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ABSTRACT: Parkinson’s disease (PD) is a progressive, neuro-
degenerative disease that presents with significant motor symptoms,
for which there is no diagnostic chemical test. We have
serendipitously identified a hyperosmic individual, a “Super Smeller”
who can detect PD by odor alone, and our early pilot studies have
indicated that the odor was present in the sebum from the skin of
PD subjects. Here, we have employed an unbiased approach to
investigate the volatile metabolites of sebum samples obtained
noninvasively from the upper back of 64 participants in total (21 controls and 43 PD subjects). Our results, validated by an
independent cohort (n=31), identified a distinct volatiles-associated signature of PD, including altered levels of perillic aldehyde
and eicosane, the smell of which was then described as being highly similar to the scent of PD by our “Super Smeller”.

■ BACKGROUND

Physicians in ancient times, including Hippocrates, Galenus,
and Avicenna, used odor as a diagnostic tool. Although the
olfactory skills of physicians are not routinely used in modern
medicine, it is well documented that a number of conditions,
predominantly metabolic and infectious diseases, are asso-
ciated with a unique odor,1 but there is scant evidence for
odors as symptoms of neurodegenerative disorders. To the
best of our knowledge, this is the first study that demonstrates
the use of sebum as biofluid to screen for Parkinson’s disease
(PD). There have been a small number of metabolomics
studies of PD using various biofluids such as blood, feces,
saliva, urine, and cerebrospinal fluid, as well as insect and
mouse models of PD as described in this recent review by Shao
and Le;2 there is no mention of a “PD odor”. Joy Milne, a
Super Smeller whose husband Les was diagnosed with PD in
1986, has demonstrated a unique ability to detect PD by odor.3

Joy has an extremely sensitive sense of smell, and this enables
her to detect and discriminate odors not normally detected by
those of average olfactory ability. Preliminary tests with T-
shirts and medical gauze indicated the odor was present in
areas of high sebum production, namely, the upper back and
forehead, and not present in armpits.3 Sebum is a waxy, lipid-
rich biofluid excreted by the sebaceous glands in the skin,
overproduction of which known as seborrhea, is a known non-
motor symptom of PD.4,5 PD skin has recently been shown to

contain phosphorylated α-synuclein, a molecular hallmark of
PD.6,7 Identification and quantification of the compounds that
are associated with this distinctive PD odor could enable rapid,
early screening of PD as well as provide insights into molecular
changes that occur as the disease progresses and enable
stratification of the disease in the future.
Volatile organic compounds (VOCs) are often associated

with characteristic odors, although some volatiles may also be
odorless. The term “volatilome” describes the entirety of the
volatile organic and inorganic compounds that may originate
from any organism, or object, which may be analytically
characterized. For any given sample under ambient conditions
in a confined environment, collecting, identifying, and
measuring molecules in its headspace will then define its
volatilome. Such measurements can be performed with thermal
desorption−gas chromatography−mass spectrometry (TD−
GC−MS), where a sample is placed in a closed vessel. The
sample is then heated to encourage the production of volatiles,
and the headspace is captured for analysis by GC−MS.
Investigation of volatile metabolites using mass spectrometry
has proven to be extremely useful in clinical studies8−11 as well
as in the analysis of the consistency and provenance of edible
items.12−14 Recently, TD-GC-MS has been used as a
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volatilome analysis platform for the detection of compounds
from bacteria implicated in ventilator associated pneumonia,10

for differentiation between odors due to human and animal
decomposition,15 as well as aerosol detection of the fumes
from e-cigarettes.16 This versatility of TD-GC-MS for samples
from many sources renders it highly suitable for use in
identifying the metabolites that give rise to the distinct scent of
PD. We have established a workflow that starts in clinics with
the collections of sebum samples from the upper backs of PD
patients along with matched control subjects and progresses to
the discovery of disease specific volatile metabolites, the odor
of which is confirmed by our Super Smeller (Figure 1,
Supporting Information and Table S1A).
In the current study, VOCs from the sample headspace were

measured in two cohorts: a “discovery” cohort (n = 30) and a
“validation” cohort (n = 31), to validate discovered
biomarkers17 (for demographics of each cohort see Tables
S1B and S5). A third cohort consisting of three drug-naiv̈e PD
participants was used for GC-MS analysis in conjunction with
a human Super Smeller via an odor port (Figure 1). This proof
of principal study provides the first description of the skin
volatilome in PD compared to control subjects.

■ STUDY PARTICIPANTS
The participants for this study were part of a nationwide
recruitment process taking place at 25 different NHS clinics.
The participants for this study were selected at random from
these sites. The study was performed in three stages. The first
two stages (discovery and validation) consisted of 61 samples
(a mixture of control, PD participants on medication, and drug
naiv̈e PD subjects as shown in Table S1B). The first cohort
was used for volatilome discovery, and the second cohort was
used to validate the significant features discovered in first
cohort. A third cohort consisting of three drug naiv̈e PD

participants was used for smell analysis from the Super Smeller.
Ethical approval for this project (IRAS project ID 191917) was
obtained by the NHS Health Research Authority (REC
reference: 15/SW/0354). The metadata analysis for these
participants is reported in Table S1B. The study design was as
outlined in Figure 1.

■ SAMPLE COLLECTION
The sampling involved each subject being swabbed on the
upper back with a medical gauze. The gauze with sebum
sample from the participant’s upper back was sealed in
background-inert plastic bags and transported to the central
facility at the University of Manchester, where they were stored
at −80 °C until the date of analysis.

Analytical Method: TD−GC−MS Analysis. Description
of the Technique. A dynamic headspace (DHS) GC−MS
method was developed for the analysis of gauze swabs which
contained sampled participant sebum. DHS is a sample
preparation capability for subsequent GC application using
the GERSTEL MultiPurpose sampler (MPS) that concentrates
VOCs from liquid or solid samples. The sample is incubated
while the headspace is purged with a controlled flow of inert
gas through an adsorbent tube. Once extraction and
preconcentration are completed, the adsorbent tube is
automatically desorbed using the GERSTEL thermal desorp-
tion unit (TDU). Analytes are then cryofocused on the
GERSTEL cool injection system (CIS) programmed temper-
ature vaporizer (PTV) injector before being transferred to the
GC for analysis.
In order to correlate the PD molecular signature to the PD

smell, the same setup was used in combination with the
GERSTEL olfactory detection port (ODP). The ODP allows
detection of odorous compounds as they elute from the
GC, by smell. In fact, the gas flow is split as it leaves the

Figure 1. Schematic outline of the workflow described in this study - from sample collection to biomarker discovery. Parkinson’s disease patient
samples and control participant samples were collected from 25 sites across the UK using gauze swabs to sample the sebum from the top back
region from 64 people. Thermal desorption−gas chromatography−mass spectrometry (TD−GC−MS) analysis was performed alongside olfactory
analysis, results of which were then combined. Statistical analysis was performed on two independent cohorts. Data from discovery cohort
consisting of 30 participants were used to create a partial least-squares-discriminant analysis (PLS-DA) model, and differential features found as a
result were then targeted for the presence in a separate validation cohort consisting of 31 participants. The significance of these biomarkers was
tested using receiver operating characteristic (ROC) analyses and the Wilcoxon-Mann−Whitney test. Finally, four features that showed similar
statistical significance and expression in both cohorts were selected for biological interpretation of data.
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column between the detector of choice (in our case MS) and
the ODP to allow simultaneous detection on the two analytical
tools. The additional smell profile information can then be
acquired as an olfactogram. Voice recognition software and
intensity registration allow direct annotation of the chromato-
gram.
Method Details. Gauze swabs were transferred into 20 mL

headspace vials and then analyzed by DHS−TD−GC−MS.
For the DHS preconcentration step, samples were incubated
for 5 min at 60 °C before proceeding with the trapping step.
Trapping was performed by purging 500 mL of the sample
headspace at 50 mL·min−1 through a Tenax TA adsorbent tube
kept at 40 °C (GERSTEL, Germany). Dry nitrogen was used
as the purge gas. To release the analytes, the adsorbent trap
was desorbed in the TDU in splitless mode. The TDU was
kept at 30 °C for 1 min then ramped at 12 °C·s−1 to 250 °C
and held for 5 min. Desorbed analytes were cryofocused in the
CIS injector. The CIS was operated in solvent vent mode,
using a vent flow of 80 mL·min−1 and applying a split ratio of
10. The initial temperature was kept at 10 °C for 2 min, then
ramped at 12 °C·s−1 to 250 °C and held for 10 min. The GC
analysis was performed on an Agilent GC 7890B coupled to an
Agilent MSD 5977B equipped with high efficiency source
(HES) operating in EI mode. Separation was achieved on an
Agilent HP-5MS Ultra inert 30 m × 0.25 mm × 0.25 μm
column. The column flow was kept at 1 mL·min−1. The oven
ramp was programmed as follows: 40 °C held for 5 min, 10 °C·
min−1 to 170 °C, 8 °C·min−1 to 250 °C, 10 °C·min−1 to 260
°C held for 2 min for a total run time of 31 min. The transfer
line to the MS was kept at 300 °C. The HES source was kept at
230 °C and the Quadrupole at 150 °C. The MSD was operated
in scan mode for the mass range between 30 and 800 m/z. For
the olfactometry approach, the chromatographic flow was split
between the mass spectrometer and the GERSTEL olfactory
detection port (ODP3) using Agilent Technologies Capillary
Flow Technology (three-way splitter plate equipped with
makeup gas). The ODP3 transfer line was kept at 100 °C, and
humidity of the nose cone was maintained constant.
Data Preprocessing and Deconvolution. TD−GC−MS

data were converted to open source mzXML format using
ProteoWizard. Each cohort data set was deconvolved
separately using eRah package for R.18 Upon deconvolution,
in discovery cohort 207 features and in validation cohort 210
features were assigned to detected peaks. The deconvolved
analytes were assigned putative identifications by matching
fragment spectra with compound spectra present in the Golm
database, NIST library, and Fiehn GCMS library. In discovery
cohort 163 features were assigned a putative identification, and
in validation cohort 156 features were assigned a putative iden-
tification. The resulting matrices for each cohort consisted of
variables and their respective area under the peak for each
sample. All data were normalized for age and total ion count to
account for confounding variables (Table S1B).
Statistical Analyses. The discovery cohort data analysis in-

cluded a global analysis of all the detected compounds. PLS-
DA modeling was carried out using all the measured features.
We have not included PCA results because, using this
unsupervised clustering method, we were unable to see any
clustering of data. We attribute this to the complex nature of
metabolomics data especially for volatile metabolites. This
results in high dimensionality of the data, and it is unrealistic to
expect that the separation between PD and controls is the most
dominating variance in the data and thus results in poorer

display on PCA/MDS plots. Often supervised modeling is
required to train the models to find defined differences by
overcoming noise.
The data were log10-scaled, and Pareto scaled prior to

Wilcoxon-Mann−Whitney analysis, PLS-DA, and the produc-
tion of ROC curves. The PLS-DA modeling was performed
and executed using MATLAB (2018a),19,20 and the MATLAB
functions are freely available from our in-house cluster toolbox
hosted at https://github.com/biospec. ROC curves were
generated using the R package called pROC.21 The samples
from both cohorts were also analysed together combined as a
single dataset, thus increasing sample size and providing better
statistical power while evaluating the performance of this panel
of biomarkers (Figure 2c, Figure S1). ROC curves were
generated by Monte Carlo cross validations (MCCV) using
balanced subsampling. In each of the MCCV, two-thirds of the
samples were used to evaluate the feature importance. The top
two, three, five, seven, and nine important features were then
used to build classification models, which were validated using
the remaining one-third of the samples. The process was
repeated 500 times to calculate the average performance and
confidence interval of each model. Classification and feature
ranking were performed using a PLS-DA algorithm using two
latent variables (Figure 2c).
When performing k-nearest neighbors analysis, k was chosen

to be 5 given the small sample size, and the distance parameter
used was Euclidean distance which was used as weights such
that closer neighbors of a query point have a greater influence
than the neighbors farther away. During random forest analysis
of the same data, 10 decision trees were grown, and the growth
control was achieved by not splitting into subsets smaller than
five. The SVM model was built using LIBSVM, implemented
in e1071 package of R,22 with a linear kernel. The cost (C) and
regression loss epsilon (∈) were determined by performing a
grid search and were set at C = 10 and ∈ was set at 0.10.

Safety Statement. No unexpected or unusually high safety
hazards were encountered in the course of this work.

■ RESULTS AND DISCUSSION
A partial least-squares discriminant analysis (PLS−DA) model
was built using the discovery cohort data (Figure 2). The
classification accuracy of this model was validated by a
bootstrapping approach (n = 1000). The variables contributing
to classification (n = 17) were selected using variable
importance in projections (VIP) scores where VIP > 1. We
note at this stage that one of the 17 metabolites found is 3,4-
dihydroxy mandelic acid, a metabolite of norepinephrine in
humans. This catechol is also a metabolite of L-dopa, one of
the most commonly prescribed medication for Parkinson’s. In
this study, 3,4-dihydroxy mandelic acid is observed in both
drug naiv̈e participants and control participants, indicating its
presence may originate from endogenous mandelic acid
instead of PD drugs. Norepinephrines including 3,4-dihydroxy
mandelic acid are key molecules in the anabolism of brain
neurotransmitters. Changes in neurons and neurotransmitters
are an extremely well-known characterization of PD;23 for
instance, the decrease of dopamines, a precursor to 3,4-
dihydroxy mandelic acid, is a known characterization of PD. It
could, therefore, be hypothesized that the presence of
endogenous 3,4-dihydroxy mandelic acid could be indicative
of altered levels of neurotransmitters in PD.
The measured volatilome in the validation cohort data (from

a different population than the discovery cohort) was targeted
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for the presence or absence of these discovered biomarkers.
Out of these 17 metabolites, 13 were also found in the
validation cohort data, and nine of these had retention times
that allowed us to confidently assign them as identical (Table
S2). These nine biomarkers found in both cohorts were
selected for further analysis and statistical testing. To evaluate
the performance of these biomarkers, we conducted receiver

operating characteristic (ROC) analyses with data from both
the discovery cohort and the validation cohort (Figure S1).
ROC curves and Wilcoxon-Mann−Whitney tests as well as
fold-change calculations on individual metabolites shows four
out of these nine metabolites had a similar trend in regulation
between the discovery and validation cohorts, and their
performance was also similar as measured by AUC (Table 1,
Figure 3). The results from the combined analysis using both
cohorts as a single experiment indicate increased confidence in
the data (p-values in Table 1, confidence intervals in Figure
S1).
We adhered to the Metabolomics Standards Initiative (MSI)

guidelines for data analysis and for assignment of identity to
features of interest,17 and all identified features are at MSI level
two, which means these are putatively annotated compounds
(i.e. without chemical reference standards, based upon
physicochemical properties and/or spectral similarity with
public/commercial spectral libraries). The compounds perillic
aldehyde and eicosane are significantly different between PD
and control in both the cohorts (p < 0.05): perillic aldehyde
was observed to be lower in PD samples, whereas eicosane was
observed at significantly higher levels. Although hippuric acid
and octadecanal were not significantly different (p > 0.05), the
AUC and box plots (Figure 3) between the two cohorts were
comparable and showed similar trends of being increased in
PD. Previous studies have reported varying abundances of
these compounds in other biofluids (Table 2).
Using an odor port attached to the GC−MS instrument, the

Super Smeller identified times at which any smell was present
and also more importantly the times at which a specific
“musky” smell of PD was detected. Data were presented in the
form of an olfactogram, where the presence and relative
intensity of each smell were recorded at its corresponding
chromatographic retention time. Olfactogram results obtained
from the odor port were overlaid on the respective total ion
chromatogram from GC−MS (Figure 4A). There was
significant overlap between regions that contained up-regulated
compounds and regions in which a smell similar or identical to
that of PD scent was present. In the chromatographic trace the
region between 19 and 21 min is of particular interest (Figure
4B) since the smell associated with the mixture of analytes in
that window was described as “very strong” and “musky”. This
is the same region where three compounds, viz. hippuric acid,
eicosane, and octadecanal, have been detected in both cohorts,
and all three were found to be up-regulated in PD subjects.
In order to validate mass spectrometry led biomarkers and to

verify the resultant scent, the candidate compounds listed in
Table S2 (n = 17) were purchased and spiked onto gauze
swabs (Table S3). An exploratory study with our Super Smeller
was performed in which multiple mixtures of compounds (n =
5) were spiked onto both blank gauze swabs and swabs that
contained control sebum. Two final dispensed volumes of the
mixtures were tested (40 and 100 μL), and all compounds
used were at a single concentration (10 μM). In these blinded
tests, the Super Smeller grouped the samples in order of PD-
like odor. She was able to isolate the swabs with a sebum
background matrix and described them as more familiar to the
PD-like smell than without control sebum. Further tests
utilized control sebum as a background matrix for spiking
candidate compounds, and a range of concentrations was then
selected for testing. Mixtures of the candidate compounds (n =
17) were prepared at a range of concentrations (10 μM, 5 μM,
0.5 μM, 0.05 μM, 0.005 μM) and presented to the Super

Figure 2. PLS−DA classification model. (a) Classification matrix of
PLS−DA model validated using 5-fold cross validation showing 90%
correct prediction of Parkinson’s disease samples. (b) PLS−DA
modeling was further tested using permutation tests (where the
output classification was randomized; n = 28), and results were
plotted as a histogram which showed frequency distribution of correct
classification rate (CCR) which yielded CCRs ranging between 0.4
and 0.9 for permutated models. The observed model was significantly
better than most of the permuted models (p < 0.1), shown by the red
arrow. (c) ROC plot generated using combined samples from both
cohorts and the panel of four metabolites that was common and
differential between control and PD. The shaded blue area indicates
95% confidence intervals calculated by Monte Carlo cross validation
(MCCV) using balanced subsampling with multiple repeats.
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Smeller in a second blinded test; she was again asked to rank in
order of PD-like smell. These results demonstrated she could
detect (although not in any systematic order) the whole range

of concentrations offered, and a concentration between 0.05
μM and 0.5 μM gave her the best response. A validation study
consisting of three compound mixtures with significance from
the MS analysis aimed to distinguish the combination that best
gave rise to the most PD-like smell. Three mixture
combinations were chosen at a single concentration (0.5
μM): all candidate compounds (n = 17), all compounds
identified in both the discovery and validation cohorts (n = 9),
and the panel of compounds expressed in same direction and
differential between PD and control (n = 4). The mixture of
nine compounds was consistently described as being most akin
to the PD-like odor and was slightly overlapped by description
and rank with the mixture of four compounds. The mixture of
17 compounds was grouped as the same “smell” as the other
two combinations; however they were described as signifi-
cantly weaker. We hypothesize this is due to a lower
concentration of each compound in the mixture and thus
higher interference from background solvent smell. The results
from these tests are depicted in Figure S2 whereby the

Table 1. Panel of Four Volatile Metabolites That Were Found to Be Differential between Parkinson’s and Control Samples,
with Similar Trends Observed in Expression and AUC Curves Measured by ROC Analysesa

FDR corrected p-value (Mann−Whitney test) expression (PD/control)

putative identification parent mass ΔRT (min) discovery validation combined discovery validation

perillic aldehyde 150.22 0.15 0.0279 0.0403 <0.0001 down down
hippuric acid 179.17 0.09 0.1908 0.0403 0.1833 up up
eicosane 282.56 0.03 0.0279 0.0403 0.0013 up up
octadecanal 170.34 0.12 0.2605 0.0604 0.3040 up up

aPerillic aldehyde and Eicosane were significantly down-regulated and up-regulated in PD, respectively (FDR corrected p < 0.05) in both cohorts.

Figure 3. ROC curves and box plots for analytes of interest: In each panel from top to bottom: ROC curves for both discovery (blue) and
validation (red) cohort for four analytes common to both experiments. Confidence intervals were computed with 2000 stratified bootstrap
replicates, and diagonal black line represents random guess. Box plots show comparison of means of log scaled peak intensities of these analytes,
where black dots were outliers.

Table 2. Known Normal Abundances of Molecules of
Interest (listed in Table 1) Measured Using Mass
Spectrometry Approaches, As Reported in the Literature

molecule biospecimen abundance reference

eicosane feces not quantified Garner et al.26

saliva not quantified Soini et al.27

saliva not quantified Costello et al.28

hippuric acid cerebrospinal
fluid

3.0 (0.0−0.5)
μM

Hoffman et al.29

urine not quantified Hanhineva et al.30

blood 16.74 ± 11.16
μM

Duraton et al.31

octadecanal feces not quantified Dixon et al.32

perillic
aldehyde

saliva not quantified Costello et al.28
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intensity and correlation to the PD-like smell partition the
groups of samples tested. We do not conclude that these
chemicals alone constitute the unique smell associated with
PD; rather, we demonstrate that they contribute to it.
From results obtained from three independent sets of data,

from different people with one underlying factor (i.e., PD)
separating them, it was clear that several volatile features were
found to be significantly different between control and PD
participants. There were no significant differences observed
between PD participants on medication and drug naiv̈e PD
participants (p > 0.05 for all measured volatiles), indicating
that the majority of the analyzed volatilome and by inference
sebum are unlikely to contain drug metabolites associated with
PD medication. In addition, applying machine learning
approaches such as k-nearest neighbors, random forest, and
support vector machines (SVM) did not lead to a classification
between drug naiv̈e PD participants and PD participants on
medication (results in Table S4).
Perillic aldehyde and octadecanal are ordinarily observed as

plant metabolites or food additives. It can be hypothesized that
with increased and altered sebum secretion such lipid-like
hydrophobic metabolites may be better captured or retained
on the sebum-rich skin of PD subjects. Skin disorders in PD
have been observed previously, and seborrheic dermatitis (SD)
in particular has been flagged as a premotor feature of PD.23 It
has been reported by Arsenijevic and co-workers5 that PD
patients who suffer from SD have increasedMalassezia spp. den-
sity on their skin and commensurate higher lipase activity
required metabolically by yeast. This increased lipase activity
could correlate with the enhanced production of eicosane,
perillic aldehyde, and octadecanal as highly lipophilic
molecules since Malassezia spp. requires specific exogenous
lipids for growth. Eicosane is reported as being produced by
Streptomyces spp. as an antifungal agent24 which also supports
its increased presence on the skin of PD sufferers. The effects
observed in our study could also signal altered microbial
activity on the skin of PD patients that may affect the skin
microflora resulting inchanges in the production of metabolites

such as hippuric acid.25 These potential explanations for the
change in odor in PD patients suggest a change in skin
microflora and skin physiology that is highly specific to PD.

■ CONCLUSION
In conclusion, our study highlights the potential of
comprehensive analysis of sebum from PD patients and raises
the possibility that individuals can be screened noninvasively
based on targeted analysis for these volatile biomarkers. We do
acknowledge that the current study is limited with smaller
sample size, but the power of this study is a dif ferent validation
cohort that consisted of completely different participants. This
validation cohort was able to verify the findings and
classification model built using data from our discovery cohort.
A larger study with extended olfactory data from human
smellers as well as canine smellers in addition to headspace
analyses is the next step in further characterizing the PD sebum
volatilome. This will enable the establishment of a panel of
volatile biomarkers associated with PD and will open new
avenues for stratification as well as facilitate earlier detection of
PD and further the understanding of disease mechanisms.
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Figure 4. Comparison of GC−MS chromatogram to description of olfactory data described by the Super Smeller: GC−MS chromatogram from
three drug naiv̈e Parkinson’s subjects and a blank gauze. (A) The 10−25 min retention time range of the chromatographic analysis in which the
Super Smeller described various odors associated with different GC−MS peaks. The overlaid green shaded area shows the overlap between real
time GC−MS analysis and the Super Smeller describing a “strong PD smell” via the odor port. (B) A zoom of the green highlighted area from A.
This region is of particular interest as three out of four identified compounds are found here (Tables 1 and S2); it encompasses the time during
which the Super Smeller described a musky PD-like scent as being “very strong” (between the time lines at 19 and 21 min) for the PD samples and
not for the blank. It can be noted that none of these compounds are found in blank gauze (bottom chromatogram) within the same retention time
window as shown by normalized relative peak intensities to the highest peak in each chromatogram. The area between black dotted lines highlights
the presence of compounds in PD samples but complete absence in the blank gauze.
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