 1–2 years after the last clinical seizure (Bourgeois,

2000). Non-treatment or premature taper may result in

seizures, injury, and even death (Doumlele et al., 2017);

but chronic anticonvulsant drug exposure is also not

benign, as the most common medications prescribed for

BECTS are known to cause attentional deficits, aggression,

hostility, nervousness, and somnolence in 30–70% of

exposed children (Perry et al., 2008; Oguni, 2011; Masur

et al., 2013; Halma et al., 2014; Mellish et al., 2015).

Among BECTS trials in particular, somnolence, psycho-

motor slowing, dizziness and worsened performance on

cognitive testing after treatment was started have been re-

ported with a variety of anticonvulsant drugs (Coppola

et al., 2007; Kang et al., 2007; Wirrell et al., 2008;

Andrade et al., 2009). Unnecessary cognitive side effects

are particularly problematic in light of an emerging recog-

nition that BECTS is associated with subtle but pervasive

cognitive difficulties (Wickens et al., 2017). Current meth-

ods to estimate remission and attempt medication

Figure 6 Fully automated spike detection performance. (A) The spike rate is higher in patients with active BECTS. (B) A logistic

regression model (black curves, mean in solid, 95% CIs in dashed) indicates a significant increase in the odds of active BECTS with increasing spike

rate. (C) From the ROC curve (black), the optimal operating point (blue) is used for classification. (D) No relationship between the spike rate and

time since last seizure is detected. The black curve indicates a generalized linear model fit with mean (solid) and 95% CIs (dashed). In all figures,

red (grey) circles indicate patients with active BECTS (seizure-free BECTS).
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withdrawal result in seizure relapse in 39% of patients

(Bouma et al., 1997). In clinical practice, maintaining treat-

ment in the cohort of BECTS patients with spike ripples

could reduce the number of patients that have a break-

through seizure due to premature taper. Likewise, patients

without detected spike ripples may be appropriate for

medication taper. Given the complementary performances

of the automated and semi-automated approaches, we sug-

gest that practitioners familiar with spike ripple identifica-

tion implement both methods, while those unfamiliar with

the visual classification of spike ripple events could solely

use the fully automated approach. We detected no statis-

tical differences between the automated spike ripple and

spike methods in the classification of patients with active

and inactive BECTS (Table 2). Therefore, a practitioner

unfamiliar with spike ripple detection may instead consider

automated spike detection to classify BECTS patients.

However, we note that we may not have had the power

to detect a true difference in performance between auto-

mated spike ripple and automated spike detection methods.

Additional studies in a larger patient cohort are required to

establish whether spike rate alone could provide an equally

reliable classification tool for seizure risk in BECTS.

Spikes provide an unreliable estimate of seizure risk as

they persist in children with BECTS for years after their last

seizure (Bouma et al., 1997; Kobayashi et al., 2010b).

Previous pioneering work suggested a relationship between

spike ripple events and seizure risk in childhood epilepsy

(Kobayashi et al., 2010b); however, subsequent studies

raised concerns about the methodology used (van Klink

et al., 2016b). Here, we expand on and validate this

prior work using both semi-automated and automated de-

tection techniques. Similar to the exponential relationship

observed between seizure recurrence risk and duration of

time seizure-free (Sillanpaa et al., 2017), we find that the

rate of spike ripple events also decays with duration of time

seizure-free, suggesting that this biomarker corresponds to

epileptogenicity and remission from the disease state.

Further, we show that validated spike ripples outperform

manually identified spikes as a biomarker of active disease.

Additional analysis from a large patient cohort is required

to determine whether automated detection of spike ripples

significantly improves upon disease classification compared

to automated detection of spikes alone. As we used dur-

ation seizure-free as a surrogate for seizure risk in this

cross-sectional study, a prospective longitudinal study is

needed to directly test this biomarker to predict future seiz-

ures and sustained remission in BECTS.

We note that in our population, medication treatment

alone did not impact spike ripple frequency. Rather, spike

ripples decreased in children who were seizure-free com-

pared to children with active seizures, regardless of medi-

cation status. Thus, in a child ON medication without

spike ripples, this biomarker may not distinguish medica-

tion efficacy from true remission. If the former, the spike

ripples and seizures may recur with medication taper. This

finding raises the potential utility of EEG spike ripple

events as an early biomarker for anticonvulsant medication

efficacy in BECTS and the need to explore this biomarker

in other epilepsy syndromes. A biomarker that tracks with

medication efficacy could mitigate the need to rely on

breakthrough seizures to guide medication adjustments in

this syndrome. Furthermore, quantification of spike ripples

prior to medication taper, and at mid-taper, could minimize

the chance of recrudescence. Such a biomarker could enable

rapid drug screening and bypass the need for prolonged

observation and requirement for symptomatic seizures in

clinical trials.

Our current study was designed to optimize the yield of

biomarker discovery by evaluating a disease population

that consistently progresses from active to remission

states. This focus on a homogeneous population may

have facilitated detection and differentiation of spike

ripple features obfuscated in a more heterogeneous popu-

lation. However, the focus on a single disease population is

also a limitation. Future work to understand the patho-

physiological mechanisms underlying spike ripples and the

relevance of this biomarker across varied populations re-

mains to be done (Jiruska et al., 2017). As new computa-

tional tools and improved recording techniques provide

novel opportunities for discovery, non-invasive quantitative

biomarkers promise to significantly improve patient care.
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