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Abstract

Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, 

but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, 

a computational method to model two primary mechanisms of tumor immune evasion: the 

induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) 

and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of 

T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors 

interacts with the CTL infiltration level to influence patient survival. We also modeled factors that 

Reprints and permissions information is available at www.nature.com/reprints.
*Correspondence and requests for materials should be addressed to K.W.W. or X.S.L. kai_wucherpfennig@dfci.harvard.edu; 
xsliu@jimmy.harvard.edu.
Author contributions
P.J., K.W.W. and X.S.L. designed the study and wrote the manuscript. P.J. carried out the computational works. S.G., D.P., Z.L. and 
N.T. carried out the experimental validation. P.J. and J.F. developed the website. A.S., X.H., X.B., B.L, J.L., G.J.F. and M.A.B. 
participated in discussions.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41591-018-0136-1.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HHS Public Access
Author manuscript
Nat Med. Author manuscript; available in PMC 2019 April 29.

Published in final edited form as:
Nat Med. 2018 October ; 24(10): 1550–1558. doi:10.1038/s41591-018-0136-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://doi.org/10.1038/s41591-018-0136-1


exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. 

Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE 

predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more 

accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new 

candidate ICB resistance regulators, such as SERPINB9, demonstrating utility for immunotherapy 

research.

Cancer immunotherapies by immune checkpoint blockade (ICB) aim to help the immune 

system recognize and attack cancer cells1. The primary targets of ICB treatment are 

programmed death-ligand 1 (PD-L1), programmed death 1 (PD1) and cytotoxic T-

lymphocyte-associated protein 4 (CTLA4). Compared to conventional therapies, ICB can 

induce durable responses in patients with metastatic cancers. However, a significant 

limitation of ICB is that only one-third of patients respond to ICB in most cancer types 

tested2. Combination ICB therapies have shown improved outcomes but also result in more 

severe side effects than single-agent therapy1. Multiple factors can affect ICB effectiveness2, 

including the degree of cytotoxic T cell infiltration3, mutation or neo-antigen load4, PD-L1 

level5, antigen presentation defects6, interferon signaling7, mismatch repair deficiency8, 

tumor aneuploidy9 and intestinal microbiota10. However, none of these factors is sufficient 

to achieve accurate outcome prediction5, and identification of ICB response biomarkers and 

resistance regulators is a critical challenge in the field.

Gene expression biomarkers, such as Oncotype DX11, MammaPrint12 and Prosigna13, have 

demonstrated clinical utility in predicting treatment benefits in breast cancer. We 

hypothesize that transcriptome signatures could also serve as reliable ICB biomarkers. 

Ideally, a large number of tumor molecular profiles together with the patient clinical 

outcome could be used to train a reliable multi-gene biomarker. However, current ICB 

clinical trials have gene expression profiles on only a small number of pre-treatment 

samples, which are insufficient to train robust prognostic biomarkers3,14,15. Alternatively, 

there are many public tumor profiling data sets from human and mouse models without 

immunotherapy, but which are informative regarding tumor immune escape. For example, 

recent analyses of TCGA and PRECOG data uncovered significant effects of tumor-

infiltrating levels of different immune cell types on patient overall survival16–18. Predicting 

tumor response to ICB requires an understanding of how tumors escape the immune system. 

Therefore, the public tumor molecular profiles, even without ICB treatment, may still be 

valuable resources to model immune evasion and derive surrogate biomarkers of ICB 

response.

Recent work has revealed two distinct mechanisms of tumor immune evasion19–20. Some 

tumors have a high level of infiltration by cytotoxic T cells, but these T cells tend to be in a 

dysfunctional state. In other tumors, immunosuppressive factors may exclude T cells from 

infiltrating tumors21. Therefore, we developed a computational framework, Tumor Immune 

Dysfunction and Exclusion (TIDE), to identify factors that underlie these two mechanisms 

of tumor immune escape. TIDE integrated and modeled data from 189 human cancer 

studies, comprising a total of 33,197 samples. We hypothesized and validated that an 

accurate gene signature to model the tumor immune escape could serve as a reliable 
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surrogate biomarker to predict ICB response. The web application, source code and analysis 

results of TIDE are available at http://tide.dfci.harvard.edu.

Results

A statistical interaction test identifies gene signatures of T cell dysfunction

Previous reports showed that cytotoxic T cells could infiltrate a subset of tumors, although 

they could still fail to control tumor growth if in a dysfunctional state22. We reasoned that by 

combining transcriptome profiles of treatment-naive tumors with patient survival outcome, 

we could identify known regulators of T cell dysfunction. For example, in the TCGA 

melanoma study, we used the average expression level of CD8A, CD8B, GZMA, GZMB 
and PRF1 to estimate the cytotoxic T lymphocyte (CTL) level in a tumor16. Among 

metastatic melanoma tumors, a higher CTL level indicates a better patient survival, but only 

when TGFB1 has a low expression level (Fig. 1a and Supplementary Fig. 1a). This 

observation corroborates the known role of the cytokine TGFβ (encoded by TGFB1) in 

promoting tumor immune escape and immunotherapy resistance2,23,24.

In statistics, two variables interact if the effect of one variable depends on the other 

variable25. In the previous examples, the effect of CTL on survival outcome depends on the 

TGFB1 level, which is a typical case of interaction between variables. The interaction of any 

two variables on survival outcome can be tested by a multiplication term in the Cox 

proportional hazard (Cox-PH) model26 (Fig. 1b). The coefficient d of the multiplication term 

indicates the level of the interaction effect, and the Wald test can evaluate its statistical 

significance26. For example, the TGFB1 expression level has a significantly antagonistic 

interaction with CTL level, indicating that a higher TGFB1 level in tumors will decrease the 

beneficial association between CTL and overall survival (Supplementary Table 1a). In 

contrast to TGFB1, another gene SOX10 expression level has a synergistic interaction with 

CTL level on patient survival outcome, indicating that a higher SOX10 level in tumors will 

increase the beneficial association between CTL and survival (Supplementary Table 1b), 

which is consistent with the known function of SOX10 to promote T cell-mediated tumor 

killing27,28.

We aim to systematically identify genes such as TGFB1 and SOX10 that influence the 

function of cytotoxic T cells on patient survival outcome in cancer genomics data cohorts. 

Using the Cox-PH model, TIDE tests how the interaction between a candidate gene V and 

the CTL affects death hazard (estimated from survival) (Fig. 1b). The resulting T cell 

dysfunctional signature is a genomewide vector, where the z score of each gene is the 

interaction coefficient d divided by its standard error (Supplementary Table 1). Genes with 

significant z scores are not restricted to genes expressed by T cells but could be expressed in 

cancer cells (for example, SOX1027,28) or different immune cells associated with T cell 

dysfunction. In the case of TGFB1, both cancer cells29 and CD4+ FOXP3+ Treg cells30 can 

express the cytokine TGFβ to inhibit T cell function.

To compute the T cell dysfunction scores in different cancer data sets, we collected hundreds 

of data sets from the TCGA31, PRECOG17 and METABRIC32 databases, and focused on 73 

that had a minimum of 50 samples with both tumor expression profiles on the genome scale 
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and patient survival data (Supplementary Table 2a). Among the data sets, TIDE predicted 

different numbers of genes to interact with CTL with statistical significance. For example, 

the P-value distribution for genes in TCGA melanoma was skewed to the left, indicating 

many significant genes (Supplementary Fig. 1b). However, the peak of significant P values 

was absent in TCGA glioblastoma. This difference is likely due to differences in T cell 

infiltration, data quality or sample size. In five data sets, over 1% of genes have significant 

interaction with CTL to affect survival at a false discovery rate (FDR) cutoff of 0.1: 

melanoma, neuroblastoma, triple-negative breast cancer, endometrial cancer and acute 

myeloid leukemia (Supplementary Fig. 1b and Supplementary Table 2b). For visualization, 

genes with significant dysfunction scores (FDR < 0.1) in at least two cancer types are shown 

in Fig. 1c (Supplementary Table 3). Although some of the genes are known to regulate T 

cell-mediated tumor immunity, such as PD-L1, others are likely to be co-expressed with 

immune-suppressive genes.

The TIDE dysfunction scores are consistent with signatures of tumor immune evasion

We evaluated the quality of TIDE T cell dysfunction scores using published studies of tumor 

immune evasion in pre-clinical models (Supplementary Table 4). One shRNA screen 

identified positive or negative hit genes whose knockdown in T cells enhanced or decreased 

T cell accumulation in mouse tumors, respectively33. Gene expression profiles to study T 

cell dysfunction are also publicly available, including the transcriptome of exhausted CD8 T 

cells34, activated regulatory T cells35 and tumors with acquired ICB resistance36. The 

positive or negative hits are defined as genes upregulated or downregulated in the process of 

T cell dysfunction or ICB resistance, respectively (Supplementary Tables 4 and 5). We 

examined whether the TIDE T cell dysfunctional signatures give significantly different 

scores between positive and negative hit genes in these published studies. We found that 

TIDE dysfunction signatures averaged from the five clinical cohorts assign positive hits 

significantly higher dysfunction scores compared to the negative hits (Fig. 2a). Using 

receiver operating characteristic (ROC) curves, we found that averaging the TIDE 

dysfunction signatures from the five cohorts gave the best performance (Fig. 2b,c and 

Supplementary Fig. 2a), suggesting the average profile as a more robust dysfunctional 

signature.

Recent studies in mouse tumor models revealed two stages of T cell dysfunction37,38. While 

anti-PD1 treatment can revive the early-stage dysfunctional T cells, late-stage dysfunctional 

T cells are resistant to ICB reprogramming. The average profile of TIDE dysfunction 

signatures derived from the five cancer cohorts shows increasing correlation with the gene 

expression profiles of dysfunctional T cells in late stages38 (Fig. 2d). This result suggests 

that the TIDE dysfunction signatures reflect the profiles at the late stage of T cell 

dysfunction. We also applied gene set enrichment analysis to analyze the functional 

enrichment of TIDE T cell dysfunction signatures. Immune pathways related to 

inflammatory and interferon response are highly enriched, while mTORC1 signaling39, 

protein secretion40 and glycolysis41 that are known to promote CD8 T cell activation are 

consistently depleted (Supplementary Fig. 2b).
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Immunosuppressive cell signatures predict immune escape by T cell exclusion

The previous section described T cell dysfunction signatures in tumors with high cytotoxic T 

cell infiltration. Next, we explored gene signatures of immune evasion through T cell 

exclusion in tumors with low T cell infiltration19,20. Several molecular mechanisms might 

explain the lack of T cell infiltration in the tumor, such as impaired priming of tumor-

specific T cells or suppressive cells prohibiting T cell infiltration into the tumor19,20. To 

model the gene expression signature of T cell exclusion, we examined three cell types 

reported to restrict T cell infiltration in tumors, namely cancer-associated fibroblasts (CAFs), 

myeloid-derived suppressor cells (MDSCs) and the M2 subtype of tumor-associated 

macrophages (TAMs)20. We derived a genome-wide signature of T cell exclusion using 

expression profiles of these cell types from the Gene Expression Omnibus database42 

(Supplementary Table 4). In TCGA melanoma data, tumors whose expression profiles have 

a higher correlation with the MDSC, TAM or CAF signatures show a significantly lower 

level of CTLs (Fig. 3a). Moreover, using the average expression profile of MDSCs, TAMs 

and CAFs to model T cell exclusion, we observed a strong negative correlation between the 

T cell exclusion scores and the CTL levels across tumors (Fig. 3a). Moreover, the CTL 

levels and T cell exclusion scores were negatively correlated in all solid tumor data sets (Fig. 

3b).

We further examined the associations between the gene signatures of T cell exclusion and T 

cell dysfunction. For each tumor, the enrichment of a signature is computed as the Pearson 

correlation between the tumor gene expression profile and the genomewide scores of T cell 

exclusion or dysfunction signatures. In the five cancer types where we can identify 

significant T cell dysfunction scores, the level of T cell exclusion in a tumor inversely 

correlates with the level of T cell dysfunction (Fig. 3c and Supplementary Fig. 3a). We also 

calculated the signature enrichment based on the differential expression between tumor and 

normal samples across TCGA cancer types and observed similar negative correlations 

between T cell exclusion and T cell dysfunction (Fig. 3d and Supplementary Table 6). 

Kidney renal cell carcinoma (KIRC) has the highest CTL level and the highest enrichment 

of the T cell dysfunction signature (Fig. 3d and Supplementary Fig. 3b), while lung 

squamous carcinoma (LUSC) has the highest T cell exclusion signature (Fig. 3d and 

Supplementary Fig. 3c). Our results are consistent with previous reports of a high CTL level 

in KIRC and a low CTL level in LUSC16. These results suggest that the KIRC and LUSC 

tumors utilize distinct immune evasion strategies, with KIRC operating more through T cell 

dysfunction and LUSC through T cell exclusion. Previous studies reported paradoxical 

observations that in KIRC the degree of CD8 cytotoxic T cell infiltration is anti-correlated 

with survival benefits43. Our analysis revealed that KIRC tumors with higher CTL levels 

tend to have a stronger T cell dysfunction signature, which could impair the ability of 

cytotoxic T cells to kill cancer cells (Supplementary Fig. 3b).

TIDE signature predicts ICB response

In previous sections, we developed genome-wide expression signatures to measure the level 

of T cell dysfunction and T cell exclusion in tumors. We next examined whether integrating 

these two signatures could predict ICB clinical response. Among the five cancer types for 

which we could compute reliable TIDE signatures (Fig. 1c), only melanoma has publicly 
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available data on tumor expression and clinical outcome of patients treated with anti-PD114 

or anti-CTLA43, so it was the focus of our evaluation. We also evaluated TIDE on an anti-

PD1 data set that profiled tumor expression profiles across four cancer types using the 

NanoString assay on a few hundred genes15.

We classified the tumors as CTL-high if the expression levels of all CTL markers (CD8A, 

CD8B, GZMA, GZMB and PRF1) were higher than their average values in each data set and 

the remaining tumors as CTL low. In the CTL-high tumors, TIDE correlates the tumor 

expression data with the T cell dysfunction signature and predicts tumors with high 

correlation to T cell dysfunction as non-responders (Supplementary Fig. 4a). In CTL-low 

tumors, it has been reported that ICB can enhance the cytotoxic T cell infiltration44,45, so 

patients with low tumor CTL might still derive clinical benefits from immunotherapies. 

Therefore, TIDE correlates the expression data for each tumor with the T cell exclusion 

signature in CTL-low tumors and predicts those with suppressive cells inhibiting T cell 

infiltration as non-responders (Supplementary Fig. 4a). Notably, the correlation between 

tumor expression profiles and TIDE signatures is a single value computed across all human 

genes (Supplementary Fig. 4b), and therefore not subject to multiple-hypotheses testing and 

less sensitive to the noise from individual expression or the TIDE signature value. For the 

pre-treatment transcriptome of each tumor, the Pearson correlation with either T cell 

dysfunction (in CTL-high tumors) or exclusion (in CTL-low tumors) signatures was defined 

as the TIDE prediction score (Fig. 4a–c). Correlations with T cell dysfunction or exclusion 

signatures may have different distributions (Supplementary Fig. 4c). Thus, when merging 

the prediction scores from two tumor CTL categories, we normalized the correlations by 

their standard deviations in the TCGA data. Finally, all tumors were ranked by their TIDE 

scores to predict their ICB response (Fig. 4a–c and Supplementary Fig. 4d).

To evaluate the prediction performance for ICB response, we used ROC to measure the true-

positive rates against the falsepositive rates at various thresholds of TIDE prediction scores 

(Fig. 4d–f). Compared to widely used ICB response biomarkers, tumor mutation load, PD-
L1 level and interferon gamma response5,7, the TIDE signature achieved consistently better 

performance for both anti-PD1 and anti-CTLA4 therapies using both RNA-Seq and 

NanoString data (Fig. 4d–f and Supplementary Fig. 5a). We also compared TIDE with other 

ICB response signatures reported in the literature (Supplementary Table 7). Among all 

candidate biomarkers, we found the TIDE signature to be the best predictor for both anti-

PD1 and anti-CTLA4 therapies (Fig. 4g–i and Supplementary Table 8a). The prediction 

performance of TIDE is also higher than the signatures of T cell dysfunction and ICB 

resistance discussed in Fig. 2a (Supplementary Fig. 5b). Meanwhile, the TIDE prediction 

performance is robust against modest variations of CTL cutoff in the definition of CTL-high 

or -low tumors (Supplementary Fig. 5c). Moreover, a higher tumor TIDE prediction score is 

associated not only with worse ICB response, but also with worse patient survival under 

anti-PD1 and anti-CTLA4 therapies (Fig. 4j–l). One explanation for the better performance 

of TIDE is that TIDE utilized both T cell dysfunction and exclusion signatures to model 

immune escape in tumors with different CTL levels, while other biomarkers consider only 

one aspect (Supplementary Fig. 5d–f and Supplementary Table 8b,c). Paradoxically, a 

previous computational method ImmunoPhenoScore claimed to have 100% accuracy in 
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predicting ICB response in melanoma46, but we observed considerably lower accuracy of 

ImmunoPhenoScore using the source codes provided by the authors (Fig. 4g–i).

Besides the anti-PD1 RNA-Seq cohort14 analyzed in Fig. 4, a recent study generated RNA-

Seq profiles on another melanoma cohort treated with anti-PD145. We focused on 24 patients 

with genomics profiles (expression and mutation) of pre-treatment tumors and anti-PD1 as 

the first-line immunotherapy (without previous anti-CTLA4 therapy). While the TIDE 

prediction score has a similar accuracy to the mutation load (Supplementary Fig. 6a,b), it is 

significantly predictive of the patient overall survival (‘Ipi naive’ in Supplementary Fig. 6c), 

demonstrating its prognostic value. We noted that TIDE achieved a lower prediction 

performance in the Riaz study compared to its performance in the Hugo study (Fig. 4d 

versus ‘Ipi naive’ in Supplementary Fig. 6). A possible explanation is that the Riaz study45 

used the RECIST v1.1 criteria for disease progression, while the Hugo study14 used the 

immune-related RECIST47, which is more appropriate for predicting immunotherapy 

response. Further, TIDE is trained using data from ICB-naive tumors and thus not relevant in 

modeling the tumors that progressed after a first-line ICB2 (‘Ipi progressed’ in 

Supplementary Fig. 6).

The TIDE dysfunction score predicts regulators of ICB resistance

We hypothesized that some genes with high scores in TIDE signatures might serve not only 

as biomarkers but also as ICB resistance regulators. We focused on the T cell dysfunction 

signature for genes regulating T cell dysfunction in tumors. As the T cell dysfunction scores 

were computed using the data from treatment-naive tumors, we utilized orthogonal data 

from a mouse model of acquired anti-CTLA4 resistance to identify genes that are associated 

with ICB resistance36. We ranked genes with significant T cell dysfunction scores in Fig. 1c 

by the expression fold-change in the ICB-resistant tumors36 and identified Serpinb9 as the 

most upregulated gene (Fig. 5a,b). In ICB clinical cohorts, the SERPINB9 expression level 

is consistently lower in responders than non-responders (Supplementary Fig. 7a). Moreover, 

SERPINB9 expression alone is significantly associated with worse overall survival in two 

clinical studies of anti-CTLA4 therapy3,48 (Fig. 5c, Supplementary Fig. 7b and 

Supplementary Table 9).

SERPINB9 is a member of the serine protease inhibitor (serpin) family. The encoded protein 

can inactivate granzyme B to protect lymphocytes (for example, T cells and natural killer 

cells) from granzyme that may leak from the granules49. It is normally expressed in 

cytotoxic lymphocytes, antigen-presenting cells and immune-privileged sites50–52. 

Meanwhile, a study using in vitro cell culture models reported that a high SERPINB9 level 

in cancer cells resulted in resistance to T cell-mediated killing53. To infer which cell type in 

tumors is the potential source of a high SERPINB9 level, we examined the Protein Atlas 

database of immunohistochemistry results for 15,000 genes in 20 cancer types54. The 

SERPINB9 protein is expressed at a higher level in cancer cells of melanoma and several 

other cancer types as compared to normal tissues (Supplementary Fig. 7c,d). Thus, 

SERPINB9 may promote the resistance to T cell-mediated killing during ICB therapy 

through its high expression in cancer cells.
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To validate SERPINB9 function in cancer cells, we knocked out Serpinb9 using CRISPR–

Cas9 in the murine B16F10 melanoma cell line, which is the parental line of the anti-

CTLA4-resistant tumor model previously discussed36. After knocking out Serpinb9 using 

two different CRISPR guide RNAs (gRNAs), the protein level became undetectable (Fig. 5d 

and Supplementary Fig. 8). When co-cultured with Pmel-1 cytotoxic T cells, the Serpinb9-

knockout B16F10 cells were more sensitive to T cell-mediated killing compared to control 

cells (Fig. 5e, Supplementary Fig. 9a and Supplementary Table 10). In contrast, B16F10 

cells with Serpinb9 overexpression were significantly more resistant to T cell-mediated 

killing compared to control cells (Fig. 5f, Supplementary Fig. 9b and Supplementary Table 

10).

Notably, in B16F10 cells, the SERPINB9 protein level is significantly increased on 

treatment with IFNγ, a cytokine produced by cytotoxic T cells following antigen-specific 

activation55 (Fig. 5d). This SERPINB9 induction following IFNγ treatment might be 

explained by the binding of IRF1, a transcription factor activated by IFNγ signaling56, near 

the Serpinb9 gene that is observed in public ChIP-Seq data sets (Supplementary Fig. 10a,b). 

In human melanoma tumors, the expression level of SERPINB9 is highly correlated with 

IRF1 on both bulk tumor and single-cell levels (Supplementary Fig. 10c,d). These results 

support that SERPINB9 in cancer cells regulates resistance to T cell-mediated killing, which 

is essential for ICB response. Interestingly, the SERPINB9 expression level is also 

consistently upregulated following pathogen infection in curated studies from the NCBI 

Gene Expression Omnibus42 and Expression Atlas57 databases (Supplementary Fig. 11 and 

Supplementary Table 11). This result indicates that SERPINB9 is potentially a general 

regulator of immune evasion utilized by both tumors and pathogens.

Discussion

We developed a computational method called TIDE, which integrates the expression 

signatures of T cell dysfunction and T cell exclusion to model tumor immune evasion. The 

TIDE signatures, trained from treatment-naive tumor data, can predict ICB clinical response 

based on pre-treatment tumor profiles. Furthermore, TIDE predicted regulators of ICB 

resistance whose inhibition might improve ICB response. We experimentally validated the 

role of SERPINB9, an inhibitor of the cytotoxic lymphocyte protease GZMB, in tumor 

immune evasion, which is an essential process of ICB resistance. Although no small-

molecule inhibitor of SERPINB9 is available, the Pfizer OASIS database indicates this 

protein as potentially druggable58.

Of the 73 data sets analyzed in this study, only five gave statistically significant T cell 

dysfunction signatures from the interaction test (Supplementary Table 2). This result is 

partly because we considered only 48 out of the 73 data sets where a higher level of tumor-

infiltrating cytotoxic T cells is correlated with better survival outcome. In some cancer types, 

such as renal cell carcinoma, which has a substantial level of CD8 T cell infiltration, higher 

CTL may not be associated with survival benefits43. Also, depending on the sample size or 

characteristics of specific data sets, there might not be any statistically significant genes 

interacting with CTL to influence survival. Since averaging signatures from the five data sets 

yielded a signature more robust than any individual signature, integrating additional cancer 
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data sets in the future has the potential to further improve the robustness of the T cell 

dysfunction scores (Fig. 2c). With additional data, cancer-type-specific regulators may be 

identified on the basis of the biological variations of T cell dysfunction scores across 

different cancer types.

When using the TIDE model to predict ICB response, we determined a cutoff to classify 

tumors as CTL-high or CTL-low. We used the average expression of CTL markers (CD8A, 

CD8B, GZMA, GZMB and PRF1) across all tumors to determine the CTL threshold. 

However, if matched normal tissues are available, the CTL threshold could also be 

determined by comparing the CTL marker expression in tumors with marker expression in 

normal tissues. The TIDE signature consists of genome-wide scores of T cell dysfunction 

and exclusion. While a genome-wide transcriptome biomarker might be robust for ICB 

response prediction, RNA-Seq has not been widely adopted in the clinic. A smaller gene 

panel for qPCR or NanoString assays could be more clinically pragmatic. We demonstrated 

TIDE performance on an anti-PD1 response data set where baseline tumor expression was 

measured on the NanoString PanCancer panel (Fig. 4c).

One limitation of our study is that we focused primarily on gene expression biomarkers. 

However, other biomarker types can also predict T cell infiltration and ICB response. For 

example, beta-catenin protein level has a negative correlation with CTL in many cancer 

types (Supplementary Fig. 3d,e and Supplementary Table 12). Moreover, tumors initially 

responding to ICB may later acquire mutations, such as in B2M, IFNGR1/2 and JAK1/2 
genes, to become ICB resistant2. However, our study focuses only on predicting intrinsic 

ICB resistance. Therefore, more data types and methods are necessary to model the 

immunotherapy efficacy comprehensively. It is possible that TIDE could be applied jointly 

with other types of biomarker to achieve a higher prediction performance.

To enable testing of TIDE by clinicians and the public, we created a web application for 

response prediction using transcriptome profiles at http://tide.dfci.harvard.edu. TIDE has the 

potential to help oncologists select patients who are more likely to benefit from ICB. It 

would be of significant interest to test the clinical utility of TIDE in ICB decision-making in 

a prospective clinical trial. New immune-oncology data are emerging at an increasingly 

rapid pace. We envision that computational modeling and data integration will be 

increasingly utilized to refine ICB response biomarkers and identify new immunotherapy 

targets.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41591-018-0136-1.

Methods

Data collection of clinical genomics studies

We collected cancer data sets with both patient survival durations and tumor gene expression 

profiles from the TCGA31, PRECOG17 and METABRIC32 databases. If the clinical 
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information is available, we separated the breast cancer data sets into the PAM50 (Prediction 

Analysis of Microarray 50, Prosigna) subtypes13 of luminal A, luminal B, Her2 positive, 

basal and triple negative (a variation of basal subtype). This separation is because each 

PAM50 subtype has a distinct genomics profile59 and degree of cytotoxic T cell 

infiltration60. Among all TCGA cancers, melanoma has two major tumor types annotated 

(that is, primary and metastatic); thus, we split melanoma profiles into primary and 

metastatic subtypes. The PRECOG database provided only survival duration information 

without other clinical factors; thus, we cannot perform subtype analysis. METABRIC is a 

breast cancer cohort, and we split all tumors according to the PAM50 subtypes (luminal A, 

luminal B, HER2, basal and triple negative).

To ensure the robustness of our analysis, we excluded the data sets from microarray 

platforms with fewer than 15,000 genes or without probes for cytotoxicity T cell markers 

(CD8A, CD8B, GZMA, GZMB and PRF1). Also, we included only data sets with more than 

50 patients and 10% death rate because a low event number may undermine the reliability of 

Cox-PH survival regression26. Finally, 73 data sets from 3 databases passed our selection 

criteria (Supplementary Table 2a). The expression values of all genes are normalized by 

subtracting the mean values across all samples in a data set.

Statistical analysis

The interaction test in multivariate Cox-PH regression was applied to identify gene 

association with T cell dysfunction phenotype. In statistics, two variables interact if the 

effect of one variable depends on the status of the other, and a multiplication term in a 

multivariate linear model can test the interaction effect between two variables25. We applied 

the Cox-PH survival regression to test how the level of CTL interacts with other genes in the 

tumor to affect survival outcome. We solve a linear model Hazard = a×CTL + b×V + 

d×CTL×V + c using the Cox-PH regression26. The CTL level is estimated through the bulk-

tumor expression average of CD8A, CD8B, GZMA, GZMB and PRF1. In the Cox-PH 

model, the death hazard was estimated through the patient survival information. The variable 

V represents the expression level of a candidate gene in the test. Since we have selected data 

sets where CTL correlates with favorable survival outcome, the coefficient a is always 

negative. The association slope between CTL and Hazard is a + d×V (Fig. 1b). If the 

coefficient d is positive, a higher V level will flatten the slope between CTL and Hazard, 

indicating a reduced association between the cytotoxic T cell level and better survival 

outcome. If d is negative, a higher V level will sharpen the slope between CTL and Hazard, 

indicating an increased association between the cytotoxic T cell level and better survival 

outcome. The T cell dysfunction score for each gene is defined as the Wald test z score, 

which is the coefficient d divided by its standard error26 (Fig. 1c and Supplementary Table 

1). Of note, the thresholds shown in Fig. 1a and Supplementary Fig. 1a are used only to 

illustrate the principle of statistical interaction used by the model. When computing the T 

cell dysfunction scores through regression, we used the continuous variables without any 

thresholds. Also, we included clinical covariates, such as age, gender and stage (if available), 

in the regression to control for potential confounding factors.
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To identify significant genes in the interaction test, we applied the Benjamini-Hochberg 

method to convert the two-sided Wald test P values to FDRs61, and selected clinical data sets 

with more than 1% genes having an FDR smaller than 0.1. This procedure is equal to 

selecting data sets where the distribution of P values has a significant peak near zero62. For 

example, the P-value histogram computed using TCGA melanoma data has a spike near 

zero, indicating that a set of genes significantly interact with CTL to affect survival outcome 

(Supplementary Fig. 1b). In contrast, the result computed from glioblastoma data does not 

contain any genes with significant interactions (Supplementary Fig. 1b).

Performance comparison on predicting ICB response

We collected the RNA-Seq data in melanoma for anti-CTLA43 and anti-PD114 therapies 

with gene expression profiles for 25 and 42 pre-treatment tumors with complete clinical 

information, respectively. We collected the NanoString data for anti-PD1 therapies with gene 

expression profiles of 33 baseline tumors in four cancer types15. For each data set, we 

standardized the transcriptome data across patients by quantile-normalization, and further 

normalized the expression values of each gene by subtracting the average among all 

samples. Therefore, a zero value indicates the average expression.

To predict each tumor’s potential to escape T cell-mediated killing, we first classified each 

tumor into CTL-high or CTL-low categories through the CTL marker expression levels 

(CD8A, CD8B, GZMA, GZMB and PRF1). Tumors with all positive values (higher than 

average) are classified as CTL-high, while the rest as CTL-low (Supplementary Fig. 4a). For 

the CTL-high tumors, we computed the Pearson correlation between tumor gene expression 

profiles and the T cell dysfunction signature (Supplementary Fig. 4b). For the CTL-low 

tumors, we computed the Pearson correlation between tumor gene expression profiles and 

the T cell exclusion signature (Supplementary Fig. 4b). The correlation with T cell 

dysfunction or exclusion signatures may have different distributions (Supplementary Fig. 

4c). Therefore, to make the scale of Pearson correlations comparable between CTL-high and 

-low tumors, we normalized the correlation values within each sub-category through the 

standard deviation of correlations computed using the TCGA melanoma data. The scaled 

correlations were defined as TIDE prediction scores, representing the potential of tumor 

immune escape (Fig. 4a–c).

We also computed the response prediction from other biomarkers published in the literature. 

The predicted values of gene expression biomarkers (for example, IFNG, CD8, PDL1 and 

CRMA) were the average values among all members defined by the original publications 

(Supplementary Table 7). The predicted values of ImmunoPhenoScore were computed using 

the source codes provided by the authors46. The predicted value of the tumor SCNA 

biomarker was downloaded from the original publication for the anti-CTLA4 data set9 and 

provided by W. Hugo for the anti-PD1 data set14.

The outcome predicted by all biomarkers is a range of values, instead of a binary outcome. 

For example, total mutation load, CD8 expression level and TIDE prediction score all give 

one value for each patient tumor instead of a response classification. Therefore, we utilized 

the ROC curve, which plots the true-positive rates versus false-positive rates at various 
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thresholds of biomarker values (Fig. 4d–f). The area under the ROC curve was used as the 

quality metric of prediction (Fig. 4g–i).

Gene selection for a focused TIDE signature

We select the most informative genes with both high variance across tumors and significant 

values in the TIDE signature. We selected 770 genes because that number is compatible with 

a NanoString platform that could be designed for a clinical assay. In the first step, we 

computed the standard deviation of expression values across samples for all genes in each 

TCGA cancer data set and selected 4,150 genes whose standard deviation is higher than the 

average of all genes in more 80% TCGA data sets. Next, we ranked the 4,150 genes by their 

maximum absolute values in the TIDE signatures of T cell dysfunction and exclusion. From 

this ranked list, we selected the top 770 genes, which is the maximum number that can fit on 

a NanoString assay. The column ‘TIDE.selected’ in Fig. 4g–i shows the TIDE performance 

on selected genes.

T cell killing assay based on co-culture between B16 and T cells

B16F10 cells were maintained in complete DMEM media (10% FBS and 50 U ml−1 of 

penicillin/streptomycin). B16F10-Cas963 cells were maintained in complete DMEM media 

with 2.5–5 μg ml−1 of blasticidin. CD8 T cells isolated from mice were cultured in complete 

RPMI 1640 media (10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-

mercaptoethanol, 2 mM L-glutamine and 50 U ml−1 streptomycin and penicillin). All cell 

lines are tested for mycoplasma contamination. Pmel-1 TCR transgenic mice were 

purchased from Jackson Laboratory (stock no. 005023).

CD8 T cells were isolated from spleen and lymph nodes from Pmel-1 TCR transgenic mice 

using the EasySep mouse CD8+ T cell isolation kit (STEMCELL no. 19753) according to 

the manufacturer’s protocol. Freshly isolated CD8 T cells were stimulated with anti-CD3/

CD28 beads (ThermoFisher no. 11452D) at a bead to cell ratio of 1:2 to induce 

differentiation into an effector state. On day 3, recombinant mouse IL-2 (Biolegend, no. 

575406) was added to the culture at 20 ng ml−1. T cells were used for co-culture with 

B16F10 cells after at least six days of in vitro activation. Our animal experiments have 

complied with all relevant ethical regulations. The study protocol in this study was approved 

by the Institutional Care and Use Committee at Dana Farber Cancer Institute.

To knockout Serpinb9, CRISPR gRNA sequences targeting Serpinb9 or non-targeting 

control were cloned into a PLKO3G-GFP vector and confirmed by sequencing. To 

overexpress Serpinb9, its cDNA was amplified, cloned into a pEF1a-puro vector and 

confirmed by sequencing. Knockout or overexpression constructs were co-transfected with 

pCMV-dR8.91 and pCMV-VSV-G (Addgene no. 8454) into HEK293T cells to generate 

lentivirus. Transfection was performed using TransIT-293 (Mirus, MIR2700) following the 

manufacturer’s protocol. Lentivirus was collected 48 h later and stored at −80 °C. To 

generate Serpinb9-knockout cells, B16F10-Cas9 cells were infected with a lentivirus driving 

expression of a single gRNA overnight to inactivate Serpinb9 genes individually. Infected 

cells were sorted on the basis of GFP expression by BD FACS Aria II. To generate 

Serpinb9-overexpressing cells, B16F10-Cas9 cells were infected with either pEF1a-puro 
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backbone or pEF1a-puro-Serpinb9. Infected cells were selected by culturing with 2 μg ml−1 

puromycin. Control (non-targeting gRNA or pEF1a-puro backbone), Serpinb9-deficient or 

Serpinb9-overexpressing B16F10-Cas9 cells were lysed and subjected to western blot 

analysis with the following antibodies: anti-SERPINB9 (Santa Cruz Biotechnology no. 

sc-57531) and anti-VCL (Sigma Aldrich no. V9264).

In a competition assay with Serpinb9-knockout cells, Serpinb9-deficient or non-targeting 

guide control B16F10-Cas9 cells (GFP positive) were mixed with control B16F10-Cas9 

cells (GFP negative) at a 1:1 ratio. In a competition assay with Serpinb9-overexpressing 

cells, pEF1a control or pEF1a-Serpinb9 B16F10-Cas9 cells (GFP negative) were mixed with 

control GFP-infected B16F10-Cas9 cells (GFP positive) at a 1:1 ratio. Mixed cells were 

stimulated with 10 ng ml−1 or 100 ng ml−1 of interferon gamma for 24 h to enhance MHC 

class I expression. These tumor cells were then co-cultured with in vitro-activated Pmel-1 T 

cells at different effector-to-target ratios in a 6-well plate. Tumor cells were plated at equal 

density in all wells, and T cells were added at 0, 1/3, 1/2 or 100% of the number of tumor 

cells. There are two or three cell-culture replicates for each condition. After a three-day co-

culture with T cells, the fold-change of Serpinb9-edited B16F10 cells was determined by 

FACS, comparing the percentage of Serpinb9-edited B16F10 cells to control B16F10 cells 

(Supplementary Fig. 9). T cells present in these cultures were gated out on the basis of 

antibodies specific for CD45 (APC–Cy7) (Biolegend, 103115).

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Software availability

The TIDE web application of response prediction is freely accessible with any modern web 

browser through http://tide.dfci.harvard.edu/. We will keep the website and tool operating 

and freely accessible for the foreseeable future. The source code for computing the T cell 

dysfunction score through the interaction test is available under GNU Public License v3 

through GitHub at https://github.com/foreverdream2/dysfunction_interaction_test.

Data availability

Users can query our analysis results with gene names: http://tide.dfci.harvard.edu/query/. All 

of our processed input data, analysis output data and an example script to repeat our major 

results are available at http://tide.dfci.harvard.edu/download/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. The interaction test identifies gene signatures of T cell dysfunction.
a, The association between the CTL level and overall patient survival for melanoma tumors 

with different TGFB1 levels. For each metastatic melanoma tumor in TCGA, the CTL 

infiltration level was estimated as the average expression level of CD8A, CD8B, GZMA, 
GZMB and PRF1. The association between the CTL level and overall survival was 

computed through the two-sided Wald test in the Cox-PH regression. Each Kaplan–Meier 

plot presents tumors in two groups: ‘High CTL’ (red) have above-average CTL values 

among all samples, while ‘Low CTL’ (blue) have values below average. Samples were split 
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according to the TGFB1 expression level to show the association between the CTL level and 

survival outcome. The top panel shows tumors with high TGFB1 expression (one standard 

deviation above the average), while the bottom panels show the remaining samples. b, The 

interaction test in a Cox-PH regression to identify genes associated with the T cell 

dysfunction. The variable CTL represents the level of CTLs in each tumor. The variable V 
represents the status of a candidate gene. The coefficient d reflects the effect of interaction 

between the CTL and V on death hazard outcome estimated from the survival data. The 

graphs represent the association slopes between CTL and death hazard. The black and gold 

arrows represent the association slopes before and after increasing the level of V. c, Genes 

with significant T cell dysfunction scores in multiple cancer types. Five data sets, 

representing five cancer types, had more than 1% of genes passing the FDR threshold 0.1. 

We display the genes whose T cell dysfunction scores, defined as the z score of d/standard 

error (s.e.), are significantly positive or negative (two-sided Wald test P values 

corresponding to an FDR less than 0.1) in at least two cancer types. The orange stars 

indicate genes of special interest. The number of samples in each cohort is available in 

Supplementary Table 2b. UCEC, uterine corpus endometrial carcinoma, TNBC, triple-

negative breast cancer; AML, acute myeloid leukemia; SKCM, skin cutaneous melanoma; 

NB, neuroblastoma.
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Fig. 2 |. T cell dysfunction signatures are consistent with published signatures of tumor immune 
evasion.
a, The consistency between T cell dysfunction signatures predicted by the interaction test 

and published gene signatures of tumor immune evasion. To evaluate the reliability of the T 

cell dysfunction gene scores, we collected four published gene signatures related to T cell 

dysfunction and immunotherapy resistance (Supplementary Table 4). We plotted the T cell 

dysfunction scores averaged across five cancer types (average profile in Fig. 1c) for the 

positive (red) and negative (blue) hits of each gene signature. The numbers of positive and 

negative hits for each signature are available in Supplementary Table 4. Within each group, 
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the scattered dots represent all gene values, and the thick line represents the median value. 

The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The 

whiskers encompass 1.5 times the interquartile range. The difference between positive and 

negative groups was compared through the two-sided Wilcoxon rank-sum test, and P values 

for signatures of ‘T accum’, ‘T exhaust’, ‘T regulatory’ and ‘ICB resist’ are 6.94×10−3, 

1.20×10−8, 1.81 ×10−6 and 1.95 ×10−7, respectively. The range of P values are labeled above 

each boxplot with asterisks (**P<1 ×10−2; ***P<1 ×10−3). T accum: shRNA screens for 

regulators of T cell accumulation in tumors; T exhaust: transcriptome of exhausted T cells; T 

regulatory: transcriptome of CD4 regulatory T cells. ICB resist: transcriptome of murine 

tumors that resist anti-CTLA4 checkpoint blockade. b, The ROC curves measuring the 

performance of the average T cell dysfunction scores (average profile in Fig. 1c) in 

predicting the positive and negative gene hits in each signature in a. c, The area under the 

ROC curve of the average profile of all five cancer types (black squares) and each of the 

individual cancer types SKCM, AML, NB, UCEC and TNBC with different dot colors. d, 

Pearson correlations between the T cell dysfunction scores and the expression profile of 

exhausted T cells. The correlations were computed across 12,498 genes shared between 

human and mouse signatures, for all pairwise combinations between five human cancer 

types and different time points in a mouse model of T cell exhaustion (‘T exh fixed’ in 

Supplementary Table 4).
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Fig. 3 |. Immunosuppressive cell expression models gene signatures of T cell exclusion.
a, Prediction of T cell exclusion scores for tumors using immunosuppressive cell signatures. 

For each metastatic tumor in the TCGA melanoma data set (blue dots, n = 317), we 

computed the Pearson correlation between its expression profile and the expression signature 

of MDSCs, M2 TAMs or CAFs (Supplementary Table 4) or the average of the three 

expression signatures. In each graph, these values are plotted along the x axis. The y axis 

shows the CTL level for each tumor (average expression level of CD8A, CD8B, GZMA, 
GZMB and PRF1). The Pearson correlation (R) between the plotted values is shown in the 

upper right corner of each plot. The two-sided t-test P values for correlations in MDSCs, 

TAMs, CAFs and mean are 4.61 ×10−37, 1.58×10−51, 8.84×10−13 and 2.58×10−52, 

respectively. b, A histogram of the correlations between the CTL levels and the T cell 

exclusion scores across tumors. The correlations analyzed in the histogram correspond to the 

R value in the top right corner of a (example of TCGA melanoma) across 43 solid tumor 

data sets. Gliomas are excluded because of low T cell infiltration levels in most gliomas16. c, 

Anti-correlation between T cell dysfunction scores and exclusion scores across TCGA 

melanoma tumors. For each metastatic melanoma tumor (colored dots, n = 317), we 

computed the Pearson correlation between the sample’s expression profile and the TIDE T 

cell dysfunction signature (y axis). The same computation was made between the tumor 

expression profile and the TIDE T cell exclusion signature (x axis). The Pearson correlation 

between the plotted values is shown in the upper right (two-sided t-test P value = 4.02 

×10−34). The dot color indicates the CTL level in each tumor. d, Anti-correlation between T 

cell dysfunction scores and exclusion scores across TCGA cancer types. For each TCGA 

cancer type with normal control samples (n = 17), we calculated the average expression 
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difference between tumor versus normal samples. We then computed the Pearson correlation 

between that value and the TIDE T cell dysfunction signature (y axis). We also made the 

same calculation for the TIDE T cell exclusion signature (x axis). The Pearson correlation 

between the plotted values is shown in the upper right (one-sided t-test P value = 0.042). The 

CTL level difference between tumor and normal samples is shown by the dot color.
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Fig. 4 |. TIDE signatures predict iCB immunotherapy response.
a, A waterfall plot of TIDE prediction scores across 25 melanoma tumors treated with anti-

PDI14. The TIDE framework divided tumors into CTL-high or -low categories based on the 

expression level of CTL marker genes (Supplementary Fig. 4a). Red indicates a tumor that 

responded to therapy. Blue indicates a non-responder. In each category, we sorted tumors in 

descending order according to their TIDE prediction scores. b, A waterfall plot of TIDE 

prediction scores across 42 melanoma tumors treated with anti-CTLA43 in the same way as 

in a. Besides responders or non-responders, several patients are classified as long-survival in 

the original study due to the long overall survival time3. c, A waterfall plot of TIDE 

prediction scores across 33 tumors treated with anti-PD115 in the same way as in a. The 

gene expression profiles are measured by the NanoString platform. The 33 tumors comprise 

9 melanoma, 12 lung adenocarcinoma, 9 lung squamous carcinoma and 3 head and neck 

tumors. d, ROC curves for the performance of the TIDE prediction score, PD-L1 expression, 

interferon gamma (IFNG) response and total mutation load in predicting anti-PD1 response 

among 25 melanoma tumors in a. e, ROC curves for the performance of several signatures in 

predicting anti-CTLA4 response among 42 melanoma tumors in b. f, ROC curves for the 

performance of several signatures in predicting anti-PD1 response among 33 tumors in c. g, 

The area under the ROC curve (AUC) for several signatures in predicting anti-PD1 response 
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among 25 melanoma tumors in a. The signatures are defined in Supplementary Table 7, with 

TIDE in dark red and other signatures in blue. Besides the genome-wide TIDE signature, 

‘TIDE.selected’ is a variation focused on 770 genes with both high expression variation 

across tumors and significant values in the either T cell dysfunction or exclusion signatures. 

The performance of a random predictor (AUC = 0.5) is represented by the dashed line. h, 

AUC for signatures in predicting anti-CTLA4 response among 42 melanoma tumors in b in 

the same way as in g. i, AUC for signatures in predicting anti-PD1 response among 33 

tumors in c in the same way as in g. TIDE AUC metrics are also shown separately for nine 

melanoma, twelve lung adenocarcinoma (Adeno) and nine lung squamous carcinoma 

(Squamous) tumors. j, Kaplan–Meier plots of overall survival (OS) for 25 melanoma 

patients (in a) treated with anti-PD1 with the top (>1) and bottom (<1) TIDE prediction 

scores. The P value was calculated by testing the association between TIDE prediction 

scores and overall survival with the two-sided Wald test in a Cox-PH regression. k, Kaplan-

Meier plots of overall survival for 42 melanoma patients (in b) treated with anti-CTLA4 in 

the same way as in j. l, Kaplan-Meier plots of progression-free survival (PFS) for 33 patients 

(in c) treated with anti-PD1 in the same way as in j.
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Fig. 5 |. Validation of SERPINB9 as a regulator of tumor immune escape.
a, The log-fold change (log[FC]) of expression between anti-CTLA4-resistant and parental 

B16 murine tumors for genes with significant T cell dysfunction scores in Fig. 1c. All genes 

are ranked increasingly with the top one labeled by name. b, The expression value of 

Serpinb9 between anti-CTLA4-resistant and parental B16 tumors. Within each group, the 

scattered dots represent Serpinb9 expression values (n = 6 samples in the resistant group, n = 

4 samples in the parental group). The thick line represents the median value. The bottom and 

top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers 

encompass 1.5 times the interquartile range. The P value, testing the group difference, was 

calculated with the two-sided Wilcoxon rank-sum test. c, Kaplan-Meier plots of patients 

with top half and bottom half SERPINB9 expression levels, using the data from an anti-

CTLA4 study with 42 patients profiled3. Both progression-free survival and overall survival 

are shown. The association between SERPINB9 expression and patient survival was tested 

by the two-sided Wald test in a Cox-PH regression (Supplementary Table 9). d, Western blot 

of SERPINB9 following genetic knockout and overexpression. For knockout (KO), there are 

two independent CRISPR guides targeting Serpinb9 and a control non-targeting sequence. 

Cells were either untreated (left 3 lanes) or treated with 100 ng ml−1 IFNγ to induce 

Serpinb9 expression (right 3 lanes). VCL is the loading control. For overexpression, the 

open reading frame of Serpinb9 was cloned into the pEF1a plasmid and overexpressed in 

B16F10 cells. The protein level was compared between pEF1a backbone- and pEF1a-

Serpinb9-transduced cells. The bands of related protein targets are cut and shown. All 

experiments have been repeated independently two times with similar results. e, The effect 

of Serpinb9 knockout on T cell-mediated tumor killing. B16F10 cancer cells were co-

cultured for three days with cytotoxic T cells at three B16F10 to T cell ratios (3:1, 2:1 or 

1:1). Each CRISPR gRNA-transduced GFP positive cell line (Control, KO 1, KO 2) was 

mixed with the parental GFP-negative cell line at a 1:1 ratio. After co-culture, the ratio of 

edited GFP+cells to parental cells (GFP−) was determined by flow cytometry. The bar plots 
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present the median value among three cell-culture replicates with standard deviations as the 

error bars. The results of the two-sided Student t-test, comparing the difference between 

knockout and control conditions, are available in Supplementary Table 10. f, The effect of 

Serpinb9 overexpression on T cell-mediated tumor killing. The effect of Serpinb9 
overexpression was examined. The bar plots present the median value among two cell-

culture replicates with standard deviations as the error bars. The results of the two-sided 

Student t-test, comparing the difference between overexpression and control conditions, are 

available in Supplementary Table 10.
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